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A Union-Find Data Structure

Problem. Given n items, each in a singleton set, build a data structure to support the 
following operations:

        UNION(p, q)     Merge the set containing p and the set containing q into one set. 

        FIND(p)    Identify which set item p belongs to. 

CONNECTED(p, q)    Check if p and q belong to the same set.



A Union-Find Data Structure

Motivation. A basic data structure used in many applications.

Is the red node connected to the green node?
Are all the nodes connected? Is there a cycle?

Problem. Given n items, each in a singleton set, build a data structure to support the 
following operations:

        UNION(p, q)     Merge the set containing p and the set containing q into one set. 

        FIND(p)    Identify which set item p belongs to. 

CONNECTED(p, q)    Check if p and q belong to the same set.



A Union-Find Data Structure

Motivation. A basic data structure used in many applications.

Does this plate conduct 
electricity? 

(black = conductive material 
 white = insulating material)

Problem. Given n items, each in a singleton set, build a data structure to support the 
following operations:

        UNION(p, q)     Merge the set containing p and the set containing q into one set. 

        FIND(p)    Identify which set item p belongs to. 

CONNECTED(p, q)    Check if p and q belong to the same set.



A Simple Implementation: Array-based Quick-Find
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Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
1 2 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
1 1 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 3 0 5 6 3 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 6 0 5 6 6 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)
• UNION(6, 7)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 5 0 5 5 5 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)
• UNION(8, 9)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 0 0 0 0 0 00 0id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)
• UNION(8, 9)
• UNION(4, 5)

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

  if (id[p] == id[q])  
     return

 UNION(p, q) 

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

 UNION(p, q) 

  if (id[p] == id[q])  
     return 
   

  for (i = 0 to n-1)

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

 UNION(p, q) 

  if (id[p] == id[q])  
     return 
   

  for (i = 0 to n-1) 
     if (id[i] == id[q]) 
         id[i] = id[p]

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

Buggy Code?

  if (id[p] == id[q])  
     return 
   

  for (i = 0 to n-1) 
     if (id[i] == id[q]) 
         id[i] = id[p]

 UNION(p, q) 

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

  if (id[p] == id[q])  
     return 
   
  id_q = id[q] 
  for (i = 0 to n-1) 
     if (id[i] == id_q) 
         id[i] = id[p]

 UNION(p, q) 

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array. 

• Initially, every element is in a singleton set. 

• FIND(p) returns the id of p. 

• UNION(p, q)  changes the id of all the elements in             
            the set of q to the id of the set of p.

  if (id[p] == id[q])  
     return 
   
  id_q = id[q] 
  for (i = 0 to n-1) 
     if (id[i] == id_q) 
         id[i] = id[p]

 UNION(p, q) 

  FIND:    
UNION:   

Θ(1)
Θ(n)

Cost Model. Number of 
array accesses

Running Time.

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9



Idea. Each set is a linked linked list. 
Rationale. Iterate only over the elements of the smaller set when merging sets.

Improvement Attempt 1: Link-List-Based Quick-Find



1 2 3 4 5 6 7 80 9
ptr

Idea. Each set is a linked linked list. 
Rationale. Iterate only over the elements of the smaller set when merging sets.

Example. Each element is in a singleton set.

Improvement Attempt 1: Link-List-Based Quick-Find

0

size = 1
head

1

size = 1
head

8

size = 1
head

9

size = 1
head



1 2 3 4 5 6 7 80 9
ptr

0

size = 1
head

1

size = 1
head

8

size = 1
head

9

size = 1
head

Example. Each element is in a singleton set.

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p)           Returns   ptr[p].head 
• UNION(p, q)  Merges the two linked lists of  p  and  q.

Idea. Each set is a linked linked list. 
Rationale. Iterate only over the elements of the smaller set when merging sets.



1 2 3 4 5 6 7 80 9
ptr

0

size = 5
head

Example. Elements 0-4 are in one set and 5-9 are in another set.

