11313 - 2022
Design & Analysis
of Algorithms

Selection

How can we find the maximum m elements in an array of size n ?

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O(mn).

after 4
iterations

s s 24651 2 A

unsorted max 4 elements

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O(mn).

Answer 2. Sort the array using Merge Sort and take the last m elements.
Running time: ®(n log n).

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O(mn).

Answer 2. Sort the array using Merge Sort and take the last m elements.
Running time: ®(n log n).

Answer 3. Insert all elements into a max-PQ and then remove m elements.
Running time: @(nlog n) to insert + O(mlog n) to remove = O(nlog n)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 2. Sort the array using Merge Sort and take the last m elements.
Running time: ®(n log n).

Answer 3. Insert all elements into a max-PQ and then remove m elements.
Running time: @(nlog n) to insert + O(m log n) to remove = O(nlog n)

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last
m elements in the array:.
Running time: ®(n) for heap construction + O(m log n) for the m iterations =

O(n + mlogn)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al[] = 1598411 307 86 10 2

for each element k in al[]:
minPQ.INSERT (k)
if (minPQ.size > m)
minPQ.DEL-MIN ()

min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 598411 307 8 6 10 2

1 for each element k in al[]:
minPQ.INSERT (k)
if (minPQ.size > m)
minPQ.DEL-MIN ()

min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 all 9 8411 307 8 6 10 2

1 for each element k in al[]:
5 minPQ.INSERT (k)
if (minPQ.size > m)
minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 4 11 3 07 8 6 10 2

1 for each element k in al[]:
5 o 8 minPQ.INSERT (k)
if (minPQ.size > m)
minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 11 3 07 8 6 10 2

1 for each element k in al[]:
5 o 8 minPQ.INSERT (k)
if (minPQ.size > m)
minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 11 3 07 8 6 10 2

4 for each element k in al[]:
5 o 8 m1nPQ:INSERTﬂk)
1f (minPQ.size > m)
minPQ.DEL-MIN()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.
Example. m = 4 al] = 307 8 6 10 2
4 for each element k 1n a[]:
5 o 8 m1nPQ:INSERTﬂk)
1f (minPQ.size > m)
11 minPQ.DEL-MIN ()
min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 307 8 6 10 2

5 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
minPQ.DEL-MIN ()
min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = ©® 7 8 6 10 2

5 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
3 minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 7 8 6 10 2

5 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
0 minPQ.DEL-MIN()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 8 6 10 2

5 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
T minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 8 6 10 2

7 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
minPQ.DEL-MIN()
min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 6 10 2

7 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
8 minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 6 10 2

8 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
minPQ.DEL-MIN()
min—-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 10 2

8 for each element k in al[]:
minPQ.INSERT (k)
8
119 if (minPQ.size > m)
6 minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 2

8 for each element k in al[]:
11 9 8 m1nPQ:INSERTﬂk)
1f (minPQ.size > m)
10 minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 2

8 for each element k in al[]:
minPQ.INSERT (k)
119 16 if (minPQ.size > m)
minPQ.DEL-MIN()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m =4 all]l =

8 for each element k in al[]:
minPQ.INSERT (k)
11 1 . . .
2 10 1f (minPQ.size > m)
2 minPQ.DEL-MIN ()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 5.

Example. m = 4 al] = 9 8 11 10

8 for each element k in al[]:
minPQ.INSERT (k)
119 16 if (minPQ.size > m)
minPQ.DEL-MIN()
min-PQ

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: O@(mn).

Answer 2. Sort the array using Merge Sort and take the last m elements.
Running time: ®(n log n).

Answer 3. Insert all elements into a max-PQ and then remove m elements.
Running time: @(nlog n) to insert + O(m log n) to remove = O(nlog n)

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last
m elements in the array:.

Running time: ®(n) for heap construction + O(m log n) for the m iterations =

O(n + mlogn)

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m.

Running time: ©(n log m)

Problem. Find the element with rank k (k" largest element) in an arbitrary array of size n.

Problem. Find the element with rank k (k" largest element) in an arbitrary array of size n.

Examples. k = 0 (minimum), k = n — 1 (maximum), k = % (median).

Problem. Find the element with rank k (k" largest element) in an arbitrary array of size n.

