CS11313 - Spring 2022

Design \& Analysis of Algorithms

Selection

Ibrahim Albluwi

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort. Running time: $\Theta(m n)$.

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort. Running time: $\Theta(m n)$.

Answer 2. Sort the array using Merge Sort and take the last m elements. Running time: $\Theta(n \log n)$.

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort. Running time: $\Theta(m n)$.

Answer 2. Sort the array using Merge Sort and take the last m elements. Running time: $\Theta(n \log n)$.

Answer 3. Insert all elements into a max-PQ and then remove m elements. Running time: $\Theta(n \log n)$ to insert $+O(m \log n)$ to remove $=\Theta(n \log n)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 2. Sort the array using Merge Sort and take the last m elements. Running time: $\Theta(n \log n)$.

Answer 3. Insert all elements into a max-PQ and then remove m elements. Running time: $\Theta(n \log n)$ to insert $+O(m \log n)$ to remove $=\Theta(n \log n)$

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last m elements in the array.
Running time: $\Theta(n)$ for heap construction $+O(m \log n)$ for the m iterations $=$ $O(n+m \log n)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=159841130786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=59841130786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4 \quad a[]=\quad 9841130786102$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=\quad 41130786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=\quad 1130786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=\quad 1130786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=
$$

$$
30786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=
$$

$$
30786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=\quad 0786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=\quad 786102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$
a[] =

86102

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$

$$
a[]=
$$

$$
86102
$$

for each element k in $a[]:$ minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$

$$
a[]=
$$

$$
6102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$

$$
a[]=
$$

$$
6102
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$

$$
a[]=
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.

Example. $m=4$
$a[]=$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$
a[] =

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 5.
Example. $m=4$

$$
a[]=1549 \mathbf{8} 4 \mathbf{1 1} 30786 \mathbf{1 0} 2
$$

for each element k in $a[]$: minPQ.INSERT(k) if (minPQ.size > m) minPQ.DEL-MIN()

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.
Running time: $\Theta(m n)$.

Answer 2. Sort the array using Merge Sort and take the last m elements. Running time: $\Theta(n \log n)$.

Answer 3. Insert all elements into a max-PQ and then remove m elements. Running time: $\Theta(n \log n)$ to insert $+O(m \log n)$ to remove $=\Theta(n \log n)$

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last m elements in the array.
Running time: $\Theta(n)$ for heap construction $+O(m \log n)$ for the m iterations $=$ $O(n+m \log n)$

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever the size of the min-PQ exceeds m. Running time: $\Theta(n \log m)$

Selection

Problem. Find the element with rank k ($k^{\text {th }}$ largest element) in an arbitrary array of size n.

Selection

Problem. Find the element with rank k ($k^{\text {th }}$ largest element) in an arbitrary array of size n. Examples. $k=0$ (minimum), $k=n-1$ (maximum), $k=\frac{n}{2}$ (median).

Selection

Problem. Find the element with rank k ($k^{t h}$ largest element) in an arbitrary array of size n. Examples. $k=0$ (minimum), $k=n-1$ (maximum), $k=\frac{n}{2}$ (median).

Relation to Sorting.

- Repeated selection leads to sorting.
- If the array is sorted, selection is easy!

Selection

Problem. Find the element with rank k ($k^{\text {th }}$ largest element) in an arbitrary array of size n. Examples. $k=0$ (minimum), $k=n-1$ (maximum), $k=\frac{n}{2}$ (median).

Relation to Sorting.

- Repeated selection leads to sorting.
- If the array is sorted, selection is easy!

Candidate Solutions.

- Perform k iterations of selection sort. $\longleftarrow \Theta(k n)$
- Insert the elements into a binary heap data structure. $\longleftarrow O(n \log n)$
- Sort and then get the element at index $k . \longleftarrow O(n \log n)$ if heapsort is used.
- Heapify and then remove k elements from the heap. $\longleftarrow O(n+k \log n)$.

Selection

Problem. Find the element with rank k ($k^{\text {th }}$ largest element) in an arbitrary array of size n. Examples. $k=0$ (minimum), $k=n-1$ (maximum), $k=\frac{n}{2}$ (median).

Relation to Sorting.

- Repeated selection leads to sorting.
- If the array is sorted, selection is easy!

Candidate Solutions.

