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Reductions

Problem X reduces to problem Y (denoted as ):  
An algorithm for solving Y can be used to solve X.

X ⩽ Y

A reduction from problem X to problem Y:  
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.
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Reductions (Examples)

LINEAR 
Given  and , solve b c bx + c = 0

QUADRATIC 
Given ,  and , solve a b c ax2 + bx + c = 0

Given a solver for QUADRATIC can we solve LINEAR?
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Reductions (Examples)

LINEAR 
Given  and , solve b c bx + c = 0

QUADRATIC 
Given ,  and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC  
solver

LINEAR solver

b
c

0

SELECT reduces to SORT 

Use SORT to sort the elements and then 
report the element of rank k. 

Running Time. O(N log N ) + O(1)

SORT reduces to SELECT 

Sort the elements by repeatedly using 
SELECT to find the next largest element. 

Running Time. O(N ) × O(N )
SELECT reductionSORT reduction

SELECT  
Given a list of elements, find the  largest 
element.

kth
SORT 
Given a list of elements, order the elements 
in non-decreasing order. 



Reductions (Examples)

SSSP (Single Source Shortest Paths) 

Given a graph G and a source vertex s, find 
the shortest path from s to every vertex in 
G.

SDSP (Single Destination Shortest Paths) 

Given a graph G and a destination vertex d, 
find the shortest path from every vertex in 
G to d.
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Reductions (Examples)

SSSP (Single Source Shortest Paths) 

Given a graph G and a source vertex s, find 
the shortest path from s to every vertex in 
G.

SDSP (Single Destination Shortest Paths) 

Given a graph G and a destination vertex d, 
find the shortest path from every vertex in 
G to d.

SDSP reduces to SSSP
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Reductions (Examples)

SSSP (Single Source Shortest Paths) 

Given a graph G and a source vertex s, find 
the shortest path from s to every vertex in 
G.

SDSP (Single Destination Shortest Paths) 

Given a graph G and a destination vertex d, 
find the shortest path from every vertex in 
G to d.

SDSP reduces to SSSP
• Create , a transpose of G. 
• Set s to d and run SSSP on . 
• Transpose the shortest paths tree.

GT

GT

2

SDSP solver

TransposeG
SSSP Tree 

GT

SDSP Tree SSSP solver
d

Transpose



Reductions (Examples)

SSSP (Single Source Shortest Paths) 

Given a graph G and a source vertex s, find 
the shortest path from s to every vertex in 
G.

MSSP (Multi-Source Shortest Paths) 

Given a graph G and a set  of source 
vertices, find the shortest path from  every 
vertex in 

S ⊆ G
S

G .
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Reductions (Examples)

SSSP (Single Source Shortest Paths) 

Given a graph G and a source vertex s, find 
the shortest path from s to every vertex in 
G.

MSSP (Multi-Source Shortest Paths) 

Given a graph G and a set  of source 
vertices, find the shortest path from  every 
vertex in 

S ⊆ G
S

G .

1

12

12

3 1

s

s21

12

2 1

s11

MSSP reduces to SSSP

• Create  by adding a vertex d to G. 
Add an edge of zero weight from d  
to every vertex   

• Set d as the source and solve SSSP on . 

• Remove from the resulting shortest paths  
tree the edges from d to .

G′ 

v ∈ S

G′ 

S

d



PITFALL
Saying that algorithm A reduces to algorithm B.



PITFALL
Saying that algorithm A reduces to algorithm B.

Example.  

Selection Sort repeatedly selects the next 
minimum element in the array (using a linear 
search in the array) and places it in its position. 

Heap Sort repeatedly selects the next minimum 
element in the array (using a heap data structure) 
and places it in its position. 

It is WRONG to say that Selection Sort reduces to 
Heap Sort or that Heap Sort reduces to Selection 
Sort. 

  Reductions are between Problems NOT Algorithms!



Exercise # 1

Show that 3SUM-B reduces to 3SUM-0 in linear time. 

3SUM-0    Input:    N  integers:   . 
              Output:   TRUE iff there are three distinct indices  and   
                                  such that . 

3SUM-B    Input:   An integer b and N integers:  . 
             Output:  True iff there are three distinct indices  and   
                                such that: .   

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = 0

x1, x2, x3, . . . , xN
i, j k

xi + xj + xk = b

   Hint: e idea is in the    
       preprocessing of the input!



Solution: Change every  in the input of 3SUM-B to   
                and feed it to 3SUM-0. 

                If           en: 
                            
Divide by 3:        

x 3x − b

(3xi − b) + (3xj − b) + (3xk − b) = 0
3xi + 3xj + 3xk = 3b

xi + xj + xk = b
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Exercise # 2

Suppose there is a proof that no computer can solve problem X. 

How can we prove that a problem Y is also impossible to solve?

A.   Show that X reduces to Y. 

B.   Show that Y reduces to X. 

C.   Computers can solve any problem. It is only that we might not  
          be clever enough to come up with an algorithm!  

