
Design & Analysis

 Algorithms

Selection

CS11313 - Spring 2022

of

Ibrahim Albluwi

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .Θ(mn)

Warmup Quiz

8 9 2 4 6 5 1 3 8 4 5 6

5 4 2 4 6 5 1 3 6 8 8 9

max 4 elements

after 4 
iterations

unsorted

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Θ(mn)

Θ(n log n)

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Warmup Quiz

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 1 5 9 8 4 11 3 0 7 8 6 10 2

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 5 9 8 4 11 3 0 7 8 6 10 2

1 for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 9 8 4 11 3 0 7 8 6 10 2

1

5

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 4 11 3 0 7 8 6 10 2

1

5 9 8

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 11 3 0 7 8 6 10 2

1

5 9 8

4

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 11 3 0 7 8 6 10 2

5 9 8

4 for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 3 0 7 8 6 10 2

5 9 8

4

11

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 3 0 7 8 6 10 2

5

9 811

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 0 7 8 6 10 2

5

9 811
3

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 7 8 6 10 2

5

9 811
0

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 8 6 10 2

5

9 811
7

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 8 6 10 2

9 811

7 for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 6 10 2

9 811

7

8

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 6 10 2

9 811

8 for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 10 2

9 811

8

6

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 2

9 811

8

10

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] = 2

911

8

10

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] =

911

8

10
2

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

 Answer 5.

min-PQ

Example. m = 4 a[] =

911

8

10

a[] = 1 5 9 8 4 11 3 0 7 8 6 10 2

for each element k in a[]:

 minPQ.INSERT(k)

 if (minPQ.size > m)

 minPQ.DEL-MIN()

How can we find the maximum m elements in an array of size n ?

Answer 1. Perform m iterations of selection sort.  
Running time: .

Answer 2. Sort the array using Merge Sort and take the last m elements. 
Running time: .

Answer 3. Insert all elements into a max-PQ and then remove m elements. 
Running time: to insert + to remove =

Answer 4. Construct a heap and run m iterations of Heapsort. Take the last  
m elements in the array. 
Running time: for heap construction + for the m iterations =

Answer 5. Insert all elements into a min-PQ. Remove the minimum element whenever
the size of the min-PQ exceeds m. 
Running time:

Θ(mn)

Θ(n log n)

Θ(n log n) O(m log n) Θ(n log n)

Θ(n) O(m log n)
O(n + m log n)

Θ(n log m)

Warmup Quiz

Selection

Problem. Find the element with rank k (largest element) in an arbitrary array of size n.kth

Problem. Find the element with rank k (largest element) in an arbitrary array of size n.

Examples. (minimum), (maximum), (median).

kth

k = 0 k = n − 1 k = n
2

Selection

Problem. Find the element with rank k (largest element) in an arbitrary array of size n.

Examples. (minimum), (maximum), (median).

Relation to Sorting.

• Repeated selection leads to sorting.

• If the array is sorted, selection is easy!

kth

k = 0 k = n − 1 k = n
2

Selection

Problem. Find the element with rank k (largest element) in an arbitrary array of size n.

Examples. (minimum), (maximum), (median).

Relation to Sorting.

• Repeated selection leads to sorting.

• If the array is sorted, selection is easy!

Candidate Solutions.

• Perform k iterations of selection sort.

• Insert the elements into a binary heap data structure.

• Sort and then get the element at index k. if heapsort is used.

• Heapify and then remove k elements from the heap. .

kth

k = 0 k = n − 1 k = n
2

⟵ Θ(kn)
⟵ O(n log n)

⟵ O(n log n)
⟵ O(n + k log n)

Selection

Problem. Find the element with rank k (largest element) in an arbitrary array of size n.

Examples. (minimum), (maximum), (median).

Relation to Sorting.

• Repeated selection leads to sorting.

• If the array is sorted, selection is easy!

Candidate Solutions.

• Perform k iterations of selection sort.

• Insert the elements into a binary heap data structure.

• Sort and then get the element at index k. if heapsort is used.

• Heapify and then remove k elements from the heap. .

kth

k = 0 k = n − 1 k = n
2

⟵ Θ(kn)
⟵ O(n log n)

⟵ O(n log n)
⟵ O(n + k log n)

Selection

Can we do better?

Is selection as hard as sorting? 
(requires compares  
in the worst case if)

∼ n log n
k = n

2

0 1 2 3 4 5 6 7 8 9 10

Assume (5 in the example below).k = n
2

which element should be at this  
index if the elements were sorted?

