
 Algorithm
Design & Analysis

Data Structures for Disjoint Sets

CS11921 - Fall 2023

Ibrahim Albluwi

A Union-Find Data Structure

Problem. Given n items, each in a singleton set, build a data structure to support the
following operations:

 UNION(p, q) Merge the set containing p and the set containing q into one set.

 FIND(p) Identify which set item p belongs to.

CONNECTED(p, q) Check if p and q belong to the same set.

A Union-Find Data Structure

Motivation. A basic data structure used in many applications.

Is the red node connected to the green node?
Are all the nodes connected? Is there a cycle?

Problem. Given n items, each in a singleton set, build a data structure to support the
following operations:

 UNION(p, q) Merge the set containing p and the set containing q into one set.

 FIND(p) Identify which set item p belongs to.

CONNECTED(p, q) Check if p and q belong to the same set.

A Union-Find Data Structure

Motivation. A basic data structure used in many applications.

Does this plate conduct
electricity?

(black = conductive material
 white = insulating material)

Problem. Given n items, each in a singleton set, build a data structure to support the
following operations:

 UNION(p, q) Merge the set containing p and the set containing q into one set.

 FIND(p) Identify which set item p belongs to.

CONNECTED(p, q) Check if p and q belong to the same set.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
1 2 3 4 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
1 2 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
1 1 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 3 0 5 6 7 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 3 0 5 6 3 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 6 0 5 6 6 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)
• UNION(6, 7)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 5 0 5 5 5 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 9id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)
• UNION(8, 9)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

1 2 3 4 5 6 7 80 9
0 0 0 0 0 0 0 00 0id 0 1 2 3

4 5 6 7

8 9

Example.

• UNION(0, 4)
• UNION(1, 2)
• UNION(0, 1)
• UNION(3, 7)

• UNION(5, 6)
• UNION(6, 7)

• UNION(8, 5)
• UNION(8, 9)
• UNION(4, 5)

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

 if (id[p] == id[q])
 return

 UNION(p, q)

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

 UNION(p, q)

 if (id[p] == id[q])
 return

 for (i = 0 to n-1)

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

 UNION(p, q)

 if (id[p] == id[q])
 return

 for (i = 0 to n-1)
 if (id[i] == id[q])
 id[i] = id[p]

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

Buggy Code?

 if (id[p] == id[q])
 return

 for (i = 0 to n-1)
 if (id[i] == id[q])
 id[i] = id[p]

 UNION(p, q)

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

 if (id[p] == id[q])
 return

 id_q = id[q]
 for (i = 0 to n-1)
 if (id[i] == id_q)
 id[i] = id[p]

 UNION(p, q)

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

A Simple Implementation: Array-based Quick-Find

Example.

• Store a unique id for each set in an array.

• Initially, every element is in a singleton set.

• FIND(p) returns the id of p.

• UNION(p, q) changes the id of all the elements in
 the set of q to the id of the set of p.

 if (id[p] == id[q])
 return

 id_q = id[q]
 for (i = 0 to n-1)
 if (id[i] == id_q)
 id[i] = id[p]

 UNION(p, q)

 FIND:
UNION:

Θ(1)
Θ(n)

Cost Model. Number of
array accesses

Running Time.

1 2 3 4 5 6 7 80 9
0 0 8 0 8 8 8 80 8id

0 1 2 3

4 5 6 7

8 9

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

Improvement Attempt 1: Link-List-Based Quick-Find

1 2 3 4 5 6 7 80 9
ptr

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

Example. Each element is in a singleton set.

Improvement Attempt 1: Link-List-Based Quick-Find

0

size = 1
head

1

size = 1
head

8

size = 1
head

9

size = 1
head

1 2 3 4 5 6 7 80 9
ptr

0

size = 1
head

1

size = 1
head

8

size = 1
head

9

size = 1
head

Example. Each element is in a singleton set.

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p) Returns ptr[p].head
• UNION(p, q) Merges the two linked lists of p and q.

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

1 2 3 4 5 6 7 80 9
ptr

0

size = 5
head

Example. Elements 0-4 are in one set and 5-9 are in another set.

1 2 3 4 5

size = 5
head

6 7 8 9

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p) Returns ptr[p].head
• UNION(p, q) Merges the two linked lists of p and q.