1 2 3 4 5

size = 5
head

6 7 8 9

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p)           Returns   ptr[p].head 
• UNION(p, q)  Merges the two linked lists of  p  and  q.

Idea. Each set is a linked linked list. 
Rationale. Iterate only over the elements of the smaller set when merging sets.



1 2 3 4 5 6 7 80 9
ptr

0

size = 4
head

Example. Two sets: {0,1,9,8} and {2,3,4,5,6,7}.

9 1 8 2

size = 6
head

3 4 5 6 7

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p)           Returns   ptr[p].head 
• UNION(p, q)  Merges the two linked lists of  p  and  q.

Idea. Each set is a linked linked list. 
Rationale. Iterate only over the elements of the smaller set when merging sets.



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

size = 3 size = 7



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

set1
size = 3

set2

size = 7



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 7



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 7



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 7



1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 7



1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 8



1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 8



1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 8



1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 8



1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 9



1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 9



1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 9



1 2 3 4 5 6 7 80 9
ptr

head

2 0 6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1
size = 3

set2

size = 9
head



1 2 3 4 5 6 7 80 9
ptr

Link-List-Based Quick-Find: UNION Example

e

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

size = 3
head

0 6 7 8 9

set2

54123NULL

size = 10

set1

head



1 2 3 4 5 6 7 80 9
ptr

size = 3
head

0 6 7 8 9

Link-List-Based Quick-Find: UNION Example

set2

541
e

23NULL

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

set1

size = 10
head



1 2 3 4 5 6 7 80 9
ptr

0

size = 10
head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

set1

54123

UNION(1, 7)Example.

1.   Make  set2  point at the smaller set and  set1  at the larger set.

2.   For each element e in set2: 
      ptr[e] = set1 
      Move node e to set1 and increment set1.size        

3.   Remove  set2.



 UNION(p, q) 

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return  



 UNION(p, q) 

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return  

LARGE= ptr[p], SMALL = ptr[q]   
if (LARGE.size < SMALL.size)      
   SWAP(LARGE, SMALL) 



 UNION(p, q) 

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return  

LARGE= ptr[p], SMALL = ptr[q]   
if (LARGE.size < SMALL.size)      
   SWAP(LARGE, SMALL) 

// Add into LARGE every element from SMALL 
e = SMALL.head 
while (e != NULL) 
    ptr[e.val]      = LARGE  
  

    SMALL.head      = SMALL.head.next 
    e.next          = LARGE.head.next 
    LARGE.head.next = e 
    LARGE.size     += 1 

    e               = SMALL.head 

delete SMALL



 UNION(p, q) 

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return  

LARGE= ptr[p], SMALL = ptr[q]   
if (LARGE.size < SMALL.size)      
   SWAP(LARGE, SMALL) 

// Add into LARGE every element from SMALL 
e = SMALL.head 
while (e != NULL) 
    ptr[e.val]      = LARGE  
  

    SMALL.head      = SMALL.head.next 
    e.next          = LARGE.head.next 
    LARGE.head.next = e 
    LARGE.size     += 1 

    e               = SMALL.head 

delete SMALL



 UNION(p, q) 

if (FIND(p) == FIND(q)) return  

LARGE= ptr[p], SMALL = ptr[q]   
if (LARGE.size < SMALL.size)      
   SWAP(LARGE, SMALL) 

// Add into LARGE every element from SMALL 
e = SMALL.head 
while (e != NULL) 
    ptr[e.val]      = LARGE  
  

    SMALL.head      = SMALL.head.next 
    e.next          = LARGE.head.next 
    LARGE.head.next = e 
    LARGE.size     += 1 

    e               = SMALL.head 

delete SMALL

Link-List-Based Quick-Find: UNION Code

  FIND:   
UNION:  

Cost Model. Number of 
pointer updates or reads

Worst Case 
Running Time.