7 8 6 8 3 4 6 2 0 3 9

Quickselect Demo

k

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

pivot

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

pivot

partition

 pivot≤ pivot≥

2 3 6 0 3 4 6 7 8 8 9

k

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

pivot pivot≤ pivot≥

median can't be
on this side! 

(index of pivot > k)

k

partition

2 3 6 0 3 4 6 7 8 8 9

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

pivot

2 3 6 0 3 4 6

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

 pivot≤ pivot≥

partition
2 3 6 0 3 4 6

0 2 6 3 3 4 6

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

 pivot≤ pivot≥

partition
2 3 6 0 3 4 6

0 2 6 3 3 4 6

median can't be
on this side! 

(index of pivot < k)

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

pivot

2 3 6 0 3 4 6

 6 3 3 4 6

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6

 6 3 3 4 6

pivot

 6 3 3 4 6
 pivot≤

partition

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6

 6 3 3 4 6

pivot

 6 3 3 4 6
 pivot≤

partition

median must be
on this side! 

(index of pivot > k)

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6

 6 3 3 4 6

pivot

 6 3 3 4

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6

 6 3 3 4 6

partition

pivot

 4 3 3 6
 pivot≤

 6 3 3 4

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6

 6 3 3 4 6

pivot

 4 3 3 6
 pivot≤

 6 3 3 4

median found! 
(index of pivot = k)

7 8 6 8 3 4 6 2 0 3 9

Assume (5 in the example below).k = n
2

Quickselect Demo

0 1 2 3 4 5 6 7 8 9 10

k

2 3 6 0 3 4 6 7 8 8 9

0 2 6 3 3 4 6 7 8 8 9

0 2 4 3 3 6 6 7 8 8 9

0 2 6 3 3 4 6 7 8 8 9

median found! 
(index of pivot = k)

assuming k is a valid index

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

to guard against the worst case 
(or pick pivot randomly)

 SELECT(a[], first, last, k)

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

 SELECT(a[], first, last, k)

 QUICK-SELECT(a[], first, last, k)

 if (first >= last):

 return a[k]

 p = PARTITION(a, first, last)

 if p == k:

 return a[k]

 if k > p:

 return QUICK-SELECT(a, p+1, last, k)

 else:

 return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

 SELECT(a[], first, last, k)

 QUICK-SELECT(a[], first, last, k)

 if (first >= last):

 return a[k]

 p = PARTITION(a, first, last)

 if p == k:

 return a[k]

 if k > p:

 return QUICK-SELECT(a, p+1, last, k)

 else:

 return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

 SELECT(a[], first, last, k)

 QUICK-SELECT(a[], first, last, k)

 if (first >= last):

 return a[k]

 p = PARTITION(a, first, last)

 if p == k:

 return a[k]

 if k > p:

 return QUICK-SELECT(a, p+1, last, k)

 else:

 return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

 SELECT(a[], first, last, k)

 QUICK-SELECT(a[], first, last, k)

 if (first >= last):

 return a[k]

 p = PARTITION(a, first, last)

 if p == k:

 return a[k]

 if k > p:

 return QUICK-SELECT(a, p+1, last, k)

 else:

 return QUICK-SELECT(a, first, p-1, k)

Quickselect Algorithm

 SHUFFLE(a, first, last)

 QUICK-SELECT(a, first, last, k)

 SELECT(a[], first, last, k)

 QUICK-SELECT(a[], first, last, k)

 if (first >= last):

 return a[k]

 p = PARTITION(a, first, last)

 if p == k:

 return a[k]

 if k > p:

 return QUICK-SELECT(a, p+1, last, k)

 else:

 return QUICK-SELECT(a, first, p-1, k)

Best Case.

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .
Θ(n)

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case.

Θ(n)

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Example 1.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

k = n − 1k =
n
2

Quickselect Analysis

n
n-1
n-2
n-3

1

k

pivot

n-4

Quickselect Analysis

n
n-1
n-2
n-3

n/2

k

pivot

n/2-1
n/2-2
n/2-3

1
median

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Example 2.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

k =
n
2

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

probabilistically almost-
impossible if the array is

shuffled!