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

1 2 3 4 5 6 7 80 9
ptr

0

size = 4
head

Example. Two sets: {0,1,9,8} and {2,3,4,5,6,7}.

9 1 8 2

size = 6
head

3 4 5 6 7

Improvement Attempt 1: Link-List-Based Quick-Find

• FIND(p) Returns ptr[p].head
• UNION(p, q) Merges the two linked lists of p and q.

Idea. Each set is a linked linked list.
Rationale. Iterate only over the elements of the smaller set when merging sets.

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

size = 3 size = 7

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

set1
size = 3

set2

size = 7

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 7

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 7

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 7

1 2 3 4 5 6 7 80 9
ptr

0

head

1 2 3

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

54
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 7

1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 8

1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 8

1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 8

1 2 3 4 5 6 7 80 9
ptr

head

1 2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

543
e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 8

1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 9

1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 9

1 2 3 4 5 6 7 80 9
ptr

head

2 0

head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 9

1 2 3 4 5 6 7 80 9
ptr

head

2 0 6 7 8 9

Link-List-Based Quick-Find: UNION Example

541
e

3

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1
size = 3

set2

size = 9
head

1 2 3 4 5 6 7 80 9
ptr

Link-List-Based Quick-Find: UNION Example

e

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

size = 3
head

0 6 7 8 9

set2

54123NULL

size = 10

set1

head

1 2 3 4 5 6 7 80 9
ptr

size = 3
head

0 6 7 8 9

Link-List-Based Quick-Find: UNION Example

set2

541
e

23NULL

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

set1

size = 10
head

1 2 3 4 5 6 7 80 9
ptr

0

size = 10
head

6 7 8 9

Link-List-Based Quick-Find: UNION Example

set1

54123

UNION(1, 7)Example.

1. Make set2 point at the smaller set and set1 at the larger set.

2. For each element e in set2:
 ptr[e] = set1
 Move node e to set1 and increment set1.size

3. Remove set2.

 UNION(p, q)

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return

 UNION(p, q)

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
if (LARGE.size < SMALL.size)
 SWAP(LARGE, SMALL)

 UNION(p, q)

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
if (LARGE.size < SMALL.size)
 SWAP(LARGE, SMALL)

// Add into LARGE every element from SMALL
e = SMALL.head
while (e != NULL)
 ptr[e.val] = LARGE

 SMALL.head = SMALL.head.next
 e.next = LARGE.head.next
 LARGE.head.next = e
 LARGE.size += 1

 e = SMALL.head

delete SMALL

 UNION(p, q)

Link-List-Based Quick-Find: UNION Code

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
if (LARGE.size < SMALL.size)
 SWAP(LARGE, SMALL)

// Add into LARGE every element from SMALL
e = SMALL.head
while (e != NULL)
 ptr[e.val] = LARGE

 SMALL.head = SMALL.head.next
 e.next = LARGE.head.next
 LARGE.head.next = e
 LARGE.size += 1

 e = SMALL.head

delete SMALL

 UNION(p, q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
if (LARGE.size < SMALL.size)
 SWAP(LARGE, SMALL)

// Add into LARGE every element from SMALL
e = SMALL.head
while (e != NULL)
 ptr[e.val] = LARGE

 SMALL.head = SMALL.head.next
 e.next = LARGE.head.next
 LARGE.head.next = e
 LARGE.size += 1

 e = SMALL.head

delete SMALL

Link-List-Based Quick-Find: UNION Code

 FIND:
UNION:

Cost Model. Number of
pointer updates or reads

Worst Case
Running Time.

 UNION(p, q)

if (FIND(p) == FIND(q)) return

LARGE= ptr[p], SMALL = ptr[q]
if (LARGE.size < SMALL.size)
 SWAP(LARGE, SMALL)

// Add into LARGE every element from SMALL
e = SMALL.head
while (e != NULL)
 ptr[e.val] = LARGE

 SMALL.head = SMALL.head.next
 e.next = LARGE.head.next
 LARGE.head.next = e
 LARGE.size += 1

 e = SMALL.head

delete SMALL

Link-List-Based Quick-Find: UNION Code

 FIND:
UNION:

Θ(1)
Θ(min(size1, size2))

Cost Model. Number of
pointer updates or reads

Worst Case
Running Time.

