Optional Extra Material

A *stable* sorting algorithm preserves the order of equal keys.

A *stable* sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

A *stable* sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

[1, 1', 1", 2, 2', 3, 3'] and [1', 1, 1", 2', 2, 3, 3']

Example 2: Sort files by *name* then by *type*.

	Name	Туре		Name	Туре
	<mark>c</mark> at.jpg	JPEG		quiz.doc	DOC
	dog.jpg	JPEG		exam.doc	DOC
me	exam.doc	DOC		<pre>statement.doc</pre>	DOC
name	grades.pdf	PDF	sort by	minutes.doc	DOC
þγ	lizard.jpg	JPEG	type	dog.jpg	JPEG
sorted	<pre>minutes.doc</pre>	DOC		cat.jpg	JPEG
SOL	quiz.doc	DOC		lizard.jpg	JPEG
	<pre>sorting.pdf</pre>	PDF		spendings.pdf	PDF
	<pre>spendings.pdf</pre>	PDF		grades.pdf	PDF
	<pre>statement.doc</pre>	DOC		sorting.pdf	PDF

A *stable* sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

[1, 1', 1", 2, 2', 3, 3'] and [1', 1, 1", 2', 2, 3, 3']

Example 2: Sort files by *name* then by *type*.

<pre>statement.doc DOC</pre>	nutes.doc DOC g.jpg JPEG t.jpg JPEG	<pre>nutes.doc DOC g.jpg JPEG ard.jpg JPEG</pre>	nutes.doc DOC og.jpg JPEG at.jpg JPEG
sort by minutes.doc DOC	t.jpg JPEG	JPEG ard.jpg JPEG	at.jpg JPEG zard.jpg JPEG endings.pdf PDF

A *stable* sorting algorithm preserves the order of equal keys.

• Merge Sort is stable.

In the merge operation: copy from the left subarray if the elements are equal.

A *stable* sorting algorithm preserves the order of equal keys.

- Merge Sort is stable. In the merge operation: copy from the left subarray if the elements are equal.
- Quicksort is *not* stable.

Partitioning does not preserve the order of equal elements.

A *stable* sorting algorithm preserves the order of equal keys.

- Merge Sort is stable. In the merge operation: copy from the left subarray if the elements are equal.
- Quicksort is *not* stable.
 Partitioning does not preserve the order of equal elements.
- Heapsort is *not* stable.

Sinking does not preserve the order of equal elements

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log_2 n$ compares in the worst case.

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log_2 n$ compares in the worst case.

are there sorting algorithms that are not comparison-based? Yes! (e.g. Radix Sort)

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log_2 n$ compares in the worst case.

proposition holds in the worst case only. E.g. Insertion sort does $\Theta(n)$ comparisons in the best case.

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log_2 n$ compares in the worst case.

Put another way. For any comparison-based sorting algorithm, there must be at least one sequence of elements for which the sorting algorithm needs $\sim n \log_2 n$ comparisons to sort.

A comparison tree for three distinct keys (a, b and c)

A comparison tree for three distinct keys (a, b and c)

There are *n*! unique orderings making *n*! leaves

A comparison tree for three distinct keys (a, b and c)

There are n! unique orderings making n! leaves # of leaves $\leq 2^{\text{height}}$

A comparison tree for three distinct keys (a, b and c)

There are n! unique orderings making n! leaves # of leaves $\leq 2^{\text{height}}$

A comparison tree for three distinct keys (a, b and c)

There are *n*! unique orderings making *n*! leaves

of leaves $\leq 2^{\text{height}}$ $n! \leq 2^{\text{height}}$

A comparison tree for three distinct keys (a, b and c)

There are *n*! unique orderings making *n*! leaves

 $\begin{array}{rll} \# \mbox{ of leaves } & \leq & 2^{\mbox{height}} \\ n! & \leq & 2^{\mbox{height}} \\ \log(n!) & \leq & \log(2^{\mbox{height}}) \end{array}$

A comparison tree for three distinct keys (a, b and c)

There are *n*! unique orderings making *n*! leaves

 $\leq 2^{\text{height}}$ # of leaves $n! \leq 2^{\text{height}}$ $\log(n!) \leq \log(2^{\text{height}})$ $\sim n \log(n) \leq \text{height} \leftarrow \text{height represents # of comparisons}$

Proposition. Any comparison-based sorting algorithm performs at least $\sim n \log n$ compares in the worst case.

Proof Sketch.

- Assume the array consists of *n* distinct values a_1 through a_n .
- There are *n*! unique orderings for this array. (any sorting algorithm must be able to distinguish between these *n*! permutations).
- Consider a binary decision tree, where each node is labeled with a comparison between two elements (*a_i < a_j*) and each leaf is a possible ordering for the array. (path from the root to a leaf represents a run of a sorting algorithm).
- The tree has *n*! leaves.
- The height of a binary tree with n! leaves is $\geq \log_2(n!)$. (the height of the tree is $\log_2(n!)$ if it is a complete tree and possibly more if it is not).
- If the longest path in the tree is ≥ log₂(n!) then there must always be a sequence of input that requires log₂(n!) comparisons to be sorted.
 (the height of a binary tree is the length of the longest path from the root to a leaf).