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

time to select from  
an array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

time to select from  
an array of size n

time to partition an
array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

time to select from  
an array of size n

time to select from  
an array of size n/2

time to partition an
array of size n

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n

time to partition 
the whole array

Quickselect Analysis

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n +
n
2

time to partition 
half the array

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n +
n
2

+
n
4

time to partition 
a quarter of the array

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n +
n
2

+
n
4

+ … + 1

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n +
n
2

+
n
4

+ … + 1 = n(1 +
1
2

+
1
4

+ … +
1
n

)

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + ∼ n

n +
n
2

+
n
4

+ … + 1 = n(1 +
1
2

+
1
4

+ … +
1
n

) = Θ(n)

Remember!

log2 n

∑
i=0

2i = 2log2 n +1 − 1 = 2n − 1

n

n
2

n
4

n
8

n
n

n

23

22

21

20

n leaves in a complete 
tree of height log2 n

n -1 internal nodes in a  
complete tree of height log2 n

1

≤ 2

1
2

1
4

1
8

1
16

= 20 + 21 + 22 + 23 + … + 2log2 n

1 + 2 + 4 + 8 + … + n n + n
2 + n

4 + … + 4 + 2 + 1

n × (1 + 1
2 + 1

4 + … + 1
n)

Remember!

log2 n

∑
i=0

2i = 2log2 n +1 − 1 = 2n − 1

n

n
2

n
4

n
8

n
n

n

23

22

21

20

n leaves in a complete 
tree of height log2 n

n -1 internal nodes in a  
complete tree of height log2 n

1

≤ 2

1
2

1
4

1
8

1
16

= 20 + 21 + 22 + 23 + … + 2log2 n

1 + 2 + 4 + 8 + … + n n + n
2 + n

4 + … + 4 + 2 + 1

n × (1 + 1
2 + 1

4 + … + 1
n)

Remember!

1 + 2 + 4 + 8 + … + n n + n
2 + n

4 + … + 4 + 2 + 1

n × (1 + 1
2 + 1

4 + … + 1
n)

log2 n

∑
i=0

2i = 2log2 n +1 − 1 = 2n − 1

n

n
2

n
4

n
8

n
n

n

23

22

21

20

n leaves in a complete 
tree of height log2 n

n -1 internal nodes in a  
complete tree of height log2 n

1

≤ 2

1
2

1
4

1
8

1
16

= 20 + 21 + 22 + 23 + … + 2log2 n

Analysis Notes

 if (n == 0): return

 foo(n / 2)

 foo(n / 2)

 linear(n)

 foo(n)

solve two subproblems of half the size.

do a linear amount of work.

Remember: Code that follows the pattern below has a running time of Θ(n log n)

 if (n == 0): return

 foo(n / 2)

 linear(n)

 foo(n)

solve one subproblems of half the size.
do a linear amount of work.

Remember: Code that follows the pattern below has a running time of Θ(n)

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + Θ(n)

n +
n
2

+
n
4

+ … + 1 = Θ(n)

Can we do better?

Is selection as hard as sorting? 
(requires compares  
in the worst case if)

∼ n log n
k = n

2

Quickselect Analysis

Best Case. Element at rank k found immediately after the first partitioning step: .

Worst Case. Element at rank k found after partitioning steps:

Expected Case.

Intuition. Partitioning always gets rid of around half of the remaining elements.

 Can we do better?

Theoretically. Selection can be done in linear time in  
the worst case using the Median of Medians algorithm. 
(Blum, Floyd, Pratt, Rivest, and Tarjan 1973).

Practically. Quickselect is faster in practice.

Θ(n)

n − 1
n + (n − 1) + (n − 2) + … + 1 = Θ(n2)

Θ(n)

T(n) = T(n
2) + Θ(n)

n +
n
2

+
n
4

+ … + 1 = Θ(n)

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equally-
sized partitions. Therefore, the algorithm would run in .Θ(n log n)

Quicksort Improvement

What is the order of growth of the running time of quicksort is if a linear time median
finding algorithm is used to pick the pivot?

Answer. If the pivot is always the median, the array is always split into almost equally-
sized partitions. Therefore, the algorithm would run in .

However: the overhead for finding the pivot would be high and the algorithm would be
slower in practice compared to just picking the pivot randomly.

Θ(n log n)

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

n − 1

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

n − 1

2n − 3
n − 1

n − 2

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better? 
We can use some of the information gained while finding the maximum to find the minimum!

n − 1

2n − 3
n − 1

n − 2

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better? 
We can use some of the information gained while finding the maximum to find the minimum!

n − 1

2n − 3
n − 1

n − 2

1 9 2 1 3 5 7 4 0 6 8 2

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better? 
We can use some of the information gained while finding the maximum to find the minimum!

n − 1

2n − 3
n − 1

n − 2

9 2 5 7 6 8

1 1 3 4 0 2

 compares
n
2

Selection (special cases)

1 9 2 1 3 5 7 4 0 6 8 2

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better? 
We can use some of the information gained while finding the maximum to find the minimum!

n − 1

2n − 3
n − 1

n − 2

 compares
n
2

 compares
n
2

− 1

 compares
n
2

− 1

find the max here!

find the min here!