- Perform k iterations of selection sort. $\longleftarrow \Theta(k n)$
- Insert the elements into a binary heap data structure. $\longleftarrow O(n \log n)$
- Sort and then get the element at index $k . \longleftarrow O(n \log n)$ if heapsort is used.
- Heapify and then remove k elements from the heap. $\longleftarrow O(n+k \log n)$.

Can we do better?

Is selection as hard as sorting?
(requires $\sim n \log n$ compares
in the worst case if $k=\frac{n}{2}$)

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

					\mathbf{k}					
\mathbf{k}	1	2	3	4	$\mathbf{5}$	6	7	8	9	10
7	8	6	8	3	4	6	2	0	3	9

which element should be at this index if the elements were sorted?

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\underbrace{0}_{\text {pivot }} \begin{array}{lllllllllll}
7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
8 & 6 & 8 & 3 & 4 & 6 & 2 & 0 & 3 & 9
\end{array}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{aligned}
& \begin{array}{ccccccccccc}
& & & & & \mathbf{k} \\
\mathbf{k} & 1 & 2 & 3 & 4 & \mathbf{5} & 6 & 7 & 8 & 9 & 10 \\
\hline 7 & 8 & 6 & 8 & 3 & 4 & 6 & 2 & 0 & 3 & 9
\end{array} \\
& \text { (2) } 3 \quad 6 \quad 0 \quad 3 \quad 4 \quad 6 \\
& \text { pivot }
\end{aligned}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

median can't be on this side!
(index of pivot $<k$)

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{aligned}
& \text { (1) } \\
& \text { (7) } \\
& \text { (2) } \\
& \hline
\end{aligned}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{aligned}
& \begin{array}{ccccccccccc}
\\
0 & 1 & 2 & 3 & 4 & \mathbf{5} & \mathbf{5} & 6 & 7 & 8 & 9 \\
\hline
\end{array} \mathbf{8} \\
& \text { (2) } 3 \begin{array}{llllll}
& 6 & 0 & 3 & 4 & 6
\end{array} \\
& \operatorname{partition}(\begin{array}{|ccc|}
\hline 6 & 3 & 3 \\
\hline
\end{array} \begin{array}{|ccc|}
\hline 6 & 3 & 3 \\
\hline \text { pivot } & 4
\end{array} \underbrace{6}_{\text {pivot }}
\end{aligned}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & \mathbf{5} & 6 & 7 & 8 & 9 & 10 \\
\text { (7) } & 8 & 6 & 8 & 3 & 4 & 6 & 2 & 0 & 3 & 9
\end{array} \\
& \text { (2) } 3 \quad 6 \quad 0 \quad 3 \quad 4 \quad 6 \\
& \text { (6) } 3 \quad 3 \quad 4 \quad 6 \\
& \text { (6) } 3 \quad 3 \quad 4 \\
& \text { pivot }
\end{aligned}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{aligned}
& \begin{array}{lllllllllll}
& & & & & \mathbf{k} \\
\mathbf{k} & 1 & 2 & 3 & 4 & \mathbf{5} & 6 & 7 & 8 & 9 & 10 \\
\hline 7 & 8 & 6 & 8 & 3 & 4 & 6 & 2 & 0 & 3 & 9
\end{array} \\
& \text { (2) } 3 \quad 6 \quad 0 \quad 3 \quad 4 \quad 6 \\
& \text { (6) } 3 \quad 3 \quad 4 \quad 6 \\
& \text { (6) } 3 \quad 3 \quad 4 \\
& \begin{array}{lll}
4 & 3 & 3 \\
\text { pivot }
\end{array} \\
& \text { median found! } \\
& \text { (index of pivot }=k \text {) }
\end{aligned}
$$

Quickselect Demo

Assume $k=\frac{n}{2}$ (5 in the example below).