What is the total running time of a sequence of n
UNION operations performed on n singleton sets?

A.

B.

C.

D. I can see where this is going .

O(n2)

O(n log n)

O(n)

Choose the best answer.

Cost Model. Count the
number of pointer
reads or updates .

Quiz # 1

Quiz # 1

What is the total running time of a sequence of n
UNION operations performed on n singleton sets?

A.

B.

C.

D. I can see where this is going .

O(n2)

O(n log n)

O(n)

Choose the best answer.

Cost Model. Count the
number of pointer
reads or updates .

correct but too pessimistic!

incorrect! Showing a counterexample is easy.

correct and tight bound! ... why?

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Proposition. ptr[e] cannot change more than times during a sequence of
n UNION operations.

log2(n)

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Proposition. ptr[e] cannot change more than times during a sequence of
n UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than
times during the n UNION operations.

log2(n)

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Proposition. ptr[e] cannot change more than times during a sequence of
n UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than times, which implies that e is in a set whose size is ,
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Proposition. ptr[e] cannot change more than times during a sequence of
n UNION operations.

log2(n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than times, which implies that e is in a set whose size is ,
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n

Proposition. UNION runs in amortized time.O(log n)

Link-List-Based Quick-Find: Running Time Proof

Observation 1. ptr[e] changes during a UNION operation only if e is in the smaller set.

Observation 2. If ptr[e] changes because of a UNION operation, e becomes in a set
 whose size is at least double the size it was in before the UNION
 operation.

Proposition. ptr[e] cannot change more than times during a sequence of
n UNION operations.

log2(n)

Proposition. UNION runs in amortized time.O(log n)

Proof. Assume for the sake of contradiction that ptr[e] changed more than
times during the n UNION operations.

From observation 2, this means that the size of the set containing e at least doubled
more than times, which implies that e is in a set whose size is ,
which is impossible because there are only n elements.

log2(n)

log2(n) > 2log2(n) > n

Proof. In a sequence of n UNION operations, no pointer can change more than
times in total. Hence, the total is and each UNION operation costs
on average.

log2(n)
O(n log n) O(log2 n)

Quiz # 2

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

(n − 1) × 1 = O(n)

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

n
21

× 20

(n − 1) × 1 = O(n)

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

n
21

× 20 n
22

× 21+

(n − 1) × 1 = O(n)

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

n
21

× 20 n
22

× 21+
n
23

× 22+

(n − 1) × 1 = O(n)

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quiz # 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

n
21

× 20 n
22

× 21+
n
23

× 22+
n
2

× log2(n)=

(n − 1) × 1 = O(n)

Provide a sequence of UNION operations that leads to a running time of
and another one that leads to a running time of .

Θ(n)
Θ(n log n)

Quick-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

Array-based
Quick-Find

Linked-List-based
Quick-Find

UNION

O(1) O(1)

O(n) O(n)

Quick-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Array-based
Quick-Find

UNION

O(1) O(1)

O(n) O(n)

Linked-List-based
Quick-Find

Quick-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Array-based
Quick-Find

UNION

O(1) O(1)

O(n)

Can we do better?

O(n)

Linked-List-based
Quick-Find

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
1 2 3 4 5 6 7 80 9 0 1 2 3 4 5 6 7 8 9

parent[]
Example.

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
1 2 0 4 5 6 7 80 9 0 1 2

3

4 5 6 7 8 9

• UNION(0, 3)

Example.
parent[]

• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 4 5 6 7 80 9 0

1

2

3

4 5 6 7 8 9

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 4 5 6 7 84 9

0

1

2

3

4 5 6 7 8 9

• UNION(4, 1)

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)

• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 4 7 6 7 84 9

0

1

2

3

4

5

6 7 8 9

• UNION(7, 5)

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)

• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 4 7 6 4 84 9

0

1

2

3

4

5

6

7

8 9

• UNION(1, 5)

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)

• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 2 7 6 4 84 9

0

1

2

3

4

5

6

7

8 9

• UNION(2, 7)

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)

• UNION(0, 9)
• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
0 2 0 2 7 6 4 84 2

0

1

2

3

4

5

6

7

8

9

• UNION(0, 9)

Example.
parent[]

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)

• UNION(6, 1)

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
6 2 0 2 7 6 4 84 2

0

1

2

3

4

5

6

7

8

9

Example.