Selection (special cases)

9 2 5 7 6 8

1 1 3 4 0 2

1 9 2 1 3 5 7 4 0 6 8 2

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better? 
We can use some of the information gained while finding the maximum to find the minimum!

n − 1

2n − 3
n − 1

n − 2

 compares
n
2

 compares
n
2

− 1

 compares
n
2

− 1

find the max here!

find the min here!

+

+

 compares3
2 n − 2

Selection (special cases)

9 2 5 7 6 8

1 1 3 4 0 2

1 9 2 1 3 5 7 4 0 6 8 2

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and  

maximum elements in an arbitrary array must perform at least compares  

in the worst case*.

• Finding the 2nd largest element:

 compares.  
Perform a linear scan to find the largest () and then another scan on the elements (excluding the
largest) to find the second largest ().

Can we do better? 
We can use some of the information gained while finding the largest to find the second largest!

* for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

n − 1

2n − 3
n − 1

n − 2

3
2 n − 2

2n − 3
n − 1

n − 2

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and  

maximum elements in an arbitrary array must perform at least compares  

in the worst case*.

• Finding the 2nd largest element:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the second largest ().

• Can we do better? 
We can use some of the information gained while finding the largest to find the second largest!

* for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

n − 1

2n − 3
n − 1

n − 2

3
2 n − 2

2n − 3
n − 1

n − 2

Selection (special cases)

• Finding the largest (or smallest) element: compares. 
Perform a linear scan in the array.

• Finding the largest and smallest elements:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the minimum ().

• Can we do better?

Theorem. Any comparison-based algorithm for finding both the minimum and  

maximum elements in an arbitrary array must perform at least compares  

in the worst case*.

• Finding the 2nd largest element:

• compares.  
Perform a linear scan to find the largest () and then another scan on the elements
(excluding the largest) to find the second largest ().

• Can we do better? 
We can use some of the information gained while finding the largest to find the second largest!

* for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

n − 1

2n − 3
n − 1

n − 2

3
2 n − 2

2n − 3
n − 1

n − 2

Selection (special cases)

Selecting the 2nd Largest Element

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

A Tournament-based approach.

9 2 8 7 6 57 3

A Tournament-based approach.

Selecting the 2nd Largest Element

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

9 8 7 5

A Tournament-based approach.

Selecting the 2nd Largest Element

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

9 7

A Tournament-based approach.

Selecting the 2nd Largest Element

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

9
max

A Tournament-based approach.

Selecting the 2nd Largest Element

9 7

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

9

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest. 
There are at least two keys larger than that key: the max and the key it lost to!

Selecting the 2nd Largest Element

max

9 7

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

The second largest must be on this path! 
(must have lost to the max)

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. A key that loses to a key other than the max can't possibly be the second largest. 
There are at least two keys larger than that key: the max and the key it lost to!

9
max

9 7

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

n
2

n
4

n
8

n
n

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. 
Proof by contradiction.

Analysis. (assuming n is a power of 2)

• The algorithm performs compares to find the max.
n
2 + n

4 + n
8 + … + 1 = n − 1

Selecting the 2nd Largest Element

9
max

9 7

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

n
2

n
4

n
8

n
n

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. 
Proof by contradiction.

Analysis. (assuming n is a power of 2)

• The algorithm performs compares to find the max.

• The algorithm needs an additional compares to find the second largest
among the nodes on the path representing comparisons with the max.

n
2 + n

4 + n
8 + … + 1 = n − 1

log2 n − 1

Selecting the 2nd Largest Element

9
max

9 7

9 8 7 5

9 2 8 7 6 57 3

1 9 2 1 3 8 7 4 0 6 5 27 4 3 0

h = log2 n

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. 
Proof by contradiction.

Analysis. (assuming n is a power of 2)

• The algorithm performs compares to find the max.

• The algorithm needs an additional compares to find the second largest  
among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in  
an arbitrary array must make at least compares in the worst case*.

* for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

n
2 + n

4 + n
8 + … + 1 = n − 1

log2 n − 1

n + ⌈log2 n⌉ − 2

Selecting the 2nd Largest Element

A Tournament-based approach.