Examples. k = 0 (minimum), k = n — 1 (maximum), k = % (median).

Relation to Sorting.
Repeated selection leads to sorting.

If the array is sorted, selection is easy!

Problem. Find the element with rank k (k" largest element) in an arbitrary array of size n.

Examples. k = 0 (minimum), k = n — 1 (maximum), k = % (median).

Relation to Sorting.
Repeated selection leads to sorting.

If the array is sorted, selection is easy!

Candidate Solutions.
Perform k iterations of selection sort.
Insert the elements into a binary heap data structure.
Sort and then get the element at index k.

Heapity and then remove k elements from the heap.

Problem. Find the element with rank k (k" largest element) in an arbitrary array of size n.

Examples. k = 0 (minimum), k = n — 1 (maximum), k = % (median).

Relation to Sorting.
Repeated selection leads to sorting.

If the array is sorted, selection is easy!

Candidate Solutions.
Perform k iterations of selection sort.
Insert the elements into a binary heap data structure.
Sort and then get the element at index k.

Heapity and then remove k elements from the heap.

'* Can we do better?
g

Is selection as hard as sorting?

Quickselect Demo

Assume k = % (5 in the example below).

10

©
-
N
w
N
N oo €X
o
~
o0
©

which element should be at this
index if the elements were sorted?

Quickselect Demo

Assume k = % (5 in the example below).

10
6 2 0 3 9

e 1 2 3 4
(7) 8 6 8

pivot

D X
o)
~
06
©

Quickselect Demo

Assume k = % (5 in the example below).

0 1 2 3 4
(7) 8 6 8
partitiong
2 3 6 0 3 4 6 (7)8 8 9

< pivot pivot > pivot

D X
o)
~
06
©
>

Quickselect Demo

Assume k = % (5 in the example below).

6 7 8 9 10
6 2 0 3 9

0 1 2 3 4
(7) 8 6 8
partitiong
2 3 6 0 3 4 6 (7)

< pivot pivot > pivot

h 0 €X

median can't be
on this side!
(index of pivot > k)

Quickselect Demo

Assume k = % (5 in the example below).

10
6 2 0 3 9

©
-
N
w
N
N oo €X
o
~
o0
©

Quickselect Demo

Assume k = % (5 in the example below).

0 1 2 3 4 10

D X
o)
~
06
©

Quickselect Demo

Assume k = % (5 in the example below).

10

N
w
N
D X
o)
~
06
©

O 1

(7) 8 6 8

2)3 6 o 3 4 6
partitiong

(2) 6 3 3 4 &6

< pivot > pivot

median can't be
on this side!
(index of pivot < k)

Quickselect Demo

Assume k = % (5 in the example below).

2 3 4 10

O 1

(7) 8 6 8

2)3 6 o 3 4 6
(6) 3 3 4 &6

pivot

D X
o)
~
06
©

Quickselect Demo

Assume k = % (5 in the example below).

10
6 2 0 3 9

2)3 6 o 3 4 6
(@3346
‘6334@

< pivot pivot

©
-
N
w
N
N oo €X
o
~
o0
©

partition

Quickselect Demo

Assume k = % (5 in the example below).

10
6 2 0 3 9

2)3 6 o 3 4 6
(@3346
‘6334@

< pivot pivot

©
-
N
w
N
N oo €X
o
~
o0
©

partition

median must be
on this side!
(index of pivot > k)

Quickselect Demo

Assume k = % (5 in the example below).

2 3 4 10

O 1
(7) 8 6 8

D X
o)
~
06
©

2)3 6 o 3 4 6
(6) 3 3 4 &6
(6) 3 3 4

pivot

Quickselect Demo

Assume k = % (5 in the example below).

10

©
-
N
w
N
N oo €X
o
~
o0
©

Quickselect Demo

Assume k = % (5 in the example below).

10
6 2 0 3 9

©
-
N
w
N
N oo €X
o
~
o0
©

median found! e

(index of pivot = k)

Quickselect Demo

Assume k = % (5 in the example below).