 UNION(p, q) 

if (FIND(p) == FIND(q)) return  

LARGE= ptr[p], SMALL = ptr[q]   
if (LARGE.size < SMALL.size)      
   SWAP(LARGE, SMALL) 

// Add into LARGE every element from SMALL 
e = SMALL.head 
while (e != NULL) 
    ptr[e.val]      = LARGE  
  

    SMALL.head      = SMALL.head.next 
    e.next          = LARGE.head.next 
    LARGE.head.next = e 
    LARGE.size     += 1 

    e               = SMALL.head 

delete SMALL

Link-List-Based Quick-Find: UNION Code

  FIND:    
UNION:   

Θ(1)
Θ(min(size1, size2))

Cost Model. Number of 
pointer updates or reads

Worst Case 
Running Time.



What is the total running time of a sequence of n 
UNION  operations performed on n singleton sets? 

A.    

B.    

C.    

D.   I can see where this is going …

O(n2)

O(n log n)

O(n)

Choose the best answer.

Cost Model. Count the 
number of pointer 
reads or updates .

Quiz # 1



Quiz # 1

What is the total running time of a sequence of n 
UNION  operations performed on n singleton sets? 

A.    

B.    

C.    

D.   I can see where this is going …

O(n2)

O(n log n)

O(n)

Choose the best answer.

Cost Model. Count the 
number of pointer 
reads or updates .

correct but too pessimistic!

incorrect! Showing a counterexample is easy.

correct and tight bound!  … why?



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.

Proposition. ptr[e] cannot change more than  times during a sequence of  
n  UNION operations.

log2(n)



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.

Proposition. ptr[e] cannot change more than  times during a sequence of  
n  UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than  
times during the n UNION operations. 

log2(n)



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.

Proposition. ptr[e] cannot change more than  times during a sequence of  
n  UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than  
times during the n UNION operations.  

From observation 2, this means that the size of the set containing e at least doubled 
more than  times, which implies that e is in a set whose size is , 
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.

Proposition. ptr[e] cannot change more than  times during a sequence of  
n  UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than  
times during the n UNION operations.  

From observation 2, this means that the size of the set containing e at least doubled 
more than  times, which implies that e is in a set whose size is , 
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n

Proposition. UNION runs in  amortized time.O(log n)



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set  
                         whose size is at least double the size it was in before the UNION  
                         operation.

Proposition. ptr[e] cannot change more than  times during a sequence of  
n  UNION operations.

log2(n)

Proposition. UNION runs in  amortized time.O(log n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than  
times during the n UNION operations.  

From observation 2, this means that the size of the set containing e at least doubled 
more than  times, which implies that e is in a set whose size is , 
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n

Proof. In a sequence of n UNION operations, no pointer can change more than  
times in total. Hence, the total is  and each UNION operation costs  
on average.

log2(n)
O(n log n) O(log2 n)



Quiz # 2

Provide a sequence of  UNION  operations that leads to a running time of  
and another one that leads to a running time of .
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Quick-Find: Running Time Summary
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Sequence of n  
UNION operations:
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UNION operations:

O(n2) O(n log n)

Array-based  
ick-Find

UNION

O(1) O(1)

O(n) O(n)

Linked-List-based  
ick-Find



Quick-Find: Running Time Summary

  FIND

Sequence of n  
UNION operations:

O(n2) O(n log n)

Array-based  
ick-Find

UNION

O(1) O(1)

O(n)

Can we do beer?

O(n)

Linked-List-based  
ick-Find



Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.) 

• FIND(p)           Returns the root of the set of  p. 
• UNION(p, q)  Change the root of the set of   q  to be the result of  FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
1 2 3 4 5 6 7 80 9 0 1 2 3 4 5 6 7 8 9

parent[]
Example.

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.) 

• FIND(p)           Returns the root of the set of  p. 
• UNION(p, q)  Change the root of the set of   q  to be the result of  FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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  while (parent[p] != p) 
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.) 

