
Design & Analysis
 Algorithms

Reductions

CS11313 - Fall 2023

of

Ibrahim Albluwi

Reductions

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Reductions

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Algorithm for
solving Y

Algorithm for solving problem X

Solution for
problem X

Input for
problem X

Post-
processing

Pre-
processing

Figure adapted from a slide by Kevin Wayne

Reductions

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Algorithm for
solving Y

Algorithm for solving problem X

Solution for
problem X

Input for
problem X

Post-
processing

Pre-
processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Y might be called multiple time
(typically 1 call)

Typically less than the cost
of solving Y

Figure adapted from a slide by Kevin Wayne

Reductions

Problem X reduces to problem Y (denoted as):
An algorithm for solving Y can be used to solve X.

X ⩽ Y

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Post-
processing

Pre-
processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Y might be called multiple time
(typically 1 call)

Typically less than the cost
of solving Y

Solution for
problem X

Input for
problem X

Algorithm for solving problem X

Algorithm for
solving Y

Reductions (Examples)

LINEAR
Given and , solve b c bx + c = 0

QUADRATIC
Given , and , solve a b c ax2 + bx + c = 0

Given a solver for QUADRATIC can we solve LINEAR?

Reductions (Examples)

LINEAR
Given and , solve b c bx + c = 0

QUADRATIC
Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC
solver

LINEAR solver

b
c

0

Reductions (Examples)

LINEAR
Given and , solve b c bx + c = 0

QUADRATIC
Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC
solver

LINEAR solver

b
c

0

SELECT
Given a list of elements, find the largest
element.

kth
SORT
Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

LINEAR
Given and , solve b c bx + c = 0

QUADRATIC
Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC
solver

LINEAR solver

b
c

0

SELECT reduces to SORT

Use SORT to sort the elements and then
report the element of rank k.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

SELECT
Given a list of elements, find the largest
element.

kth
SORT
Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

LINEAR
Given and , solve b c bx + c = 0

QUADRATIC
Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC
solver

LINEAR solver

b
c

0

SELECT reduces to SORT

Use SORT to sort the elements and then
report the element of rank k.

Running Time. O(N log N) + O(1)

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

Running Time. O(N) × O(N)
SELECT reductionSORT reduction

SELECT
Given a list of elements, find the largest
element.

kth
SORT
Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

1

12

12

2 1

s

21

11

3

2

d

2

1

12

12

2 1

s

21

11

3

2

d

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

SDSP reduces to SSSP

2

SDSP solver

G
SDSP Tree SSSP solver

d
SSSP Tree

Graph

Source

1

12

12

2 1

s

21

11

3

2

d

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

SDSP reduces to SSSP
• Create , a transpose of G.
• Set s to d and run SSSP on .
• Transpose the shortest paths tree.

GT

GT

2

SDSP solver

TransposeG
SSSP Tree

GT

SDSP Tree SSSP solver
d

Transpose

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

MSSP (Multi-Source Shortest Paths)

Given a graph G and a set of source
vertices, find the shortest path from every
vertex in

S ⊆ G
S

G .

1

12

12

3 1

s

s21

12

2 1

s11

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

MSSP (Multi-Source Shortest Paths)

Given a graph G and a set of source
vertices, find the shortest path from every
vertex in

S ⊆ G
S

G .

1

12

12

3 1

s

s21

12

2 1

s11

MSSP reduces to SSSP

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

MSSP (Multi-Source Shortest Paths)

Given a graph G and a set of source
vertices, find the shortest path from every
vertex in

S ⊆ G
S

G .

1

12

12

3 1

s

s21

12

2 1

s11

MSSP reduces to SSSP

• Create by adding a vertex d to G.
Add an edge of zero weight from d
to every vertex

• Set d as the source and solve SSSP on .

• Remove from the resulting shortest paths
tree the edges from d to .

G′

v ∈ S

G′

S

d

PITFALL
Saying that algorithm A reduces to algorithm B.

PITFALL
Saying that algorithm A reduces to algorithm B.

Example.