2 3 4 10

O 1

(7) 8 6 8

2)3 6 0 3 4 6 @
©)3 3 4 6

(6) 3 3

D X
o)
~
06
©

median found!
(index of pivot = k)

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE (a, first, last) to guard against the worst case
QUICK-SELECT(a, first, last, k) (or pick pivot randomly)

assuming k is a valid index

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE(a, first, last)
QUICK-SELECT(a, first, last, k)

QUICK-SELECT(al[], first, last, k)

if (first >= last):
return alk]

p = PARTITION(a, first, last)

if p ==
return alk]
if k > p:
return QUICK-SELECT(a, p+1l, last, k)

else:
return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE(a, first, last)
QUICK-SELECT(a, first, last, k)

QUICK-SELECT(al[], first, last, k)

if (first >= last):
return alk]

p = PARTITION(a, first, last)

if p ==
return alk]
if k > p:
return QUICK-SELECT(a, p+1l, last, k)

else:
return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE(a, first, last)
QUICK-SELECT(a, first, last, k)

QUICK-SELECT(al[], first, last, k)

if (first >= last):
return alk]

p = PARTITION(a, first, last)

if p ==
return alk]
if k > p:
return QUICK-SELECT(a, p+1l, last, k)

else:
return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE(a, first, last)
QUICK-SELECT(a, first, last, k)

QUICK-SELECT(al[], first, last, k)

if (first >= last):
return alk]

p = PARTITION(a, first, last)

if p ==
return alk]
if k > p:
return QUICK-SELECT(a, p+1l, last, k)

else:
return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE(a, first, last)
QUICK-SELECT(a, first, last, k)

QUICK-SELECT(al[], first, last, k)

if (first >= last):
return alk]

p = PARTITION(a, first, last)

if p ==
return alk]
if k > p:
return QUICK-SELECT(a, p+1l, last, k)

else:
return QUICK-SELECT(a, first, p-1, k)

Quickselect Analysis

Best Case.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:

n+n—-D+m=-2)+ ... +1=0®n>

Example 1. k=n-1

4x

pivot O

I
W N

| O
33?33

C:>.1

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:

n+n—-D+m=-2)+ ... +1=0®n>

n
Example 2. k = B

44X

pivot O

.O 1

median

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

|

probabilistically almost-
impossible if the array is

shuffled!

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) +~n

f

time to select from
an array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) + ~n timeto pe.lrtition an
array of size n

time to select from
an array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) + ~n <« time to partition an

array of size n

time to select from time to select from
an array of size n an array of size n/2

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) +~n

n

T

time to partition
the whole array

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) +~n

n
n + -—
2

T

time to partition
half the array

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) +~n

n + +

n
4

T

time to partition
a quarter of the array

n
2

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) = T(%) +~n

n n
n+—+—+ ...+ 1
2 4

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.
T(n) = T(%) +~n

n

n+ — +
2

n
— 4+ ... +1 = n(+
4

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.
T(n) = T(%) +~n

1
n o+ = + .+ o) =00
2 n

+ + ...+ 1 =n(l +

n
4

Remember!

1 + 2 + 4 + 8+ ... +n
=20 4+ 21 4 22 4 234 ... 4 Dlogn

n -1 internal nodes in a
complete tree of height log, n

n 4 .) 20
n

< o o 2!
n 2
7 . . O O 2
n

— ® 6 6 06 6 6 00 0 |
2 L Y

S

r)
0000000000000000

n leaves in a complete
tree of height log, n

Remember!

log, n

| Zziz 210g2n+1_1= 2n — 1
i=0

__

1l + 2 + 4 4+ 8+ ... +n n o+
=20 + 20 + 22 + 224 ... 4 2loan nx(+

n -1 internal nodes in a
complete tree of height log, n

® o 2!

O O O O 2°

NS A ool IS

LC O 6 6 6 0 O 0)23

S

4)
0000000000000000 ~ <2

n leaves in a complete
tree of height log, n

Remember!

log, n

| Zziz 210g2n+1_1= 2n — 1
i=0

__

1l + 2 + 4 4+ 8+ ... +n n o+
=20 + 20 + 22 + 224 ... 4 2loan nx(+

n -1 internal nodes in a
complete tree of height log, n

® ® 2!

® O O O 2°

NS RS ool IS

\. O &6 6 6 0 O OJ23

S

r)
0000000000000000) ~ <2

n leaves in a complete
tree of height log, n

Analysis Notes

Remember: Code that follows the pattern below has a running time of ®(n log n)

if (n == 0): return

foo(n / 2) _
foo(n / 2) solve two subproblems of half the size.
Linear (n) do a linear amount of work.