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & \mathbf{k} & 6 & 7 & 8 & 9 & 10 \\
\hline 7 & 8 & 6 & 8 & 3 & 4 & 6 & 2 & 0 & 3 & 9 \\
\hline(2) & 3 & 6 & 0 & 3 & 4 & 6 & 7 & 8 & 8 & 9 \\
\hline 0 & 2 & 6 & 3 & 3 & 4 & 6 & 7 & 8 & 8 & 9 \\
0 & 2 & 6 & 3 & 3 & 4 & 6 & 7 & 8 & 8 & 9 \\
0 & 2 & 4 & 3 & 3 & 6 & 6 & 7 & 8 & 8 & 9
\end{array}
$$

Quickselect Algorithm

SELECT(a[], first, last, k)

SHUFFLE (a, first, last) to guard against the worst case QUICK-SELECT (a, first, last, k) (or pick pivot randomly)
assuming k is a valid index

Quickselect Algorithm

```
SELECT(a[], first, last, k)
    SHUFFLE(a, first, last)
    QUICK-SELECT(a, first, last, k)
```

QUICK-SELECT(a[], first, last, k)
if (first >= last):
return a[k]
p = PARTITION(a, first, last)
if $p==k$:
return a[k]
if $k>p$:
return QUICK-SELECT(a, $\mathrm{p}+1$, last, k$)$
else:
return QUICK-SELECT(a , first, $\mathrm{p}-1, \mathrm{k}$)

Quickselect Algorithm

```
SELECT(a[], first, last, k)
    SHUFFLE(a, first, last)
    QUICK-SELECT(a, first, last, k)
```

QUICK-SELECT(a[], first, last, k)
if (first >= last):
return a[k]
p = PARTITION(a, first, last)
if $p==k$:
return a[k]
if $k>p$:
return QUICK-SELECT(a, $\mathrm{p}+1$, last, k$)$
else:
return QUICK-SELECT(a , first, $\mathrm{p}-1, \mathrm{k}$)

Quickselect Algorithm

```
SELECT(a[], first, last, k)
    SHUFFLE(a, first, last)
    QUICK-SELECT(a, first, last, k)
```

QUICK-SELECT(a[], first, last, k)
if (first >= last):
return a[k]
p = PARTITION(a, first, last)
if $p==k$:
return a[k]
if $k>p$:
return QUICK-SELECT(a, $\mathrm{p}+1$, last, k$)$
else:
return QUICK-SELECT(a , first, $\mathrm{p}-1, \mathrm{k}$)

Quickselect Algorithm

```
SELECT(a[], first, last, k)
    SHUFFLE(a, first, last)
    QUICK-SELECT(a, first, last, k)
```

QUICK-SELECT(a[], first, last, k)
if (first >= last):
return a[k]
p = PARTITION(a, first, last)
if $p==k$:
return a[k]
if $k>p$:
return QUICK-SELECT(a, $\mathrm{p}+1$, last, k$)$
else:
return QUICK-SELECT(a, first, $\mathrm{p}-1, \mathrm{k}$)

Quickselect Algorithm

```
SELECT(a[], first, last, k)
    SHUFFLE(a, first, last)
    QUICK-SELECT(a, first, last, k)
```

QUICK-SELECT(a[], first, last, k)
if (first >= last):
return a[k]
p = PARTITION(a, first, last)
if $p==k$:
return a[k]
if $k>p$:
return QUICK-SELECT(a, $\mathrm{p}+1$, last, k$)$
else:
return QUICK-SELECT(a , first, $\mathrm{p}-1, \mathrm{k}$)

Quickselect Analysis

Best Case.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Example 1. $k=n-1$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Example 2. $k=\frac{n}{2}$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

probabilistically almostimpossible if the array is shuffled!

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
T(n)=T\left(\frac{n}{2}\right)+\sim n
$$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
T(n)=T\left(\frac{n}{2}\right)+\sim n \longleftarrow \quad \text { time to partition an }
$$

$$
\uparrow
$$

time to select from

an array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

time to select from
an array of size n
time to select from
an array of size $n / 2$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
T(n)=T\left(\frac{n}{2}\right)+\sim n
$$

$$
n
$$

time to partition
the whole array

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\sim n \\
& n+\frac{n}{2} \\
& \text { time to partition } \\
& \text { half the array }
\end{aligned}
$$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\sim n \\
& n+\frac{n}{2}+\frac{n}{4} \\
& \uparrow \\
& \quad \begin{array}{l}
\text { time to partition } \\
\text { a quarter of the array }
\end{array}
\end{aligned}
$$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\sim n \\
& n+\frac{n}{2}+\frac{n}{4}+\ldots+1
\end{aligned}
$$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\sim n \\
& n+\frac{n}{2}+\frac{n}{4}+\ldots+1=n\left(1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{n}\right)
\end{aligned}
$$