D.   Reductions have nothing to do with this question.
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Exercise # 2

Suppose there is a proof that no computer can solve problem X. 

How can we prove that a problem Y is also impossible to solve?

A.   Show that X reduces to Y. 

B.   Show that Y reduces to X. 

C.   Computers can solve any problem. It is only that we might not  
          be clever enough to come up with an algorithm!  

D.   Reductions have nothing to do with this question.

We can solve  using . 

If  is solvable:  
 is also solvable (contradiction!)

X Y

Y
X

 reduces to X Y

We can solve  using . 

While  is unsolvable, there might be 
another way for solving  not using .

Y X

X
Y X

 reduces to Y X
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DEAD-CODE  

Given a program P, an input d, and a line 
number x, will  execute line x? P(d)

HALT 

Given a program P  and an input d, does 
 terminate? 

(i.e. will not enter an infinite loop)
P(d)

Reductions (Showing Undecidability)

HALT is known to be undecidable.!
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Since HALT can be solved using DEAD-CODE and HALT is known  
to be impossible to solve, DEAD-CODE must also be impossible to solve.
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HALT reduces to DEAD-CODE

Since HALT can be solved using DEAD-CODE and HALT is known  
to be impossible to solve, DEAD-CODE must also be impossible to solve.

Reductions (Showing Undecidability)

DEAD-CODE  

Given a program P, an input d, and a line 
number x, will  execute line x? P(d)

• Assume that line K is at the end of program P.  
Replace every halt instruction in P with goto K. 

• Feed P, d, and K into a DEAD-CODE solver. If the result is TRUE, then  halts. 
If the result is FALSE, then  does not halt.

P(d)
P(d)

HALT 

Given a program P  and an input d, does 
 terminate? 

(i.e. will not enter an infinite loop)
P(d)

Answer. Show that HALT reduces to DEAD-CODE.

How can we show that DEAD-CODE is also undecidable?

HALT is known to be undecidable.!



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

Reductions (Showing Undecidability)

TOTALITY is known to be undecidable.!



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

Reductions (Showing Undecidability)

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Reductions (Showing Undecidability)

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create  as a copy of P, except that it outputs TRUE instead of its original output.P1

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create  as a copy of P, except that it outputs TRUE instead of its original output. 

• Create a program  that outputs TRUE and does nothing else.

P1

P2

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?



EQUIVALENCE  

Given two programs  and . Do these two 
programs produce the same output for every input? 
(i.e. are they equivalent?)

P1 P2

TOTALITY 

Does a given program P terminate 
on all possible inputs?  
(never enters an infinite loop!)

TOTALITY reduces to EQUIVALENCE

• Create  as a copy of P, except that it outputs TRUE instead of its original output. 

• Create a program  that outputs TRUE and does nothing else. 

• Use EQUIVALENCE to check if  and   are equivalent. 
If they are equivalent, P terminates on all input. If they are not, the only possibility is 
that P does not terminate on some input (since the output of  and  is always the same).

P1

P2

P1 P2

P1 P2

Reductions (Showing Undecidability)

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible to solve, EQUIVALENCE must also be impossible to solve.

Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY is known to be undecidable.!
How can we show that EQUIVALENCE is also undecidable?
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PITFALL
Confusing the direction of the reduction.

Remember.  reduces to  (denoted as ) 
means that  can be solved using a solver for . 

Implication. If  reduces to  with an easy 
transformation, then  is not harder than . 

Example. DEAD-CODE  HALT means that DEAD-
CODE is not harder to solve than HALT. This is not 
interesting because we already know that HALT is 
impossible to solve. 

Example. HALT  DEAD-CODE means that HALT is 
not harder to solve than DEAD-CODE. Since HALT is 
impossible to solve, DEAD-CODE must also be 
impossible (because HALT is not harder!)

X Y X ⩽ Y
X Y

X Y
X Y

⩽

⩽



Upper & Lower Bounds

Upper Bound. An upper bound  for a problem shows that the problem can  
be solved in .

T
O(T )

Lower Bound. A lower bound  for a problem means that there is no hope of 
finding an algorithm that runs in time beer than  in the worst case.

T
Ω(T )
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Example. Sorting a list of  elements using comparisons only. n
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A trivial upper bound.  
We don't need more time than what is needed to check all the permutations. 

Another trivial upper bound.  
We don't need more time than what naive sorting algorithms like Bubble Sort need. 

A beer upper bound.   
Merge Sort and Heap Sort perform  comparisons. 

A trivial Lower Bound.   
We can't sort all the elements unless we see all the elements! 

A beer lower Bound.   
There is a famous proof for that!
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O(n log n)
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Ω(n)

Ω(n log n)
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Lower Bound. A lower bound  for a problem means that there is no hope of 
finding an algorithm that runs in time beer than  in the worst case.
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Upper & Lower Bounds

A trivial upper bound.  
We can use Long Multiplication. 