• UNION(0, 3)
• UNION(3, 1)
• UNION(4, 1)
• UNION(7, 5)
• UNION(1, 5)
• UNION(2, 7)
• UNION(0, 9)
• UNION(6, 1)

parent[]

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
6 2 0 2 7 6 4 84 2

Example.

 root1 = FIND(p)
 root2 = FIND(q)

 if (root1 != root2)
 parent[root2] = root1

 UNION(p, q)

0

1

2

3

4

5

6

7

8

9

parent[]

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

1 2 3 4 5 6 7 80 9
6 2 0 2 7 6 4 84 2

Example.

 while (parent[p] != p)
 p = parent[p]

 return p

 FIND(p)

0

1

2

3

4

5

6

7

8

9 root1 = FIND(p)
 root2 = FIND(q)

 if (root1 != root2)
 parent[root2] = root1

 UNION(p, q)

parent[]

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

0

1

2

3

4

5

6

7

8

9

Runs in O(n)
FIND(3)

1 2 3 4 5 6 7 80 9
6 2 0 2 7 6 4 84 2

Example.

 while (parent[p] != p)
 p = parent[p]

 return p

 FIND(p)

 root1 = FIND(p)
 root2 = FIND(q)

 if (root1 != root2)
 parent[root2] = root1

 UNION(p, q)

parent[]

Improvement Attempt 2: Quick-Union

Idea. Each set has a canonical element (root, representative or leader for the set.)

• FIND(p) Returns the root of the set of p.
• UNION(p, q) Change the root of the set of q to be the result of FIND(p).

Initially. Every element e is in a singleton set whose root is e itself.

 FIND:
UNION:

O(n)
O(n)

Cost Model. Number of
array accesses.

Worst Case
Running Time.

1 2 3 4 5 6 7 80 9
6 2 0 2 7 6 4 84 2

Example.

 while (parent[p] != p)
 p = parent[p]

 return p

 FIND(p)

 root1 = FIND(p)
 root2 = FIND(q)

 if (root1 != root2)
 parent[root2] = root1

 UNION(p, q)

parent[]

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Example. UNION(6, 2) attaches 6 3 not 3 6.⟶ ⟶

0 1

3

2

4

5

7

6

8

0 1

3

2

4

5

7

68

0 1

3

2

4

5

7

6

8

did not increase the height

increased the height

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 2 3 4 5 6 7 80parent

1 2 3 4 5 6 7 80
1 1 1 1 1 1 1 11size

0 1 2 3 4 5 6 7 8

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80
1 1 1 1 1 1 1 11size

0 1 2 3 4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 UNION(p, q)

parent

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80
1 1 1 1 1 1 1 11size

0 1 2 3 4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 UNION(p, q)

parent

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80
1 1 1 1 1 1 1 11size

0 1 2 3 4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

UNION(2, 3)
UNION(4, 3)
UNION(2, 1)
UNION(0, 1)

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 2 3 4 5 6 7 81

1 2 3 4 5 6 7 80
2 1 1 1 1 1 1 11size

0

1 2 3 4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

UNION(2, 3)
UNION(4, 3)
UNION(2, 1)
UNION(0, 1)

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 1 3 4 5 6 7 81

1 2 3 4 5 6 7 80
3 1 1 1 1 1 1 11size

0

1

2

3 4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

UNION(2, 3)
UNION(4, 3)
UNION(2, 1)
UNION(0, 1)

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 1 4 4 5 6 7 81

1 2 3 4 5 6 7 80
3 1 1 2 1 1 1 11size

0

1

2 3

4 5 6 7 8

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

UNION(2, 3)
UNION(4, 3)
UNION(2, 1)
UNION(0, 1)

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 1 4 1 5 6 7 81

1 2 3 4 5 6 7 80
5 1 1 2 1 1 1 11size

0

1

2

3

4

5 6 7 8

UNION(2, 3)

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

UNION(4, 3)
UNION(2, 1)
UNION(0, 1)

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 1 4 1 5 6 7 81

1 2 3 4 5 6 7 80
5 1 1 2 1 1 1 11size

0

1

2

3

4

5 6 7 8

 FIND:
UNION:

Cost Model. Number of
array accesses.