Selection Sort repeatedly selects the next
minimum element in the array (using a linear
search in the array) and places it in its position.

Heap Sort repeatedly selects the next minimum
element in the array (using a heap data structure)
and places it in its position.

It is WRONG to say that Selection Sort reduces to
Heap Sort or that Heap Sort reduces to Selection
Sort.

 Reductions are between Problems NOT Algorithms!

Exercise # 1

Show that 3SUM-B reduces to 3SUM-0 in linear time.

3SUM-0 Input: N integers: .
 Output: TRUE iff there are three distinct indices and
 such that .

3SUM-B Input: An integer b and N integers: .
 Output: True iff there are three distinct indices and
 such that: .

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = 0

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = b

 Hint: e idea is in the
 preprocessing of the input!

Solution: Change every in the input of 3SUM-B to
 and feed it to 3SUM-0.

 If en:

Divide by 3:

x 3x − b

(3xi − b) + (3xj − b) + (3xk − b) = 0
3xi + 3xj + 3xk = 3b

xi + xj + xk = b

Exercise # 1

Show that 3SUM-B reduces to 3SUM-0 in linear time.

3SUM-0 Input: N integers: .
 Output: TRUE iff there are three distinct indices and
 such that .

3SUM-B Input: An integer b and N integers: .
 Output: True iff there are three distinct indices and
 such that: .

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = 0

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = b

Exercise # 2

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not
 be clever enough to come up with an algorithm!

D. Reductions have nothing to do with this question.

Exercise # 2

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not
 be clever enough to come up with an algorithm!

D. Reductions have nothing to do with this question.

Exercise # 2

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not
 be clever enough to come up with an algorithm!

D. Reductions have nothing to do with this question.

We can solve using .

If is solvable:
 is also solvable (contradiction!)

X Y

Y
X

 reduces to X Y

We can solve using .

While is unsolvable, there might be
another way for solving not using .

Y X

X
Y X

 reduces to Y X

Undecidability

DEAD-CODE

Given a program P, an input d, and a line
number x, will execute line x? P(d)

HALT

Given a program P and an input d, does
 terminate?

(i.e. will not enter an infinite loop)
P(d)

Reductions (Showing Undecidability)

HALT is known to be undecidable.!

DEAD-CODE

Given a program P, an input d, and a line
number x, will execute line x? P(d)

Reductions (Showing Undecidability)

HALT

Given a program P and an input d, does
 terminate?

(i.e. will not enter an infinite loop)
P(d)

How can we show that DEAD-CODE is also undecidable?

HALT is known to be undecidable.!

DEAD-CODE

Given a program P, an input d, and a line
number x, will execute line x? P(d)

Reductions (Showing Undecidability)

Answer. Show that HALT reduces to DEAD-CODE.

HALT

Given a program P and an input d, does
 terminate?

(i.e. will not enter an infinite loop)
P(d)

How can we show that DEAD-CODE is also undecidable?

HALT is known to be undecidable.!

Since HALT can be solved using DEAD-CODE and HALT is known
to be impossible to solve, DEAD-CODE must also be impossible to solve.

Reductions (Showing Undecidability)

DEAD-CODE

Given a program P, an input d, and a line
number x, will execute line x? P(d)

HALT reduces to DEAD-CODE

HALT

Given a program P and an input d, does
 terminate?

(i.e. will not enter an infinite loop)
P(d)

Answer. Show that HALT reduces to DEAD-CODE.

How can we show that DEAD-CODE is also undecidable?

HALT is known to be undecidable.!

HALT reduces to DEAD-CODE

Since HALT can be solved using DEAD-CODE and HALT is known
to be impossible to solve, DEAD-CODE must also be impossible to solve.

Reductions (Showing Undecidability)

DEAD-CODE

Given a program P, an input d, and a line
number x, will execute line x? P(d)

• Assume that line K is at the end of program P.
Replace every halt instruction in P with goto K.

• Feed P, d, and K into a DEAD-CODE solver. If the result is TRUE, then halts.
If the result is FALSE, then does not halt.

