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Algorithm
Design & Analysis

Data Structures for Disjoint Sets



A Union-Find Data Structure

Problem. Given n items, each in a singleton set, build a data structure to support the
following operations:

UNION(p, gq) Merge the set containing p and the set containing q into one set.
FIND(p) Identify which set item p belongs to.

CONNECTED(p, q) Check if p and q belong to the same set.
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FIND(p) Identify which set item p belongs to.
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Motivation. A basic data structure used in many applications.
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A Union-Find Data Structure
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.

« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

id (0|0|0(6|0| 5|6

. UNION(6, 7)



A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

id (0|0 |0(8|0| 8|88 8|8

UNION(8, 9)



A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return




A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return

for (i = 0 to n-1)




A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return

for (i = 0 to n-1)
if (id[i] == id[q])
id[1] = id[p]




A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return

for (i = 0 to n-1)
if (id[i] == id[q])
id[1] = id[p]
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A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p.

« UNION(p, g) changes the id of all the elements in
the set of g to the id of the set of p.

Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return

id_q = 1id[q]
for (i = 0 to n-1)
if (id[i] == id_q)
id[1] = id[p]




A Simple Implementation: Array-based Quick-Find

o Store a unique 1id for each set in an array. “ S
Running Time.
o Initially, every element is in a singleton set.
« FIND(p) returns the id of p. FIND: O(1)
UNION: O®O(n) *%=~
« UNION(p, g) changes the id of all the elements in ) G
the set of g to the id of the set of p. Cost Model. Number of
array acCesses
Example.

. UNION
idlolollo|s|o|8/8| 8l 8ls (P, q)

if (id[p] == id[ql)
return

id_q = 1id[q]
for (i = 0 to n-1)
if (id[i] == id_q)
id[1] = id[p]




Improvement Attempt 1: Link-List-Based Quick-Find

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.



Improvement Attempt 1: Link-List-Based Quick-Find

Idea. Each set is a linked linked list.

Rationale. Iterate only over the elements of the smaller set when merging sets.

Example. Each element is in a singleton set.
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Improvement Attempt 1: Link-List-Based Quick-Find

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

« FIND(p) Returns ptr[p].head
« UNION(p, g) Merges the two linked lists of p and q.

Example. Each element is in a singleton set.
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Improvement Attempt 1: Link-List-Based Quick-Find

Idea. Each set is a linked linked list.

Rationale. Iterate only over the elements of the smaller set when merging sets.

. FIND(p)

Returns ptr[p].head
« UNION(p, g) Merges the two linked lists of p and q.

Example. Elements 0-4 are in one set and 5-9 are in another set.
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Improvement Attempt 1: Link-List-Based Quick-Find

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

« FIND(p) Returns ptr[p].head
« UNION(p, g) Merges the two linked lists of p and q.

Example. Two sets: {0,1,9,8} and {2,3,4,5,6,7}.
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)

Sl1ze 3 S-ize = 7

head1 head *
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

set2 setl
size = 3 size = 7
head1 head *
O 12 3456 7> 8> 9>




Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrie] = setl
Move node e to setl and increment setl.size

set2 setl
size = 3 size = 7
head1 head *
O 12 3456 7> 8> 9>




Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrie] = setl
Move node e to setl and increment setl.size

set2 setl

S-ize:3 S-ize:7

head1 head *
O 12 3456 7> 8> 9>
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
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O 12 3456 7> 8> 9>




Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
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Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrie] = setl
Move node e to setl and increment setl.size

set2 setl
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Example. UNION(1, 7)
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrle] = setl
Move node e to setl and increment setl.size
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrie] = setl
Move node e to setl and increment setl.size

set2 setl
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrle] = setl
Move node e to setl and increment setl.size

set2 setl
S-ize = 3 S-ize = 9
head
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.
2. For each element e in set2:

ptrie] = setl
Move node e to setl and increment setl.size

set2 setl
size = 3 size = 10
head head
; ;
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Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.
2. For each element e in set2:

ptrie] = setl
Move node e to setl and increment setl.size

set2 setl
size = 3 size = 10
head head
y 7
NULL 32104567 8P 9~
e
A A A A A A A A A4
ptr O |




Link-List-Based Quick-Find: UNION Example

Example. UNION(1, 7)
1. Make set2 point at the smaller set and setl at the larger set.