Observation. Keys that lose to keys other than the max can't possibly be the second largest. 
Proof by contradiction.

Analysis. (assuming n is a power of 2)

• The algorithm performs compares to find the max.

• The algorithm needs an additional compares to find the second largest  
among the nodes on the path representing comparisons with the max.

Theorem. Any comparison-based algorithm for finding the second largest element in  
an arbitrary array must make at least compares in the worst case*.

Implementation. How can we keep track of which elements lost to the max?

* for the proof, see Computer Algorithms: Introduction to Design and Analysis for Sara Baase and Allen Van Gelder

n
2 + n

4 + n
8 + … + 1 = n − 1

log2 n − 1

n + ⌈log2 n⌉ − 2

Selecting the 2nd Largest Element

Implementation

Use a heap-like structure to keep track of the comparisons.

Implementation

 4 0 6 5 2 3 0
0 1 2 3 4 5 6 7 8 9 10 11 12

n2n − 1

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .2n − 1

elements start  
at index n - 1

3 05 20 64

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

 3 4 0 6 5 2 3 0

3 0

3

5 20 64

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

5 3 4 0 6 5 2 3 0

3 0

3

5 2

5

0 64

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

6 5 3 4 0 6 5 2 3 0

3 0

3

5 2

5

0 6

6

4

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

4 6 5 3 4 0 6 5 2 3 0

4

4

3 0

3

5 2

56

4 0 6

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

6 4 6 5 3 4 0 6 5 2 3 0

4

4

3 0

3

5 2

56

0 6

6

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

2n

 6 6 4 6 5 3 4 0 6 5 2 3 0

6

4

4

3 0

3

5 2

56

0 6

6

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

3. Trace back from the root and compare to elements that lost to the max.

2n

 6 6 4 6 5 3 4 0 6 5 2 3 0

6

4

4

3 0

3

5 2

56

0 6

6

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

3. Trace back from the root and compare to elements that lost to the max.

2n

 6 6 4 6 5 3 4 0 6 5 2 3 0

6

4

4

3 0

3

5 2

56

0 6

6

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

n

Use a heap-like structure to keep track of the comparisons.

1. Load the n elements into the right half of an array of size .

2. Compute the max of each pair and store it at the location of the parent.

3. Trace back from the root and compare to elements that lost to the max.

2n

 6 6 4 6 5 3 4 0 6 5 2 3 0

6

4

4

3 0

3

5 2

56

0 6

6

Implementation

 BUILD-HEAP(a[], n)

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]→ →

Implementation

 BUILD-HEAP(a[], n)

start at the 2nd to last  
element in the array

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

→ →

0 1 2 3 4 5 6 7 8 9 10 11 12

n2n − 1

 4 0 6 5 2 3 0

i

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1

Implementation

 BUILD-HEAP(a[], n)

store the max at  
the index of the

parent node 
(i-1)/2

compare every
pair of nodes

n

 3 4 0 6 5 2 3 0

i

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1])

→ →

Implementation

 BUILD-HEAP(a[], n)

move to the  
next pair

0 1 2 3 4 5 6 7 8 9 10 11 12

2n − 1 n

 3 4 0 6 5 2 3 0

i

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1]) 
 i = i-2

→ →

Implementation

 BUILD-HEAP(a[], n)

 HEAP-FIND-MAX(h[], n)

elements after this
are leaves

max2 = a very small number, i=0

while i < n - 1:

i

0 1 2 3 4 5 6 7 8 ... 11 12 13
 6 6 4 6 5 3 4 0 6 ... 2 3 0

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1]) 
 i = i-2

→ →

Implementation

 BUILD-HEAP(a[], n)

 HEAP-FIND-MAX(h[], n)

if the max is in the left child, 
compare the current 2nd largest to the

right child and then move to the left child

max2 = a very small number, i=0

while i < n - 1:

 if (h[i] == h[LEFT(i)]): 
 max2 = MAX(max2, h[RIGHT(i)]) 
 i = LEFT(i)

i

0 1 2 3 4 5 6 7 8 ... 11 12 13
 6 6 4 6 5 3 4 0 6 ... 2 3 0

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1]) 
 i = i-2

→ →

Remember: 
LEFT(i): 2*i + 1 
RIGHT(i): 2*i + 2

Implementation

 BUILD-HEAP(a[], n)