P(d)
P(d)

HALT

Given a program P and an input d, does
 terminate?

(i.e. will not enter an infinite loop)
P(d)

Answer. Show that HALT reduces to DEAD-CODE.

How can we show that DEAD-CODE is also undecidable?

HALT is known to be undecidable.!

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

Reductions (Showing Undecidability)

TOTALITY is known to be undecidable.!

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

Reductions (Showing Undecidability)

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Reductions (Showing Undecidability)

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create as a copy of P, except that it outputs TRUE instead of its original output.P1

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create as a copy of P, except that it outputs TRUE instead of its original output.

• Create a program that outputs TRUE and does nothing else.

P1

P2

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create as a copy of P, except that it outputs TRUE instead of its original output.

• Create a program that outputs TRUE and does nothing else.

• Use EQUIVALENCE to check if and are equivalent.
If they are equivalent, P terminates on all input. If they are not, the only possibility is
that P does not terminate on some input (since the output of and is always the same).

P1

P2

P1 P2

P1 P2

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?

PITFALL
Confusing the direction of the reduction.

PITFALL
Confusing the direction of the reduction.

Remember. reduces to (denoted as)
means that can be solved using a solver for .

Implication. If reduces to with an easy
transformation, then is not harder than .

Example. DEAD-CODE HALT means that DEAD-
CODE is not harder to solve than HALT. This is not
interesting because we already know that HALT is
impossible to solve.

Example. HALT DEAD-CODE means that HALT is
not harder to solve than DEAD-CODE. Since HALT is
impossible to solve, DEAD-CODE must also be
impossible (because HALT is not harder!)

X Y X ⩽ Y
X Y

X Y
X Y

⩽

⩽

Upper & Lower Bounds

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Upper & Lower Bounds

A trivial upper bound.
We don't need more time than what is needed to check all the permutations.

O(n!)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Sorting a list of elements using comparisons only. n

Upper & Lower Bounds

A trivial upper bound.
We don't need more time than what is needed to check all the permutations.

Another trivial upper bound.
We don't need more time than what naive sorting algorithms like Bubble Sort need.

O(n!)

O(n2)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Sorting a list of elements using comparisons only. n

Upper & Lower Bounds

A trivial upper bound.
We don't need more time than what is needed to check all the permutations.

Another trivial upper bound.
We don't need more time than what naive sorting algorithms like Bubble Sort need.

A beer upper bound.
Merge Sort and Heap Sort perform comparisons.

O(n!)

O(n2)

O(n log n)
Θ(n log n)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Sorting a list of elements using comparisons only. n

Upper & Lower Bounds

A trivial upper bound.
We don't need more time than what is needed to check all the permutations.

Another trivial upper bound.
We don't need more time than what naive sorting algorithms like Bubble Sort need.

A beer upper bound.
Merge Sort and Heap Sort perform comparisons.

A trivial Lower Bound.
We can't sort all the elements unless we see all the elements!

O(n!)

O(n2)

O(n log n)
Θ(n log n)

Ω(n)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Sorting a list of elements using comparisons only. n

Upper & Lower Bounds

A trivial upper bound.
We don't need more time than what is needed to check all the permutations.

Another trivial upper bound.
We don't need more time than what naive sorting algorithms like Bubble Sort need.

A beer upper bound.
Merge Sort and Heap Sort perform comparisons.

A trivial Lower Bound.
We can't sort all the elements unless we see all the elements!

A beer lower Bound.
There is a famous proof for that!

O(n!)

O(n2)

O(n log n)
Θ(n log n)

Ω(n)

Ω(n log n)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Sorting a list of elements using comparisons only. n

Upper & Lower Bounds

A trivial upper bound.
We can use Long Multiplication.

A beer upper bound.
Karatsuba's Algorithm runs in time.

O(n2)

O(n1.585)
Θ(nlog2 3 ≈ n1.5849)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Multiplying two integers of length digits each.n

Upper & Lower Bounds

A trivial upper bound.
We can use Long Multiplication.