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\sim n \\
& n+\frac{n}{2}+\frac{n}{4}+\ldots+1=n\left(1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{n}\right)=\Theta(n)
\end{aligned}
$$

Remember!

$$
\sum_{i=0}^{\log _{2} n} 2^{i}=2^{\log _{2} n+1}-1=2 n-1
$$

$$
\begin{gathered}
1+2+4+8+\ldots+n \\
=2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{\log _{2} n}
\end{gathered}
$$

$$
\begin{aligned}
n & +\frac{n}{2}+\frac{n}{4}+\ldots+4+2+1 \\
n \times(1 & \left.+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{n}\right)
\end{aligned}
$$

$n-1$ internal nodes in a complete tree of height $\log _{2} n$

≤ 2
n leaves in a complete tree of height $\log _{2} n$

Remember!

$$
\sum_{i=0}^{\log _{2} n} 2^{i}=2^{\log _{2} n+1}-1=2 n-1
$$

$$
\begin{gathered}
1+2+4+8+\ldots+n \\
=2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{\log _{2} n}
\end{gathered}
$$

$n-1$ internal nodes in a complete tree of height $\log _{2} n$

$$
\leq 2
$$

$$
\begin{aligned}
n & +\frac{n}{2}+\frac{n}{4}+\ldots+4+2+1 \\
n \times(1 & \left.+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{n}\right)
\end{aligned}
$$

n leaves in a complete tree of height $\log _{2} n$

Remember!

$$
\sum_{i=0}^{\log _{2} n} 2^{i}=2^{\log _{2} n+1}-1=2 n-1
$$

$$
\begin{gathered}
1+2+4+8+\ldots+n \\
=2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{\log _{2} n}
\end{gathered}
$$

$n-1$ internal nodes in a complete tree of height $\log _{2} n$

$$
\leq 2
$$

$$
\begin{aligned}
n & +\frac{n}{2}+\frac{n}{4}+\ldots+4+2+1 \\
n \times(1 & \left.+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{n}\right)
\end{aligned}
$$

n leaves in a complete tree of height $\log _{2} n$

Analysis Notes

Remember: Code that follows the pattern below has a running time of $\Theta(n \log n)$

if ($\mathrm{n}==0$): return
foo(n / 2)
foo($\mathrm{n} / 2$)
 solve two subproblems of half the size.
linear (n) \qquad do a linear amount of work.

Remember: Code that follows the pattern below has a running time of $\Theta(n)$

```
foo(n)
    if (n == 0): return
    foo(n / 2) «solve one subproblems of half the size.
    linear(n)
    do a linear amount of work.
```


Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\Theta(n) \\
& n+\frac{n}{2}+\frac{n}{4}+\ldots+1=\Theta(n)
\end{aligned}
$$

Can we do better?

Is selection as hard as sorting?
(requires $\sim n \log n$ compares
in the worst case if $k=\frac{n}{2}$)

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: $\Theta(n)$.

Worst Case. Element at rank k found after $n-1$ partitioning steps:

$$
n+(n-1)+(n-2)+\ldots+1=\Theta\left(n^{2}\right)
$$

Expected Case. $\Theta(n)$
Intuition. Partitioning always gets rid of around half of the remaining elements.

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+\Theta(n) \\
& n+\frac{n}{2}+\frac{n}{4}+\ldots+1=\Theta(n)
\end{aligned}
$$

Can we do better?

Theoretically. Selection can be done in linear time in the worst case using the Median of Medians algorithm. (Blum, Floyd, Pratt, Rivest, and Tarjan 1973).

Practically. Quickselect is faster in practice.

Journal of computer and system sciences 7, 448-461 (1973)

Time Bounds for Selection*
Manuel Blum, Robert W. floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan improved for extreme values of i, and a new lower bound on the requisite number of comparisons is also proved.

Introselect

From Wikipedia, the free encyclopedia

In computer science, introselect (short for "introspective selection") is a selection algorithm that is a hybrid of quickselect and median of medians which has fast average performance and optimal worst-case performance. Introselect is related to the introsort sorting algorithm: these are analogous refinements of the basic quickselect and quicksort algorithms, in that

Introselect

Class	Selection algorithm
Data structure	Array
Worst-case	$\mathrm{O}(n)$
performance	
Best-case performance	$\mathrm{O}(n)$

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median finding algorithm is used to pick the pivot?