2. For each element e in set2:
ptrie] = setl
Move node e to setl and increment setl.size

3. Remove set2.




Link-List-Based Quick-Find: UNION Code

UNION(p, Q)

if (FIND(p) == FIND(q)) return



Link-List-Based Quick-Find: UNION Code

UNION(p, q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
1if (LARGE.size < SMALL.size)
SWAP (LARGE, SMALL)



Link-List-Based Quick-Find: UNION Code

UNION(p, Q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
1if (LARGE.size < SMALL.size)
SWAP (LARGE, SMALL)

e = SMALL.head
while (e != NULL)

ptrie.val] = LARGE
SMALL.head = SMALL.head.next
e.next = LARGE.head.next
LARGE.head.next = e

LARGE.s1ize += 1

e = SMALL.head

delete SMALL



Link-List-Based Quick-Find: UNION Code

UNION(p, Q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
1if (LARGE.size < SMALL.size)
SWAP (LARGE, SMALL)

e = SMALL.head
while (e != NULL)

ptrie.val] = LARGE
SMALL.head = SMALL.head.next
e.next = LARGE.head.next
LARGE.head.next = e

LARGE.s1ize += 1

e = SMALL.head

delete SMALL



Link-List-Based Quick-Find: UNION Code

UNION(p, Q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
1if (LARGE.size < SMALL.size)
SWAP (LARGE, SMALL)

e = SMALL.head
while (e != NULL)

ptrie.val] = LARGE

Worst Case
SMALL.head = SMALL.head.next Runni :

unning Time.

e.next = LARGE.head.next
LARGE.head.next = e FIND:
LARGE.size += 1 UNION:
e = SMALL.head Cost Model. Number of

pointer updates or reads

delete SMALL



Link-List-Based Quick-Find: UNION Code

UNION(p, Q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
1if (LARGE.size < SMALL.size)
SWAP (LARGE, SMALL)

e = SMALL.head
while (e != NULL)

ptrie.val] = LARGE

Worst Case
SMALL .head = SMALL.head.next Runni :

unning Time.

e.next = LARGE.head.next
LARGE.head.next = e FIND: ©O(1)
LARGE.size += 1 UNION: O(min(size;, size,))
e = SMALL.head Cost Model. Number of

pointer updates or reads

delete SMALL



Cost Model. Count the
number of pointer
reads or updates .

What is the total running time of a sequence of n
UNION operations performed on n singleton sets?

Choose the best answer.

A. o(n?)
B. O(nlogn)
C. O(n)

D. Ican see where this is going ...



Cost Model. Count the
number of pointer
reads or updates .

What is the total running time of a sequence of n
UNION operations performed on n singleton sets?

Choose the best answer.

A. o(n?)

@ O(nlogn) ] correct and tight bound! ... why?

C. O(n)

D. Ican see where this is going ...



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set

whose size is at least double the size it was in before the UNION
operation.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set

whose size is at least double the size it was in before the UNION
operation.

Proposition. ptr[e] cannot change more than log,(n) times during a sequence of
n UNION operations.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set
whose size is at least double the size it was in before the UNION
operation.

Proposition. ptr[e] cannot change more than log,(n) times during a sequence of
n UNION operations.

Proof. Assume for the sake of contradiction that ptrle] changed more than log,(n)
times during the n UNION operations.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set
whose size is at least double the size it was in before the UNION
operation.

Proposition. ptr[e] cannot change more than log,(n) times during a sequence of
n UNION operations.

Proof. Assume for the sake of contradiction that ptrle] changed more than log,(n)
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than log,(n) times, which implies that e is in a set whose size is > loga(m) >
which is impossible because there are only n elements.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set
whose size is at least double the size it was in before the UNION
operation.

Proposition. ptr[e] cannot change more than log,(n) times during a sequence of
n UNION operations.

Proof. Assume for the sake of contradiction that ptrle] changed more than log,(n)
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than log,(n) times, which implies that e is in a set whose size is > 2loga(m) ~
which is impossible because there are only n elements.

