
Optional Extra Material

Stability

A stable sorting algorithm preserves the order of equal keys.

Stability

preserved the original order
of the1's, 2's and 3's.

preserved the original order of
3's but not the 1's or the 2's

A stable sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

[1, 1', 1", 2, 2', 3, 3'] and [1', 1, 1", 2', 2, 3, 3']

Stability

A stable sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

[1, 1', 1", 2, 2', 3, 3'] and [1', 1, 1", 2', 2, 3, 3']

Example 2: Sort files by name then by type.

Name Type
quiz.doc DOC
exam.doc DOC
statement.doc DOC
minutes.doc DOC
dog.jpg JPEG
cat.jpg JPEG

Jlizard.jpg JPEG
spendings.pdf PDF
grades.pdf PDF
sorting.pdf PDF

Name Type
cat.jpg JPEG

Jdog.jpg JPEG
exam.doc DOC
grades.pdf PDF
lizard.jpg JPEG
minutes.doc DOC
quiz.doc DOC
sorting.pdf PDF
spendings.pdf PDF
statement.doc DOC

sort by
type

so
rt

ed
 b

y
na

m
e

Stability

A stable sorting algorithm preserves the order of equal keys.

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are:

[1, 1', 1", 2, 2', 3, 3'] and [1', 1, 1", 2', 2, 3, 3']

Example 2: Sort files by name then by type.

Name Type
quiz.doc DOC
exam.doc DOC
statement.doc DOC
minutes.doc DOC
dog.jpg JPEG
cat.jpg JPEG

Jlizard.jpg JPEG
spendings.pdf PDF
grades.pdf PDF
sorting.pdf PDF

Name Type
cat.jpg JPEG

Jdog.jpg JPEG
exam.doc DOC
grades.pdf PDF
lizard.jpg JPEG
minutes.doc DOC
quiz.doc DOC
sorting.pdf PDF
spendings.pdf PDF
statement.doc DOC

sort by
type

so
rt

ed
 b

y
na

m
e

original
order not
preserved!

(not stable!)

Stability

A stable sorting algorithm preserves the order of equal keys.

• Merge Sort is stable.
In the merge operation: copy from the le" subarray if the elements are equal.

1 3 3 4 5 6 9 9

i j

1 1 2 2 4 6 8 8

Stability

A stable sorting algorithm preserves the order of equal keys.

• Merge Sort is stable.
In the merge operation: copy from the le" subarray if the elements are equal.

• $icksort is not stable.
Partitioning does not preserve the order of equal elements.

i j

swap
the first 5 is not the first 5 anymore!

pivot

1 0 0 0 5 5 5 5 5 0 5 5

Stability

A stable sorting algorithm preserves the order of equal keys.

• Merge Sort is stable.
In the merge operation: copy from the le" subarray if the elements are equal.

• $icksort is not stable.
Partitioning does not preserve the order of equal elements.

• Heapsort is not stable.
Sinking does not preserve the order of equal elements

1 2' 2'' 2''' 2' 2''' 2'' 1 2'' 2' 1 2'''

2'

2''' 2''

1

2''

2' 1

2'''

1

2' 2''

2'''

construct
heap

or

Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least
compares in the worst case.

∼ n log2 n

Proposition. Any comparison-based sorting algorithm performs at least
compares in the worst case.

∼ n log2 n

Sorting Lower Bound

are there sorting algorithms that
are not comparison-based?

Yes! (e.g. Radix Sort)

Proposition. Any comparison-based sorting algorithm performs at least
compares in the worst case.

∼ n log2 n

Sorting Lower Bound

proposition holds in the worst
case only. E.g. Insertion sort does

 comparisons in the best case.Θ(n)

Proposition. Any comparison-based sorting algorithm performs at least
compares in the worst case.

∼ n log2 n

Sorting Lower Bound

Put another way. For any comparison-based sorting algorithm, there must be at least one
sequence of elements for which the sorting algorithm needs comparisons to sort.∼ n log2 n

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c)

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

of leaves ≤ 2height

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

of leaves ≤ 2height

height = 5,
leaves = 32 = , 25

height = 5
leaves = 6 ≪ 25

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

of leaves ≤ 2height

 n! ≤ 2height

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

of leaves ≤ 2height

 n! ≤ 2height

 log(n!) ≤ log(2height)

a < b

b < c a < c

a < c b < ca b c

a c b

b a c

b c a c b ac a b

noyes

yes yes

yes yes

no

nono

no

Sorting Lower Bound

!ere are unique orderings making leavesn! n!

A comparison tree for three distinct keys (a, b and c)

of leaves ≤ 2height

 n! ≤ 2height

 log(n!) ≤ log(2height)
 ∼ n log(n) ≤ height

h ≥ log2(n!)

height represents # of comparisons

Sorting Lower Bound

Proof Sketch.
• Assume the array consists of n distinct values through .

• !ere are unique orderings for this array.
(any sorting algorithm must be able to distinguish between these n! permutations).

• Consider a binary decision tree, where each node is labeled with a comparison
between two elements () and each leaf is a possible ordering for the array.
(path from the root to a leaf represents a run of a sorting algorithm).

• !e tree has leaves.

• !e height of a binary tree with n! leaves is .
(the height of the tree is if it is a complete tree and possibly more if it is not).

• If the longest path in the tree is then there must always be a
sequence of input that requires comparisons to be sorted.
(the height of a binary tree is the length of the longest path from the root to a leaf).

a1 an

n!

ai < aj

n!

≥ log2(n!)
log2(n!)

≥ log2(n!)
log2(n!)

Proposition. Any comparison-based sorting algorithm performs at least
compares in the worst case.

∼ n log n