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equallysized partitions. Therefore, the algorithm would run in $\Theta(n \log n)$.

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equallysized partitions. Therefore, the algorithm would run in $\Theta(n \log n)$.

However: the overhead for finding the pivot would be high and the algorithm would be slower in practice compared to just picking the pivot randomly.

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

We can use some of the information gained while finding the maximum to find the minimum!

$$
\begin{array}{lllllllllllll}
1 & 9 & 2 & 1 & 3 & 5 & 7 & 4 & 0 & 6 & 8 & 2
\end{array}
$$

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

We can use some of the information gained while finding the maximum to find the minimum!

Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and maximum elements in an arbitrary array must perform at least $\frac{3}{2} n-2$ compares in the worst case*.

[^0]
Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and maximum elements in an arbitrary array must perform at least $\frac{3}{2} n-2$ compares in the worst case*.

- Finding the $2^{\text {nd }}$ largest element:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the second largest ($n-2$).

[^1]
Selection (special cases)

- Finding the largest (or smallest) element: $n-1$ compares.

Perform a linear scan in the array.

- Finding the largest and smallest elements:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the minimum ($n-2$).

- Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and maximum elements in an arbitrary array must perform at least $\frac{3}{2} n-2$ compares in the worst case*.

- Finding the $2^{\text {nd }}$ largest element:
- $2 n-3$ compares.

Perform a linear scan to find the largest $(n-1)$ and then another scan on the elements (excluding the largest) to find the second largest ($n-2$).

- Can we do better?

We can use some of the information gained while finding the largest to find the second largest!

[^2]
Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest. There are at least two keys larger than that key: the max and the key it lost to!

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest. There are at least two keys larger than that key: the max and the key it lost to!

The second largest must be on this path!
(must have lost to the max)

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. Proof by contradiction.

Analysis. (assuming n is a power of 2)

- The algorithm performs $\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\ldots+1=n-1$ compares to find the max.

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. Proof by contradiction.

Analysis. (assuming n is a power of 2)

- The algorithm performs $\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\ldots+1=n-1$ compares to find the max.
- The algorithm needs an additional $\log _{2} n-1$ compares to find the second largest among the nodes on the path representing comparisons with the max.

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. Proof by contradiction.

Analysis. (assuming n is a power of 2)

- The algorithm performs $\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\ldots+1=n-1$ compares to find the max.
- The algorithm needs an additional $\log _{2} n-1$ compares to find the second largest among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in an arbitrary array must make at least $n+\left\lceil\log _{2} n\right\rceil-2$ compares in the worst case*.

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. Proof by contradiction.

Analysis. (assuming n is a power of 2)

- The algorithm performs $\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\ldots+1=n-1$ compares to find the max.
- The algorithm needs an additional $\log _{2} n-1$ compares to find the second largest among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in an arbitrary array must make at least $n+\left\lceil\log _{2} n\right\rceil-2$ compares in the worst case*.

Implementation. How can we keep track of which elements lost to the max?

Implementation

Use a heap-like structure to keep track of the comparisons.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n-1$.

$2 n-1$						n						
						4	\bigcirc	6	5	2	3	0
0	1	2	3	4	5	6	7	8	9	10	11	12
elements start at index $n-1$												

4	0	6	5	2	3	0

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.
3. Trace back from the root and compare to elements that lost to the max.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.
3. Trace back from the root and compare to elements that lost to the max.

Implementation

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size $2 n$.
2. Compute the max of each pair and store it at the location of the parent.
3. Trace back from the root and compare to elements that lost to the max.

$2 n-1$						n						
6	6	4	6	5	3	4	\bigcirc	6	5	2	3	\bigcirc
0	1	2	3	4	5	6	7	8	9	10	11	12

Implementation

BUILD-HEAP (a[], n)
Create an array named $h[]$ of size $\mathbf{2 n - 1}$
Copy a[0 $\rightarrow \mathrm{n}-1]$ to $h[\mathrm{n}-1 \rightarrow 2 \mathrm{n}-2]$

Implementation

```
BUILD-HEAP (a[], n)
    Create an array named h[] of size \(\mathbf{2 n - 1}\)
    Copy \(a[0 \rightarrow n-1]\) to \(h[n-1 \rightarrow 2 n-2]\)
    \(i=2 n-3\)
start at the 2nd to last
element in the array
```