A beer upper bound.
Karatsuba's Algorithm runs in time.

A trivial Lower Bound.
We can't multiply the two numbers unless we see all the digits!

A conjectured beer lower Bound.
There is no proof for that yet!

O(n2)

O(n1.585)
Θ(nlog2 3 ≈ n1.5849)

Ω(n)

Ω(n log n)

Upper Bound. An upper bound for a problem shows that the problem can
be solved in .

T
O(T)

Lower Bound. A lower bound for a problem means that there is no hope of
finding an algorithm that runs in time beer than in the worst case.

T
Ω(T)

Example. Multiplying two integers of length digits each.n

Reductions (Lower Bounds)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

Reductions (Lower Bounds)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

Reductions (Lower Bounds)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

=

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.

PAIR
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.
• We already know that any comparison based algorithm for SORT performs

 compares in the worst case.Ω(N log N)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

PAIR
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.
• We already know that any comparison based algorithm for SORT performs

 compares in the worst case.

• e reduction from SORT to PAIR requires only amount of work
(creating and extracting the result)

Ω(N log N)

Θ(N)
L2

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

PAIR
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],
 [1] with [1],
 etc.

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.
• We already know that any comparison based algorithm for SORT performs

 compares in the worst case.

• e reduction from SORT to PAIR requires only amount of work
(creating and extracting the result)

• PAIR must require compares in the worst case.
Otherwise, the lower bound for SORT is not correct (contradiction!)

Ω(N log N)

Θ(N)
L2

Ω(N log N)
Ω(N log N)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

PAIR
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)

Exercise # 3

Assume that there is a proof that the lower bound for the LONGEST-PATH problem is
, where V is the number vertices in the graph*.

Use a reduction to prove that the lower bound for LONGEST-CYCLE is also .

Ω(2V)

Ω(2V)

LONGEST-CYCLE

Given an undirected graph G , find the
longest simple cycle (no repeated vertices or
edges except the first and last vertex).

LONGEST-PATH

Given an undirected graph G and two distinct
vertices and , find the longest simple path
(no repeated vertices) between and .

s t
s t

* Note that this is just an assumption and that no such proof currently exists.

Exercise # 3 (solution)

* Note that this is just an assumption and that no such proof currently exists.

LONGEST-PATH reduces to LONGEST-CYCLE

LONGEST-PATH solver

Pre-
Process

G
G′

LONGEST-CYCLE
solvers

Post-
Process

t

O(V) O(V)

Assumed to be Ω(2V)

Must also be Ω(2V)

Exercise # 3 (solution continued)

* Note that this is just an assumption and that no such proof currently exists.

t

s

LONGEST-PATH reduces to LONGEST-CYCLE

Add a cycle from to that is has vertices. Finding the longest cycle in the
modified graph will lead to newly added cycle + the longest path from to .

s t > V
s t

LONGEST-PATH solver

Pre-
Process

G
G′

LONGEST-CYCLE
solvers

Post-
Process

t

O(V) O(V)

Assumed to be Ω(2V)

Must also be Ω(2V)

Exercise # 4

Use a reduction to prove that is a lower bound for MIN.Ω(log N)

SORT

Given a list of N elements, sort them in non-
decreasing order (using comparisons only)

MIN

Given a list of N elements, find the minimum
element (using comparisons only)

Exercise # 4

Use a reduction to prove that is a lower bound for MIN.Ω(log N)

SORT

Given a list of N elements, sort them in non-
decreasing order (using comparisons only)

MIN

Given a list of N elements, find the minimum
element (using comparisons only)

MIN Solver

SORT Solver

Sorted L

L FOR i=0 TO N-1:
L[i] to L[N-1]

Index of the min

SORT reduces to MIN

SWAP(L[i], L[min])

Sorting time = (time for MIN Solver + swapping time)

If the complexity of MIN Solver is less than , the sorting complexity becomes
less than , which is impossible (the sorting lower bound is).

N ×

log N
N log N Ω(N log N)

