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Stability

A stable sorting algorithm preserves the order of equal keys.



Stability

preserved the original order 
of the1's, 2's and 3's.

preserved the original order of 
3's but not the 1's or the 2's

A stable sorting algorithm preserves the order of equal keys. 

Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are: 

[1, 1', 1", 2, 2', 3, 3']    and    [1', 1, 1", 2', 2, 3, 3']
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Example 1: Some possible sorts for [1, 2, 1', 3, 1", 2', 3'] are: 

[1, 1', 1", 2, 2', 3, 3']    and    [1', 1, 1", 2', 2, 3, 3']

Example 2: Sort files by name then by type.
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Stability

A stable sorting algorithm preserves the order of equal keys. 

• Merge Sort is stable.  
In the merge operation: copy from the le" subarray if the elements are equal.
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Stability

A stable sorting algorithm preserves the order of equal keys. 

• Merge Sort is stable.  
In the merge operation: copy from the le" subarray if the elements are equal. 

• $icksort is not stable.  
Partitioning does not preserve the order of equal elements.
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Stability

A stable sorting algorithm preserves the order of equal keys. 

• Merge Sort is stable.  
In the merge operation: copy from the le" subarray if the elements are equal. 

• $icksort is not stable.  
Partitioning does not preserve the order of equal elements. 

• Heapsort is not stable.  
Sinking does not preserve the order of equal elements
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Sorting Lower Bound

Proposition. Any comparison-based sorting algorithm performs at least   
compares in the worst case. 

∼ n log2 n



Proposition. Any comparison-based sorting algorithm performs at least   
compares in the worst case. 

∼ n log2 n

Sorting Lower Bound

are there sorting algorithms that 
are not comparison-based?  

Yes! (e.g. Radix Sort)



Proposition. Any comparison-based sorting algorithm performs at least  
compares in the worst case. 

∼ n log2 n

Sorting Lower Bound

proposition holds in the worst 
case only. E.g. Insertion sort does 

 comparisons in the best case.Θ(n)



Proposition. Any comparison-based sorting algorithm performs at least   
compares in the worst case. 

∼ n log2 n

Sorting Lower Bound

Put another way. For any comparison-based sorting algorithm, there must be at least one  
sequence of elements for which the sorting algorithm needs    comparisons to sort.∼ n log2 n
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Sorting Lower Bound

A comparison tree for three distinct keys (a, b and c) 
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A comparison tree for three distinct keys (a, b and c) 

# of leaves   ≤ 2height

height = 5,  
leaves = 32 = , 25

height = 5  
leaves = 6 ≪ 25
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A comparison tree for three distinct keys (a, b and c) 

# of leaves   ≤ 2height

             n!    ≤ 2height

         log(n!) ≤ log(2height)
   ∼ n log(n) ≤ height

h ≥ log2(n!)

height represents # of comparisons



Sorting Lower Bound

Proof Sketch.  
• Assume the array consists of n distinct values  through  . 

• !ere are  unique orderings for this array. 
(any sorting algorithm must be able to distinguish between these n! permutations). 

• Consider a binary decision tree, where each node is labeled with a comparison 
between two elements ( ) and each leaf is a possible ordering for the array. 
(path from the root to a leaf represents a run of a sorting algorithm). 

• !e tree has  leaves. 

• !e height of a binary tree with n! leaves is .  
(the height of the tree is  if it is a complete tree and possibly more if it is not).  

• If the longest path in the tree is   then there must always be a  
sequence of input that requires  comparisons to be sorted. 
(the height of a binary tree is the length of the longest path from the root to a leaf).
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Proposition. Any comparison-based sorting algorithm performs at least   
compares in the worst case. 

∼ n log n