$2 n-1$						n				i		
						4	\bigcirc	6	5	2	3	\bigcirc
0	1	2	3	4	5	6	7	8	9	10	11	12

Implementation

BUILD-HEAP (a[], n)

Create an array named $h[]$ of size $\mathbf{2 n - 1}$
Copy $a[0 \rightarrow n-1]$ to $h[n-1 \rightarrow 2 n-2]$
i $=2 n-3$
while (i > 0):
$h[$ PARENT $(i)]=\max (h[i], h[i+1])$

store the max at the index of the parent node
(i-1)/2
compare every pair of nodes

$2 n-1$						n				1		
					3	4	0	6	5	2	3	0
0	1	2	3	4	5	6	7	8	9	10	11	12

Implementation

BUILD-HEAP (a[], n)

Create an array named h[] of size $\mathbf{2 n - 1}$
Copy a[0 $\rightarrow \mathrm{n}-1]$ to $\mathrm{h}[\mathrm{n}-1 \rightarrow 2 \mathrm{n}-2]$
i = 2n-3
while (i > 0):

$$
\begin{aligned}
& h[\operatorname{PARENT}(i)]=\max (h[i], h[i+1]) \\
& i=i-2
\end{aligned}
$$

move to the
next pair

$2 n-1$						n				1		
					3	4	\bigcirc	6	5	2	3	0
0	1	2	3	4	5	6	7	8	9	10	11	12

Implementation

```
BUILD-HEAP (a[], n)
    Create an array named \(h[]\) of size \(\mathbf{2 n - 1}\)
    Copy \(a[0 \rightarrow n-1]\) to \(h[n-1 \rightarrow 2 n-2]\)
    i \(=2 n-3\)
    while (i > 0):
    \(h[\) PARENT (i) ] \(=\max (h[i], h[i+1])\)
    i \(=\) i-2
```

HEAP-FIND-MAX (h[], n)
max2 $=$ a very small number, $i=0$
while $i<n-1:$
elements after this
are leaves

\mathbf{i}									
6	6	4	6	5	3	4	0	6	\ldots
0	1	2	3	4	5	6	7	8	\ldots

Implementation

BUILD-HEAP (a[], n)

Create an array named $h[]$ of size $\mathbf{2 n - 1}$
Copy $a[0 \rightarrow n-1]$ to $h[n-1 \rightarrow 2 n-2]$
i $=2 n-3$
while (i > 0):
$h[$ PARENT (i)] $=\max (h[i], h[i+1])$
i $=$ i-2

HEAP-FIND-MAX (h[], n)

max2 $=$ a very small number, $i=0$
while $i<n-1:$

```
if (h[i] == h[LEFT(i)]):
    max2 = MAX(max2, h[RIGHT(i)])
    i = LEFT(i)
```

Remember:
LEFT(i): 2*i + 1
RIGHT(i): 2*i + 2
if the max is in the left child, compare the current 2nd largest to the right child and then move to the left child

\mathbf{i}									
6	6	4	6	5	3	4	0	6	\ldots
0	1	2	3	4	5	6	7	8	\ldots

Implementation

BUILD-HEAP (a[], n)

Create an array named $h[]$ of size $\mathbf{2 n - 1}$
Copy $a[0 \rightarrow n-1]$ to $h[n-1 \rightarrow 2 n-2]$
i = 2n-3
while (i > 0):
$h[$ PARENT (i)] $=\max (h[i], h[i+1])$
i $=$ i-2

```
HEAP-FIND-MAX(h[], n)
max2 \(=\) a very small number, \(i=0\)
while \(i<n-1:\)
    if (h[i] == h[LEFT(i)]):
    \(\max 2=\operatorname{MAX}(\max 2, h[\operatorname{RIGHT}(i)])\)
    i \(=\operatorname{LEFT}(i)\)
```

 else:
 \(\max 2=\operatorname{MAX}(\max 2, h[\operatorname{LEFT}(i)])\)
 i \(=\) RIGHT(i)
 otherwise, compare the current 2nd largest to the left child and then move to the right child

Implementation

BUILD-HEAP (a[], n)

Create an array named $h[]$ of size $\mathbf{2 n - 1}$
Copy $a[0 \rightarrow n-1]$ to $h[n-1 \rightarrow 2 n-2]$
i = $2 \mathrm{n}-3$
while (i > 0):
$h[$ PARENT (i) $]=\max (h[i], h[i+1])$
i $=$ i-2