Worst Case
Running Time.

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

Improvement Attempt 2.1: Weighted Quick-Union (by size)

Idea. Attach the smaller tree to the larger tree.

Rationale. Reduce the likelihood of long chains.

Modification. Add an array to record the size of the tree rooted at each element.

1 1 4 1 5 6 7 81

1 2 3 4 5 6 7 80
5 1 1 2 1 1 1 11size

0

1

2

3

4

5 6 7 8

 FIND:
UNION:

O(log n)
O(log n)

Cost Model. Number of
array accesses.

Worst Case
Running Time.

Why?

 r1 = FIND(p)
 r2 = FIND(q)

 if (r1 == r2) return

 if (size[r1] < size[r2])
 SWAP(r1, r2)

 parent[r2] = r1
 size[r1] += size[r2]

 UNION(p, q)

parent

Weighted Quick-Union (by size): Running Time

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth . K = 1 0 = log2 1 = log2 K

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

• The UNION operation does not affect the depths of the N nodes in the larger subtree.

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

• The UNION operation does not affect the depths of the N nodes in the larger subtree.

• The UNION operation increases the depth of the M nodes in the smaller subtree by 1.

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

• The UNION operation does not affect the depths of the N nodes in the larger subtree.

• The UNION operation increases the depth of the M nodes in the smaller subtree by 1.
This makes the maximum depth in that subtree .

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

≤ log2(M) + 1

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

• The UNION operation does not affect the depths of the N nodes in the larger subtree.

• The UNION operation increases the depth of the M nodes in the smaller subtree by 1.
This makes the maximum depth in that subtree .
However, this is fine, because:

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

≤ log2(M) + 1
≤ log2(M) + log2(2) ≤ log2(2M)

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

Weighted Quick-Union (by size): Running Time

Proof By Induction.

Base Case. A tree of size has one node at depth .

Induction Step. Let the proposition be true for every tree of size .
Consider two trees of sizes and , where and .

By the induction hypothesis, the maximum depth in the smaller tree is
 and the maximum depth in the larger tree is .

• The UNION operation does not affect the depths of the N nodes in the larger subtree.

• The UNION operation increases the depth of the M nodes in the smaller subtree by 1.
This makes the maximum depth in that subtree .
However, this is fine, because:

K = 1 0 = log2 1 = log2 K

i < K
M > 0 N > 0 M ≤ N N + M = K

≤ log2 M
≤ log2 N

≤ log2(M) + 1

≤ log2(N + M) ≤ log2(K)

Proposition. The depth of any node in a tree of size K built using a sequence of
weighted quick-union operations (by size) is .≤ log2 K

≤ log2(M) + log2(2) ≤ log2(2M)

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Rationale. Isn't the height of the tree what we want to optimize?

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71parent

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2

3

4 5

6

8

7

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 UNION(p, q)

parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 if (height[r1] < height[r2])
 SWAP(r1, r2)
 parent[r2] = r1

 UNION(p, q)

parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 if (height[r1] < height[r2])
 SWAP(r1, r2)
 parent[r2] = r1

 if (height[r1] == height[r2])
 height[r1] += 1

 UNION(p, q)

parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 if (height[r1] < height[r2])
 SWAP(r1, r2)
 parent[r2] = r1

 if (height[r1] == height[r2])
 height[r1] += 1

 UNION(p, q)

Important. Height changes only when
two trees of the same height are merged.

parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 if (height[r1] < height[r2])
 SWAP(r1, r2)
 parent[r2] = r1

 if (height[r1] == height[r2])
 height[r1] += 1

 UNION(p, q)

 FIND:
UNION:

O(log n)
O(log n)

Cost Model. Number of
array accesses.

Worst Case
Running Time.

parent

Rationale. Isn't the height of the tree what we want to optimize?

Improvement Attempt 2.2: Weighted Quick-Union (by height)

Idea. Attach the shorter tree to the longer tree.