Proposition. UNION runs in O(log n) amortized time.



Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptrle] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptrle] changes because of a UNION operation, e becomes in a set
whose size is at least double the size it was in before the UNION
operation.

Proposition. ptr[e] cannot change more than log,(n) times during a sequence of
n UNION operations.

Proof. Assume for the sake of contradiction that ptrle] changed more than log,(n)
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than log,(n) times, which implies that e is in a set whose size is > 2loga(m) ~
which is impossible because there are only n elements.

Proposition. UNION runs in O(log n) amortized time.

Proof. In a sequence of n UNION operations, no pointer can change more than log,(n)
times in total. Hence, the total is O(nlog n) and each UNION operation costs O(log, n)
on average.



Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Provide a sequence of UNION operations that leads to a running time of ®(n)
and another one that leads to a running time of ®(n log n).
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Quick-Find: Running Time Summary

Array-based Linked-List-based
Quick-Find Quick-Find
FIND o(1) o(1)
UNION O(n) O(n)

Sequence of n
UNION operations:




Quick-Find: Running Time Summary

Array-based Linked-List-based
Quick-Find Quick-Find
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UNION O(n) O(n)
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Quick-Find: Running Time Summary

Array-based Linked-List-based
Quick-Find Quick-Find
FIND o(1) o(1)
UNION O(n) O(n)
Sequence of n 0(n?) O(nlog n)
UNION operations:
&

Can we do better?



Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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« FIND(p) Returns the root of the set of p.
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Initially. Every element e is in a singleton set whose root is e itself.
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

oJalelalslelTias @ @88@88

Example.
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Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

e 8 8 680e

Example.
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Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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rootl = FIND(p)
root2 = FIND(q)

if (rootl != root2)
parent[root2] = rootl
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Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.
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Example.

rootl = FIND(p) while (parent[p] != p)
root2 = FIND(q) p = parent[p]
if (rootl != root2) return p

parent[root2] = rootl




Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

parent| %) FIND (3) 8 8
6120 2| 764|382 Runs in O(n)

© 1 2 3 4 5 6 7 8 9

Example.

rootl = FIND(p) while (parent[p] != p)
root2 = FIND(q) p = parent[p]
if (rootl != root2) return p

parent[root2] = rootl




Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

« FIND(p) Returns the root of the set of p.
« UNION(p, q) Change the root of the set of g to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

E le. _
AAtpie parent| ]

6(2(0(|2|7]|6|]4|]8|2
© 1 2 3 4 5 6 7 8 9

UNION (p, ) Worst Case

KX : _
-2 Running Time.

rootl = FIND(p) while (parent[p] != p)
root2 = FIND(q) p = parent[p] FIND: O(n)
UNION: O(n)
if (rootl != root2) return p
parent[root2] = rootl Cost Model. Number of

array accesses.
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.
Example. UNION (6, 2) attaches 6 — 3 not3 — 6.

did not increase the height 9 e

increased the height
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Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.
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if (rl1 == r2) return

1if (size[rl] < size[r2])
SWAP(rl, r2)



Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent

size | 1

if (rl1 == r2) return

1if (size[r1l]
SWAP(r1,

parent[r2]
size[rl] +

< sizel[r2])
r2)

rl
size[r2]
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent |1 | 1| 2 |3

D

56| 7

o

size|1l || 2

=
=
o
-
=
=
=

© 1 2 3 4 5 6 7T 8
UNION(p, q)

rl = FIND(p)

r2 = FIND(q)

if (rl1 == r2) return

1if (size[rl] < size[r2])
SWAP(rl, r2)

rl
size[r2]

parent[r2]
size[rl] +

388@88%

UNION (O, 1)



Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent

size

1|11 3 (|4|5||6| 7|38
13 (11|11 1)1|]11
© 1 2 3 4 5 6 [ 8

UNION(p, q)

rl = FIND(p)
r2 = FIND(q)

if (rl1 == r2) return

1if (size[r1l]
SWAP(r1,

parent[r2] =
size[rl] +=

< sizel[r2])
r2)

rl
size[r2]
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent

size

1|1/ 1/4(|4|5|6| 7|38
1 (3|1 |1(2)1]1| 1|11
© 2 3 4 5 6 1 8

rl = FIND(p)
r2 = FIND(q)