 HEAP-FIND-MAX(h[], n)

otherwise, compare the
current 2nd largest to the
left child and then move
to the right child

max2 = a very small number, i=0

while i < n - 1:

 if (h[i] == h[LEFT(i)]): 
 max2 = MAX(max2, h[RIGHT(i)]) 
 i = LEFT(i) 
 else: 
 max2 = MAX(max2, h[LEFT(i)]) 
 i = RIGHT(i)

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1]) 
 i = i-2

→ →

Implementation

 BUILD-HEAP(a[], n)

 HEAP-FIND-MAX(h[], n)

 Create an array named h[] of size 2n-1

 Copy a[0 n-1] to h[n-1 2n-2]

 i = 2n-3

 while (i > 0):

 h[PARENT(i)] = max(h[i], h[i+1]) 
 i = i-2

→ →

max2 = a very small number, i=0

while i < n - 1:

 if (h[i] == h[LEFT(i)]): 
 max2 = MAX(max2, h[RIGHT(i)]) 
 i = LEFT(i) 
 else: 
 max2 = MAX(max2, h[LEFT(i)]) 
 i = RIGHT(i)

return max2

optional

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:

insert():

median():  
Remove from the heap the first elements to reach the median and then insert them back.

O(log n)
O(n log n)

n
2

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:

insert():

median():  
Remove from the heap the first elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:

insert():  
Add to the end of the list. Note that the array might resize, so the running time is amortized.

median():  
Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

O(log n)
O(n log n)

n
2

Θ(1)

Θ(n)

Streaming Median

Assume that you receive an arbitrary stream of numbers. How can we efficiently report the
median at any point in time?

Solution 1. Maintain a max-heap:

insert():

median():  
Remove from the heap the first elements to reach the median and then insert them back.

Solution 2. Maintain an unordered array:

insert():  
Add to the end of the list. Note that the array might resize, so the running time is amortized.

median():  
Use Quickselect to find the median. Note that this is the expected case if the array is shuffled.

Solution 3. Maintain a sorted array:

insert():  
Search for the right position and then shift any elements that come after.

median():  
The median is always at index .

O(log n)
O(n log n)

n
2

Θ(1)

Θ(n)

O(n)

Θ(1)
n
2

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

≤
>

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

≤
>

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

≤
>

⌈ n
2 ⌉

∙ ∙
left right left right

median median

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

General Idea:

• Insert the new element into the left heap if it is less than or equal to the current
median and to the right if it is greater than the current median.

• Rebalance the heaps by moving an element from the larger heap to the smaller heap if
the size invariant is violated.

≤
>

⌈ n
2 ⌉

∙ ∙

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

≤
>

⌈ n
2 ⌉

∙ ∙

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

≤
>

⌈ n
2 ⌉

∙ ∙

median

insert k in left if k median≤

insert k in right if k median>

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

≤
>

⌈ n
2 ⌉

∙ ∙

more than elements are in left⌈ n
2 ⌉

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

≤
>

⌈ n
2 ⌉

∙ ∙

remove the max from left  
and insert it into right

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

If right.size() > left.size(): left.insert(right.delMin()).

≤
>

⌈ n
2 ⌉

∙ ∙

If right is larger than left remove the min from right and insert it into left.

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

If right.size() > left.size(): left.insert(right.delMin()).

≤
>

⌈ n
2 ⌉

∙ ∙

insert into  
the correct heap

rebalance the  
heaps if necessary

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

insert(k):

If k <= left.max(): left.insert(k) 
Else: right.insert(k)

If left.size() > right.size()+1: right.insert(left.delMax()).

If right.size() > left.size(): left.insert(right.delMin()).

≤
>

⌈ n
2 ⌉

∙ ∙

insert into  
the correct heap

rebalance the  
heaps if necessary

O(log n)

O(log n)

Streaming Median

Solution 4. Use a max-heap to store the lower half of the elements (median) and a  
min-heap to store the upper half of the elements (median).

Assume that the max-heap is named left and the min-heap is named right. Ensure that:

• Any element in left is smaller than or equal to all the elements in right.

• left.size() - right.size() is 0 (equal) or 1 (left is larger by 1).

Therefore, left always has elements and the median is always the maximum
element in left.

Example: [1 2 3 4 5 6] Example: [1 2 3 4 5 6 7]

Running Time:

insert():  
Inserting into the left or the right heaps is and rebalancing is .

median():  
The median is always left.max().

≤
>

⌈ n
2 ⌉

∙ ∙

O(log n)
O(log n) O(log n)

Θ(1)

Streaming Median