Modification. Add an array to record the height of the tree rooted at each element.

1 1 7 1 6 6 6 71

1 2 3 4 5 6 7 80
1 0 0 0 0 2 1 00height

0

1

2 34

5

6

8

7

UNION(1, 6)

 r1 = FIND(p)
 r2 = FIND(q)
 if (r1 == r2) return

 if (height[r1] < height[r2])
 SWAP(r1, r2)
 parent[r2] = r1

 if (height[r1] == height[r2])
 height[r1] += 1

 UNION(p, q)

 FIND:
UNION:

O(log n)
O(log n)

Cost Model. Number of
array accesses.

Worst Case
Running Time.

I see a proof
coming .

parent

Rationale. Isn't the height of the tree what we want to optimize?

Weighted Quick-Union (by height): Running Time

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Proof By Induction.

Base Case. A tree of height has nodes (). h = 0 ≥ 1 1 = 20 = 2h

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Weighted Quick-Union (by height): Running Time

Proof By Induction.

Base Case. A tree of height has nodes ().

Induction Step. Assume the proposition is true for every tree of height .

h = 0 ≥ 1 1 = 20 = 2h

h < H

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Weighted Quick-Union (by height): Running Time

Proof By Induction.

Base Case. A tree of height has nodes ().

Induction Step. Assume the proposition is true for every tree of height .

Consider a tree T of height H created from merging two trees of height each.

h = 0 ≥ 1 1 = 20 = 2h

h < H

H − 1

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Weighted Quick-Union (by height): Running Time

Proof By Induction.

Base Case. A tree of height has nodes ().

Induction Step. Assume the proposition is true for every tree of height .

Consider a tree T of height H created from merging two trees of height each.
From the inductive hypothesis, each of the trees has nodes and
T has nodes.

h = 0 ≥ 1 1 = 20 = 2h

h < H

H − 1
≥ 2H−1

≥ 2H−1 + 2H−1 ≥ 2H

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Weighted Quick-Union (by height): Running Time

Proof By Induction.

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Proposition 2. A tree of N nodes built using a sequence of weighted quick-union
operations (by height) cannot have a height .> log2 N

Weighted Quick-Union (by height): Running Time

Base Case. A tree of height has nodes ().

Induction Step. Assume the proposition is true for every tree of height .

Consider a tree T of height H created from merging two trees of height each.
From the inductive hypothesis, each of the trees has nodes and
T has nodes.

h = 0 ≥ 1 1 = 20 = 2h

h < H

H − 1
≥ 2H−1

≥ 2H−1 + 2H−1 ≥ 2H

Proof By Induction.

Proposition 1. Any tree of height H built using a sequence of weighted quick-union
operations (by height) has nodes.≥ 2H

Proposition 2. A tree of N nodes built using a sequence of weighted quick-union
operations (by height) cannot have a height .> log2 N

Proof. From the proof of proposition 1, a tree of height has more than
 nodes. This is a contradiction, as there are only N nodes in the tree!

h > log2 N
2log2 N > N

Weighted Quick-Union (by height): Running Time

Base Case. A tree of height has nodes ().

Induction Step. Assume the proposition is true for every tree of height .

Consider a tree T of height H created from merging two trees of height each.
From the inductive hypothesis, each of the trees has nodes and
T has nodes.

h = 0 ≥ 1 1 = 20 = 2h

h < H

H − 1
≥ 2H−1

≥ 2H−1 + 2H−1 ≥ 2H

Quiz # 3

Draw a tree that can be the result of weighted
quick-union-by-size but can't be the result of
weighted quick-union-by-height.

Draw a tree that can be the result of weighted
quick-union-by-height but can't be the result of
weighted quick-union-by-size.

Quiz # 3

Draw a tree that can be the result of weighted
quick-union-by-size but can't be the result of
weighted quick-union-by-height.

Draw a tree that can be the result of weighted
quick-union-by-height but can't be the result of
weighted quick-union-by-size.

