Optional Extra Material

Stability

A stable sorting algorithm preserves the order of equal keys.

Stability

A stable sorting algorithm preserves the order of equal keys. Example 1: Some possible sorts for [1, 2, 1', 3, 1', 2', 3'] are:
[1, 1', 1', 2, 2', 3, 3'] and [1', 1, 1', 2', 2, 3, 3']

preserved the original order of the 1 's, 2's and 3's.

Stability

A stable sorting algorithm preserves the order of equal keys.
Example 1: Some possible sorts for [1, 2, 1', 3, 1', 2', 3'] are:

$$
\left[1,1^{\prime}, 1^{\prime \prime}, 2,2 ', 3,3^{\prime}\right] \text { and }\left[1^{\prime}, 1,1 ', 2 ', 2,3,3^{\prime}\right]
$$

Example 2: Sort files by name then by type.

Stability

A stable sorting algorithm preserves the order of equal keys.
Example 1: Some possible sorts for [1, 2, 1', 3, 1', 2', 3'] are:

$$
\left[1,1^{\prime}, 1^{\prime \prime}, 2,2^{\prime}, 3,3^{\prime}\right] \text { and }\left[1^{\prime}, 1,1^{\prime \prime}, 2 \prime, 2,3,3^{\prime}\right]
$$

Example 2: Sort files by name then by type.

Stability

A stable sorting algorithm preserves the order of equal keys.

- Merge Sort is stable.

In the merge operation: copy from the left subarray if the elements are equal.

j
$\begin{array}{llllllll}1 & 1 & 2 & 2 & 4 & 6 & 8 & 8\end{array}$

Stability

A stable sorting algorithm preserves the order of equal keys.

- Merge Sort is stable.

In the merge operation: copy from the left subarray if the elements are equal.

- Quicksort is not stable.

Partitioning does not preserve the order of equal elements.

the first 5 is not the first 5 anymore!

Stability

A stable sorting algorithm preserves the order of equal keys.

- Merge Sort is stable.

In the merge operation: copy from the left subarray if the elements are equal.

- Quicksort is not stable.

Partitioning does not preserve the order of equal elements.

- Heapsort is not stable.

Sinking does not preserve the order of equal elements

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log _{2} n$ compares in the worst case.

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log _{2} n$ compares in the worst case.

are there sorting algorithms that
are not comparison-based?
Yes! (e.g. Radix Sort)

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log _{2} n$ compares in the worst case.

proposition holds in the worst case only. E.g. Insertion sort does
$\Theta(n)$ comparisons in the best case.

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log _{2} n$ compares in the worst case.

Put another way. For any comparison-based sorting algorithm, there must be at least one sequence of elements for which the sorting algorithm needs $\sim n \log _{2} n$ comparisons to sort.

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

There are n ! unique orderings making n ! leaves

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

There are n ! unique orderings making n ! leaves
\# of leaves $\leq 2^{\text {height }}$

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

There are n ! unique orderings making n ! leaves
\# of leaves $\leq 2^{\text {height }}$

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

There are n ! unique orderings making n ! leaves
\# of leaves $\leq 2^{\text {height }}$

$$
n!\leq 2^{\text {height }}
$$

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

There are n ! unique orderings making n ! leaves
\# of leaves $\leq 2^{\text {height }}$
$n!\leq 2^{\text {height }}$
$\log (n!) \leq \log \left(2^{\text {height }}\right)$

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

Proof Sketch.

- Assume the array consists of n distinct values a_{1} through a_{n}.
- There are n ! unique orderings for this array. (any sorting algorithm must be able to distinguish between these n ! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements $\left(a_{i}<a_{j}\right)$ and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).
- The tree has n ! leaves.
- The height of a binary tree with $n!$ leaves is $\geq \log _{2}(n!)$. (the height of the tree is $\log _{2}(n!)$ if it is a complete tree and possibly more if it is not).
- If the longest path in the tree is $\geq \log _{2}(n!)$ then there must always be a sequence of input that requires $\log _{2}(n!)$ comparisons to be sorted. (the height of a binary tree is the length of the longest path from the root to a leaf).