Remember: Code that follows the pattern below has a running time of ®(n)

if (n == 0): return

foo(n / 2) solve one subproblems of half the size.
linear(n) do a linear amount of work.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:
n+m—-D+m-2)+ ... +1=00n?

Expected Case. ©(n)
Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) =T(3) + O(n)

n n
n+—4+—-—+4+ ... +1 = 0O
2 4

‘> Can we do better?
g

Is selection as hard as sorting?

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: O(n).

Worst Case. Element at rank k found after n — 1 partitioning steps:

n+n—-D+m=-2)+ ... +1=0®n>

Expected Case. ©(n)

Intuition. Partitioning always gets rid of around half of the remaining elements.

T(n) =T(3) + O(n)

n -+

i Db 41 = em
2 T g

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 448—461 (1973)

Can we d() better? Time Bounds for Selection*

ManveL Brum, RoBerT W. FLoYD, VAUGHAN PRATT,

. RonaLp L. Rivest, AND RoBERT E. TaARrjAN
Theoretically. Selection can be done in linear time in

. . . . Department of Computer Science, Stanford University, Stanford, California 94305
the worst case using the Median of Medians algorithm. T T
(Blum, Floyd, Pratt, Rivest, and Tarjan 1973).

The number of comparisons required to select the i-th smallest of # numbers is shown
° : : . . to be at most a linear function of # by analysis of a new selection algorithm—PICK.
PraCtlcally- Qlllesele Ct 1S faSter 1n pr aCtlce- Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number

of comparisons is also proved.

Article = Talk Read Edit View history | Search Wikipedia Q

Introselect

From Wikipedia, the free encyclopedia

In computer science, introselect (short for Introselect

"Iintrospective selection") is a selection algorithm that is

: : : : : Class Selection
a hybrid of quickselect and median of medians which .

_ algorithm
has fast average performance and optimal worst-case Data structure iz
performance. Introselect is related to the introsort

Worst-case O(n)
sorting algorithm: these are analogous refinements of performance
the basic quickselect and quicksort algorithms, in that Best-case performance O(n)

they both start with the quick algorithm, which has good

average performance and low overhead, but fall back to an optimal worst-case algorithm (with higher
overhead) if the quick algorithm does not progress rapidly enough. Both algorithms were introduced
by David Musser in (Musser 1997), with the purpose of providing generic algorithms for the C++
Standard Library that have both fast average performance and optimal worst-case performance, thus
allowing the performance requirements to be tightened.!' However, in most C++ Standard Library
implementations that use introselect, another "introselect" algorithm is used, which combines
quickselect and heapselect, and has a worst-case running time of O(n log n)!?l.

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equally-
sized partitions. Therefore, the algorithm would run in ®(n log n).

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equally-
sized partitions. Therefore, the algorithm would run in ®(n log n).

However: the overhead for finding the pivot would be high and the algorithm would be
slower in practice compared to just picking the pivot randomly.

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.

Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

« Can we do better?
We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

« Can we do better?
We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

« Can we do better?
We can use some of the information gained while finding the maximum to find the minimum!

n

Scompares 1 9 2 1 3 5 7 4 0 6 8 2

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

« Can we do better?
We can use some of the information gained while finding the maximum to find the minimum!

n

5 1 compares 9 2 5 7 6 8 find the max here!
n
Scompares 1 9 2 1 3 5 7 4 0 6 8 2

n

5 1 compares 1 1 3 4 0] 2 find the min here!

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

« Can we do better?
We can use some of the information gained while finding the maximum to find the minimum!

n

5 1 compares 9 2 5 7 6 8 find the max here!
l
n
Scompares 1 9 2 1 3 5 7 4 0 6 8 2
I
% — 1 compares 1 1 3 4 0] 2 find the min here!

in — 2 compares
> P

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.

Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

e« Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and

. . . 3
maximum elements in an arbitrary array must perform at least —n —2 compares

in the worst case™.

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

« 2n— 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

e« Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and

. . . 3
maximum elements in an arbitrary array must perform at least —n —2 compares

in the worst case™.

Finding the 2nd largest element:

« 2n — 3 compares.

Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the second largest (n — 2).

Selection (special cases)

Finding the largest (or smallest) element: » — 1 compares.
Perform a linear scan in the array.

Finding the largest and smallest elements:

2n — 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the minimum (n — 2).

Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and

. . . 3
maximum elements in an arbitrary array must perform at least —n —2 compares

in the worst case™.

Finding the 2nd largest element:

2n — 3 compares.
Perform a linear scan to find the largest (n — 1) and then another scan on the elements
(excluding the largest) to find the second largest (n — 2).

Can we do better?
We can use some of the information gained while finding the largest to find the second largest!

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

max

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest.

max

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest.

9 /' mix '\
TN 7
AR
7 1"9"9

The second largest must be on this path!
(must have lost to the max)

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest.

Analysis.
The algorithm performs % + % + §+ ... +1 =n—1 compares to find the max.

9/'max'\7 .
PR ;
/R i

o 9 2

R

1 9

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest.

Analysis.
The algorithm performs % + % + §+ ... +1 =n—1 compares to find the max.

The algorithm needs an additional log,n — 1 compares to find the second largest
among the nodes on the path representing comparisons with the max.

v’ v ¢

/ max \)

9 7 n

h = log,n 9/ '\8 T
e\ :

o 9 2

R

1 9

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest.

Analysis.

The algorithm performs % + % + §+ ... +1 =n—1 compares to find the max.

The algorithm needs an additional log,n — 1 compares to find the second largest
among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in
an arbitrary array must make at least n + [log, n| — 2 compares in the worst case™.

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest.

Analysis.

The algorithm performs = +2 +2+ ... +1 =n—1 compares to find the max.
& p 2 ' 4 8 p

The algorithm needs an additional log,n — 1 compares to find the second largest
among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in
an arbitrary array must make at least n + [log, n| — 2 compares in the worst case™.

Implementation. How can we keep track of which elements lost to the max?

Implementation

Use a heap-like structure to keep track of the comparisons.

Implementation

Use a heap-like structure to keep track of the comparisons.

Load the n elements into the right half of an array of size 2n — 1.

4 0 6 5 2 3 0
© 1 2 3 4 5 6 7 8 9 10 11 12

elements start
at index n- 1

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

2n—1

.4@652.“

0 1 2 3 11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

2n—1

H534n5523@

0 1 3 2l 5 11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

2n—1

65.@6523@

0 1 11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

2n—1

H H34®6523®

11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.

Compute the max of each pair and store it at the location of the parent.

2n—1

HHGS34@6523@

11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.
Compute the max of each pair and store it at the location of the parent.

Trace back from the root and compare to elements that lost to the max.

2n—1 1

HH46534@6523@

0 1 2 3 2L 5 6 I 8 9 10 11 12

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.
Compute the max of each pair and store it at the location of the parent.

Trace back from the root and compare to elements that lost to the max.

2n—1
6H 5534965239
5 6 11 12
6
4
5 3 4

Implementation

Use a heap-like structure to keep track of the comparisons.
Load the n elements into the right half of an array of size 2.
Compute the max of each pair and store it at the location of the parent.

Trace back from the root and compare to elements that lost to the max.

2n—1
664“534@“523@
O 1 2 3 4 5 11 12
6
6 4
5 3 4

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3

start at the 2nd to last
element in the array

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3
while (i > 0):

N[PARENT (1)] max(h[1], h[i+1])

store the max at compare every
the index of the pair of nodes
parent node
(1-1)/2

on—1 1

.4@652.“

0 1 2 3 11 12

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3

while (i > 0):

N[PARENT (1)]
i = 1-2

max(h[i], h[i+1])

move to the
next pair

.4@652.“

0 1 2 3 11 12

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3

while (i > 0):

h[PARENT (7)1 = max(h[i], h[i+1])
i= -2

HEAP-FIND-MAX(h[], n)

max2 = a very small number, 1=0

while i < n - 1:

elements after this
are leaves

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3

while (i > 0):

h[PARENT (7)1 = max(h[i], h[i+1])
i= -2

HEAP-FIND-MAX(h[], n)

max2 = a very small number, 1=0

while i < n - 1:

if (h[i] == h[LEFT(i)]): Remember:
max2 = MAX(max2, h[RIGHT(i)]) LEFT(1): 2%1 + 1
.i
if the max is in the left child, nﬂ 4 6 5 3 4 0 6
compare the current 2nd largest to the © 1 2 3 4 5 6 7 8

right child and then move to the left child

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3
while (i > 0):

h[PARENT (7)1 = max(h[i], h[i+1])
i= -2

HEAP-FIND-MAX(h[], n)

max2 = a very small number, 1=0
while i < n - 1:

if (h[i] == h[LEFT(i)]):
max2 = MAX(max2, h[RIGHT(i)])