• FIND(p)           Returns the root of the set of  p. 
• UNION(p, q)  Change the root of the set of   q  to be the result of  FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

  FIND:    
UNION:   

O(n)
O(n)

Cost Model. Number of 
array accesses.

Worst Case 
Running Time.
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Example.

  while (parent[p] != p) 
      p = parent[p] 

  return p

 FIND(p) 

  root1 = FIND(p) 
  root2 = FIND(q) 

  if (root1 != root2) 
     parent[root2] = root1

 UNION(p, q) 

parent[]



Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.
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Rationale. Reduce the likelihood of long chains.
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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  r2 = FIND(q) 

  if (r1 == r2) return

 UNION(p, q) 

parent
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Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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  if (r1 == r2) return 
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 UNION(p, q) 

parent
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Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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Idea. Aach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.
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Cost Model. Number of 
array accesses.

Worst Case 
Running Time.

Why?

  r1 = FIND(p) 
  r2 = FIND(q) 

  if (r1 == r2) return 

  if (size[r1] < size[r2]) 
   SWAP(r1, r2) 

  parent[r2] = r1 
  size[r1]  += size[r2]

 UNION(p, q) 

parent
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Proposition. e depth of any node in a tree of size K built using a sequence of 
weighted quick-union operations (by size) is .≤ log2 K
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Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size  has one node at depth  . 

Induction Step. Let the proposition be true for every tree of size .  
Consider two trees of sizes  and , where  and . 

By the induction hypothesis, the maximum depth in the smaller tree is   
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Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Aach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.
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Proposition 1. Any tree of height  H  built using a sequence of weighted quick-union 
operations (by height) has   nodes.≥ 2H
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Proof By Induction.

Proposition 1. Any tree of height  H  built using a sequence of weighted quick-union 
operations (by height) has   nodes.≥ 2H
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Quiz # 3

Draw a tree that can be the result of weighted  
quick-union-by-size but can't be the result of  
weighted quick-union-by-height.

Draw a tree that can be the result of weighted  
quick-union-by-height but can't be the result of  
weighted quick-union-by-size.
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Rationale. Make use of work done anyway to speed up future calls to FIND.



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root
p
3

 FIND(p) 

  root = p 
  while (parent[root] != root)  
     root = parent[root]

 1. get the root as usual



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

 FIND(p) 

  root = p 
  while (parent[root] != root)  
     root = parent[root]

 1. get the root as usual



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9root

p
3

 FIND(p) 

  root = p 
  while (parent[root] != root)  
     root = parent[root]

 1. get the root as usual



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

 FIND(p) 

 1. get the root as usual

  root = p 
  while (parent[root] != root)  
     root = parent[root]



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

 FIND(p) 

 1. get the root as usual

  root = p 
  while (parent[root] != root)  
     root = parent[root] root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

root

next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p

3

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p

3

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p

3

next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p

3 next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p 3 next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p3 next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p3

next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) 

2. link every node on the  
    FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p

3

next



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

root
p



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

root

p



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3root

p



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

p

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

p

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3
p

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3

next

root

p



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3

p

next

root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next 7



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next 7



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p

next

7



Improvement Attempt 3: Path Compression

Idea. When FIND is called, aach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

  root = p 
  while (parent[root] != root)  
     root = parent[root] 

  while (p != root) 
     next = parent[p]  
     parent[p] = root 
     p = next 

  return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next

7

e more expensive FIND  
operations are performed,  
the flaer the tree becomes!



Improvement Attempt 3: Path Compression

eorem. A sequence of n  UNION  and FIND operations on 
                a set of n singleton sets runs in . O(n ⋅ α(n))



Improvement Attempt 3: Path Compression

eorem. A sequence of n  UNION  and FIND operations on 
                a set of n singleton sets runs in . O(n ⋅ α(n))

Inverse Ackermann function
an extremely slowly growing function
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Other Optimizations.

Get rid of the height[]  
array in weighted quick-union.

How?
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