3 74

10

5

8

6

11

9

210

3

7

4 105

86

11

9

210

Union-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Quick-Find
(array)

Quick-Find
(linked-list)

UNION

O(1) O(1)

O(n) O(n)

Union-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Quick-Find
(array)

Quick-Find
(linked-list)

UNION

O(1) O(1)

O(n) O(n)

Quick-Union

O(n)

O(n)

O(n2)

Union-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Quick-Find
(array)

Quick-Find
(linked-list)

UNION

O(1) O(1)

O(n) O(n)

Weighted
Quick-Union

O(n)

O(n)

O(n2)

O(log n)

O(log n)

O(n log n)

Quick-Union

Union-Find: Running Time Summary

 FIND

Sequence of n
UNION operations:

O(n2) O(n log n)

Quick-Find
(array)

Quick-Find
(linked-list)

UNION

O(1) O(1)

O(n) O(n)

Weighted
Quick-Union

O(n)

O(n)

O(n2)

O(log n)

O(log n)

O(n log n)

Quick-Union

Can we do better?

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root
p
3

 FIND(p)

 root = p
 while (parent[root] != root)
 root = parent[root]

 1. get the root as usual

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

 FIND(p)

 root = p
 while (parent[root] != root)
 root = parent[root]

 1. get the root as usual

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9root

p
3

 FIND(p)

 root = p
 while (parent[root] != root)
 root = parent[root]

 1. get the root as usual

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

 FIND(p)

 1. get the root as usual

 root = p
 while (parent[root] != root)
 root = parent[root]

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

 FIND(p)

 1. get the root as usual

 root = p
 while (parent[root] != root)
 root = parent[root] root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

root

next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p
3

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p

3

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

p

3

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p
3

next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p

3

next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

2

4

5

6

7

9

root

p

3 next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p 3 next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p3 next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p3

next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p)

2. link every node on the
 FIND path with the root

Example. FIND(3)

0

1

24

5

6

7 9

root

p

3

next

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

root
p

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

root

p

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3root

p

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

p

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24

5

6

7 9

3

p

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3
p

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3

next

root

p

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

7 9

3

p

next

root

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next 7

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next 7

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p

next

7

Improvement Attempt 3: Path Compression

Idea. When FIND is called, attach directly to the root every node visited by FIND.

Rationale. Make use of work done anyway to speed up future calls to FIND.

 root = p
 while (parent[root] != root)
 root = parent[root]

 while (p != root)
 next = parent[p]
 parent[p] = root
 p = next

 return p

 FIND(p) Example. FIND(5)

0

1

24 5

6

9

3

root

p
next

7

The more expensive FIND
operations are performed,
the flatter the tree becomes!

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in . O(n ⋅ α(n))

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in . O(n ⋅ α(n))

Inverse Ackermann function
an extremely slowly growing function

 for any remotely
imaginable value of n
α(n) ≤ 3

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Can we do better? No.
 is optimal.O(α(n))

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Can we do better? No.
 is optimal.O(α(n))

Proof. Ask Robert Tarjan.

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Can we do better? No.
 is optimal.O(α(n))

Proof. Ask Robert Tarjan.

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Other Methods. Many!

E.g. Assign random indices to the
elements and use them instead of
the size in weighted quick-union (by size).

Result. Almost same performance!

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Proof. Ask Robert Tarjan.

Can we do better? No.
 is optimal.O(α(n))

Proof. Ask Robert Tarjan.

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

Other Methods. Many!

E.g. Assign random indices to the
elements and use them instead of
the size in weighted quick-union (by size).

Result. Almost same performance!

Improvement Attempt 3: Path Compression

Theorem. A sequence of n UNION and FIND operations on
 a set of n singleton sets runs in .

Hence, the running time of UNION and FIND is amortized.

O(n ⋅ α(n))

O(α(n))

Proof. Ask Robert Tarjan.

Other Methods. Many!

E.g. Assign random indices to the
elements and use them instead of
the size in weighted quick-union (by size).

Result. Almost same performance!

Can we do better? No.
 is optimal.O(α(n))

Proof. Ask Robert Tarjan.

Proof. Ask Robert Tarjan.

Other Optimizations.

Get rid of the height[]
array in weighted quick-union.

How?

Note. Although for any remotely imaginable value of n, it is monotonically
increasing and is eventually larger than any constant. Therefore, the running time is
not in theory but can be considered in practice.

α(n) ≤ 3

O(1) O(1)