] = LEFT(4)
else:
max2 = MAX(max2, h[LEFT(i)]) otherwise, compare the
j = RIGHT(4) current 2nd largest to the

left child and then move

to the right child

Implementation

BUILD-HEAP(a[], n)

Create an array named h[] of size 2n-1
Copy al0 — n-1] to h[n-1 — 2n-2]

i = 2n-3
while (i > 0):

h[PARENT (7)1 = max(h[i], h[i+1])
i= -2

HEAP-FIND-MAX(h[], n)

max2 = a very small number, 1=0
while i < n - 1:

if (h[i] == h[LEFT(i)]):
max2 = MAX(max2, h[RIGHT(i)])

7 = LEFT(1)

else:
max2 = MAX(max2, h[LEFT(i)])
i = RIGHT (1)

return max2

optional

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:
insert(): O(logn)
median(): O(nlogn)

Remove from the heap the first % elements to reach the median and then insert them back.

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:
insert(): O(logn)
median(): O(nlogn)

Remove from the heap the first % elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:

insert(): O(1)

Add to the end of the list. Note that the array might resize, so the running time is amortized.
median(): O(n)

Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:
insert(): O(logn)
median(): O(nlogn)

Remove from the heap the first % elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:

insert(): O(1)

Add to the end of the list. Note that the array might resize, so the running time is amortized.

median(): O(n)
Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

Solution 3. Maintain a sorted array:

insert(): O(n)
Search for the right position and then shift any elements that come after.

median(): ©(1)

The median is always at index %

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).
Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum

element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

median median

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum

element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

General Idea:
* Insert the new element into the left heap if it is less than or equal to the current

median and to the right if it is greater than the current median.

* Rebalance the heaps by moving an element from the larger heap to the smaller heap if
the size invariant is violated.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum
element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert(k):

If k <= left.max(): left.insert(k)
Else: right.insert(k)

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum
element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert (k):
(k) insert kin left if kK < median

If k <= left.max(): left.insert(k) ¢~

Else: A right.insert(k) «

| — insert kin right if k> median

median

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum
element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert(k):

If k <= left.max(): left.insert(k)
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

more than [%] elements are in left

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum
element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert(k): remove the max from left
and insert it into right
If k <= left.max(): left.insert(k) 1
Else: right.insert(k) g

v
If left.size() > right.size()+1: right.insert(left.delMax()).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum

element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert(k):

If k <= left.max(): left.insert(k)
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).
If right.size() >1eft.sjze(): Ieft.insert(right.delen()).

If right is larger than left remove the min from right and insert it into left.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).
Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum
element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]
insert into
insert(k): the correct heap

Ifk <= left.max(): left.insert (k)

| Else: right.insert (k) rebalance the

heaps if necessary

?[1; left.size() > r'ight.sﬁze()+l:r'ight.inse'rt(left.delMax()).
If right.size() > left.size(): left.insert(right.delMin()).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum

element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

insert(k):

If k <= left.max(): left.insert(k)

|
Else: right.insert(k) Odogn)

If left.size() > right.size()+1: right.insert(left.delMax()).

. . . : . : O(logn)
If right.size() > left.size(): left.insert(right.delMin()).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (< median) and a
min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

* Any element in left is smaller than or equal to all the elements in right.
 Tleft.size() - right.size() is 0 (equal) or 1 (left islarger by 1).

Therefore, Left always has [%] elements and the median is always the maximum

element in left.

Example: [1 2 3 ¢ 4 5 6] Example: [1 2 3 4 ¢ 5 6 7]

Running Time:

insert(): O(logn)
Inserting into the left or the right heaps is O(log n) and rebalancing is O(log n).

median(): ©(1)

The median is always left.max ().