1
UNION(p, q)

if (rl1 == r2) return

1if (size[r1l]
SWAP(r1,

parent[r2] =
size[rl] +=

< sizel[r2])
r2)

rl
size[r2]
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UNION (4, 3)



Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent

size

1|1/ 1/4(|1|5]|6| 7|38
15|11 (2)1]1| 1|11
© 2 3 4 5 6 1 8

rl = FIND(p)
r2 = FIND(q)

1
UNION(p, q)

if (rl1 == r2) return

1if (size[r1l]
SWAP(r1,

parent[r2] =
size[rl] +=

< sizel[r2])
r2)

rl
size[r2]
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Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent |1 | 1|1/ 4|1|5|6| 7| 8
size 1 |5 1|12 11 11
© 2 3 4 5 6 T 8

UNION(p, q)

rl = FIND(p)

r2 = FIND(q)

if (rl1 == r2) return

1if (size[rl] < size[r2])
SWAP(rl, r2)

parent[r2] =

sizel[rl] += size[r2]

Worst Case

FIND:
UNION:

o

Running Time.

Cost Model. Number of
array accesses.

6600



Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.
Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

parent (1] 11 4] 2]5] 6] 7[e 88@8
size|l |5 |1 (1|2 |1|1]|1|1
© 1 2 3 4 5 6 [ 8

é

rl = FIND(p)
r2 = FIND(q)

Worst Case
Running Time.

if (rl1 == r2) return

1if (size[rl] < size[r2])

UNION: O(logn)

pa}rent[r2] = r].- Cost Model. Number of
sizel[rl] += size[r2] array accesses.
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Proposition. The depth of any node in a tree of size K built using a sequence of
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Proof By Induction.
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Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is < log, K.

Proof By Induction.

Base Case. A tree of size K = 1 has one node at depth 0 =log, 1 = log, K.
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Weighted Quick-Union (by size): Running Time

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is < log, K.
Proof By Induction.

Base Case. A tree of size K = 1 has one node at depth 0 =log, 1 = log, K.

Induction Step. Let the proposition be true for every tree of size i < K.
Consider two trees of sizes M > Qand N > 0, where M < Nand N+ M = K.

By the induction hypothesis, the maximum depth in the smaller tree is < log, M
and the maximum depth in the larger treeis <log, N.

The UNION operation does not affect the depths of the N nodes in the larger subtree.

The UNION operation increases the depth of the M nodes in the smaller subtree by 1.
This makes the maximum depth in that subtree < log,(M) + 1.

However, this is fine, because: < log,(M) + log,(2) < log,(2M)
<log,(N+ M) <log,(K) H



Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.
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height 0 |1 0|0 |00 2|1|0
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Idea. Attach the shorter tree to the longer tree.
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Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.

parent |1 |1 (|1 |7 (|1 6|6| 6|7 UNION(1, 6)
height 0 |1 0|0 |00 2|1|0
© 1 2 3 4 5 6 7 8

UNION(p, q)

rl = FIND(p)
r2 = FIND(q)
if (r1 == r2) return

if (height[rl] < height[r2])
SWAP(rl1, r2)
parent[r2] = rl

if (height[rl] == height[r2])
height[rl] += 1



Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.

parent |1 |1 (|1 |7 (|1 6|6| 6|7 UNION(1, 6)
height 0 |1 0|0 |00 2|1|0
© 1 2 3 4 5 6 7 8

UNION(p, q)

rl = FIND(p)
r2 = FIND(q)
if (r1 == r2) return

if (height[rl] < height[r2])
SWAP(rl1, r2)
parent[r2] = rl

if (height[rl] == height[r2]) | Important. F;ight cha}rllg.eshonly Whend
height[r1l] += 1 two trees of the same height are merged.



Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.

parent |1 |1 | 1|7 (1| 6|6|6]| 7
height 0 |1 0|0 |00 2|1|0
© 1 2 3 4 5 6 7 8

UNION(p, q)

rl = FIND(p)
r2 = FIND(q)
if (r1 == r2) return

if (height[rl] < height[r2])

SWAP(rl, r2) FIND: O(ogn)
parent[r2] = rl UNION: O(logn)
if (height[rl] == height[r2]) Cost Model. Number of

he_i ght [ rl] += 1 array accesses.
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Worst Case
Running Time.



Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.

parent |1 |1 (|1 |7 (|1 6|6| 6|7 UNION(1, 6)
height 0 |1 0|0 |00 2|1|0
© 1 2 3 4 5 6 7 8

UNION(p, q)

rl = FIND(p)
r2 = FIND(q)
if (r1 == r2) return

Worst Case
Running Time.

if (height[rl] < height[r2])

-—p g

SWAP(rl, r2) FIND: O(logn) N
parent[r2] = rl UNION: O(logn) I see a proof
. coming ...
if (height[rl] == height[r2]) Cost Model. Number of

he_i ght [ rl] += 1 array accesses.



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2° =25



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2° =25

Induction Step. Assume the proposition is true for every tree of height 7 < H.



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2 =25
Induction Step. Assume the proposition is true for every tree of height 7 < H.

Consider a tree T of height H created from merging two trees of height H — 1 each.



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2 =25
Induction Step. Assume the proposition is true for every tree of height 7 < H.

Consider a tree T of height H created from merging two trees of height H — 1 each.

From the inductive hypothesis, each of the trees has > 27~! nodes and
T has > 281 4201 > 28 nodes. W



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2 =25
Induction Step. Assume the proposition is true for every tree of height 7 < H.

Consider a tree T of height H created from merging two trees of height H — 1 each.

From the inductive hypothesis, each of the trees has > 27~! nodes and
T has > 281 4201 > 28 nodes. W

Proposition 2. A tree of N nodes built using a sequence of weighted quick-union
operations (by height) cannot have a height > log, V.



Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has > 2 nodes.

Proof By Induction.

Base Case. A tree of height 7 =0 has > 1 nodes (1 =2° =25

Induction Step. Assume the proposition is true for every tree of height 7 < H.

Consider a tree T of height H created from merging two trees of height H — 1 each.

From the inductive hypothesis, each of the trees has > 27~! nodes and
T has > 281 4201 > 28 nodes. W

Proposition 2. A tree of N nodes built using a sequence of weighted quick-union
operations (by height) cannot have a height > log, V.

Proof. From the proof of proposition 1, a tree of height 4 > log, N has more than
222N > N nodes. This is a contradiction, as there are only N nodes in the tree! W
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Union-Find: Running Time Summary

Quick-Find Quick-Find Weighted
(array) (linked-list) Quick-Union Quick-Union

FIND 0(1) 0(1) O(n) O(log n)
UNION O(n) O(n) On) O(logn)
Sequenceofn g2y O(nlogn) O(n?) O(nlog n)

UNION operations:

s

Can we do better?



Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.



Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

1. get the root as usual




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

1. get the root as usual




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

1. get the root as usual




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

1. get the root as usual




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

1. get the root as usual




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root




Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (3)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root



Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)

next = parent[p]
parent[p] = root
P = next

return p

2. link every node on the
FIND path with the root

Example. FIND(3)

root
6 next
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Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND (5)

root = p
while (parent[root] != root)
root = parent[root]

while (p != root)
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return p

+»* -, | The more expensive FIND
{{; operations are performed,

the flatter the tree becomes!
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Theorem. A sequence of n UNION and FIND operations on
a set of n singleton sets runs in O(n - a(n)).

Hence, the running time of UNION and FIND is O(a(n)) amortized.

Note. Although a(n) < 3 for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
96 |not O(1) in theory but can be considered O(1) in practice.

Proof. Ask Robert Tarjan.

Can we do better? No. Other Methods. Many!

O(a(n)) is optimal. E.g. Assign random indices to the

Proof. Ask Robert Tarjan. elements and use them instead of
the size in weighted quick-union (by size).
Other Optimizations.
Get rid of the height[]
array in weighted quick-union.

How?

Result. Almost same performance!
Proof. Ask Robert Tarjan.