HEAP-FIND-MAX (h[], n)
max2 $=$ a very small number, $i=0$
while $i<n-1:$
if (h[i] == h[LEFT(i)]):
$\max 2=\operatorname{MAX}(\max 2, h[\operatorname{RIGHT}(i)])$
$\mathrm{i}=\operatorname{LEFT}(\mathrm{i})$
else:
$\max 2=\operatorname{MAX}(\max 2, h[\operatorname{LEFT}(i)])$
i $=$ RIGHT(i)
return max2
optional

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the median at any point in time?

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the median at any point in time?

Solution 1. Maintain a max-heap:
insert (): $O(\log n)$
median(): $O(n \log n)$
Remove from the heap the first $\frac{n}{2}$ elements to reach the median and then insert them back.

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the median at any point in time?

Solution 1. Maintain a max-heap:
insert () : $O(\log n)$
median(): $O(n \log n)$
Remove from the heap the first $\frac{n}{2}$ elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:
insert(): $\Theta(1)$
Add to the end of the list. Note that the array might resize, so the running time is amortized.
median(): $\Theta(n)$
Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the median at any point in time?

Solution 1. Maintain a max-heap:
insert () : $O(\log n)$
median(): $O(n \log n)$
Remove from the heap the first $\frac{n}{2}$ elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:

```
insert(): \Theta(1)
```

Add to the end of the list. Note that the array might resize, so the running time is amortized.
median(): $\Theta(n)$
Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

Solution 3. Maintain a sorted array:
insert(): $O(n)$
Search for the right position and then shift any elements that come after.
median(): $\Theta(1)$
The median is always at index $\frac{n}{2}$.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: [1 $\left.\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$

General Idea:

- Insert the new element into the left heap if it is less than or equal to the current median and to the right if it is greater than the current median.
- Rebalance the heaps by moving an element from the larger heap to the smaller heap if the size invariant is violated.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$
insert(k):
If k <= left.max(): left.insert(k)
Else: right.insert(k)

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$
insert (k): insert k in left if $k \leq$ median
If k <= left.max (): left.insert(k)
Else: $\boldsymbol{\sim}$ right.insert $(k) \ll$ insert k in right if $k>$ median

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$
insert(k):
If k <= left.max(): left.insert(k)
Else: right.insert(k)
If left.size() > right.size()+1: right.insert(left.delMax()).
more than $\left\lceil\frac{n}{2}\right\rceil$ elements are in left

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$

```
insert(k):
    Ifk <= left.max():left.insert(k)
    Else: right.insert(k)
    If left.size() > right.size()+1: right.insert(left.delMax()).
```


Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$
insert(k):
If k <= left.max(): left.insert(k)
Else: right.insert(k)
If left.size() > right.size()+1: right.insert(left.delMax()).
If right.size() > left.size(): left.insert(right.delMin()).
If right is larger than left
remove the min from right and insert it into left.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6\end{array}\right]$

insert(k):	insert into the correct heap	
$\begin{aligned} & \text { If } k<=\text { left.max (): left.insert(k) } \\ & \text { Else: } \quad \text { right.insert(k) } \end{aligned}$		rebalance the heaps if necessary
If left.size() > right.size()+1: right.insert(left.delMax())		
If right.size()	left.size() :	ht.delmin()).

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: $\left[\begin{array}{lllllll}1 & 2 & 3 & \bullet & 4 & 5 & 6\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$
insert into
insert(k):
the correct heap

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (\leq median) and a min-heap to store the upper half of the elements (> median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

- Any element in left is smaller than or equal to all the elements in right.
- left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has $\left\lceil\frac{n}{2}\right\rceil$ elements and the median is always the maximum element in left.

Example: [1 $\left.\begin{array}{llllll}1 & 2 & 3 & \bullet & 4 & 5\end{array}\right] \quad$ Example: $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & \bullet & 5 & 6 & 7\end{array}\right]$

Running Time:
insert (): $O(\log n)$
Inserting into the left or the right heaps is $O(\log n)$ and rebalancing is $O(\log n)$.
median(): $\Theta(1)$
The median is always left.max().

[^0]: * for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

[^1]: * for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

[^2]: * for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