A beer upper bound.   
Karatsuba's Algorithm runs in  time. 

O(n2)

O(n1.585)
Θ(nlog2 3 ≈ n1.5849)

Upper Bound. An upper bound  for a problem shows that the problem can  
be solved in .

T
O(T )

Lower Bound. A lower bound  for a problem means that there is no hope of 
finding an algorithm that runs in time beer than  in the worst case.

T
Ω(T )

Example. Multiplying two integers of length  digits each.n



Upper & Lower Bounds

A trivial upper bound.  
We can use Long Multiplication. 

A beer upper bound.   
Karatsuba's Algorithm runs in  time. 

A trivial Lower Bound.   
We can't multiply the two numbers unless we see all the digits! 

A conjectured beer lower Bound.   
There is no proof for that yet!
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O(n1.585)
Θ(nlog2 3 ≈ n1.5849)

Ω(n)

Ω(n log n)

Upper Bound. An upper bound  for a problem shows that the problem can  
be solved in .

T
O(T )

Lower Bound. A lower bound  for a problem means that there is no hope of 
finding an algorithm that runs in time beer than  in the worst case.

T
Ω(T )

Example. Multiplying two integers of length  digits each.n



Reductions (Lower Bounds)

SORT  

Given a list of elements, sort 
them in non-decreasing order.

PAIR 

Given lists  and  of size N, pair the min in  with the 
min in , the next min in  with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example.     = [13, 7, 3, 1, 11, 2]       

    = [2, 8, 6, 4, 10, 0] 

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10] 

L1

L2
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them in non-decreasing order.

PAIR 

Given lists  and  of size N, pair the min in  with the 
min in , the next min in  with the next min in , etc.

L1 L2 L1
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=

Example.     = [13, 7, 3, 1, 11, 2]       

    = [2, 8, 6, 4, 10, 0] 

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10] 

L1
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PAIR reduces to SORT 

• Use SORT to sort  and . 

• Pair [0] with [0],  
        [1] with [1], 
       etc.

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR 

• Let  be the list to be sorted. 

• Create  containing the numbers 1 to N. 

• Extract the sorted version of  from the 
result of applying PAIR on  and .

L1

L2

L1
L1 L2

Implication. 

PAIR  
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)
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    = [2, 8, 6, 4, 10, 0] 

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10] 
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PAIR reduces to SORT 

• Use SORT to sort  and . 

• Pair [0] with [0],  
        [1] with [1], 
       etc.

L1 L2

L1 L2
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SORT reduces to PAIR 

• Let  be the list to be sorted. 

• Create  containing the numbers 1 to N. 

• Extract the sorted version of  from the 
result of applying PAIR on  and .
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Implication.  
• We already know that any comparison based algorithm for SORT performs 
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PAIR 
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min in , the next min in  with the next min in , etc.
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PAIR  
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=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

SORT solver

Reductions (Lower Bounds)
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Implication.  
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(creating  and extracting the result) 
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Exercise # 3

Assume that there is a proof that the lower bound for the LONGEST-PATH problem is 
, where V is the number vertices in the graph*. 

Use a reduction to prove that the lower bound for LONGEST-CYCLE is also .

Ω(2V)

Ω(2V)

LONGEST-CYCLE 

Given an undirected graph G , find the 
longest simple cycle (no repeated vertices or 
edges except the first and last vertex).

LONGEST-PATH 

Given an undirected graph G and two distinct 
vertices  and , find the longest simple path 
(no repeated vertices) between  and .

s t
s t

* Note that this is just an assumption and that no such proof currently exists.



Exercise # 3 (solution)

* Note that this is just an assumption and that no such proof currently exists.

LONGEST-PATH reduces to LONGEST-CYCLE

LONGEST-PATH solver

Pre-
Process

G
G′ 

LONGEST-CYCLE 
solvers

Post-
Process

t

O(V ) O(V )

Assumed to be Ω(2V)

Must also be Ω(2V)



Exercise # 3 (solution continued)

* Note that this is just an assumption and that no such proof currently exists.

t

s

LONGEST-PATH reduces to LONGEST-CYCLE

Add a cycle from  to  that is has  vertices. Finding the longest cycle in the  
modified graph will lead to newly added cycle + the longest path from  to .

s t > V
s t

LONGEST-PATH solver

Pre-
Process

G
G′ 

LONGEST-CYCLE 
solvers

Post-
Process

t

O(V ) O(V )

Assumed to be Ω(2V)

Must also be Ω(2V)



Exercise # 4

Use a reduction to prove that  is a lower bound for MIN.Ω(log N )

SORT  

Given a list of N elements, sort them in non-
decreasing order (using comparisons only)

MIN 

Given a list of N elements, find the minimum 
element (using comparisons only)



Exercise # 4

Use a reduction to prove that  is a lower bound for MIN.Ω(log N )

SORT  

Given a list of N elements, sort them in non-
decreasing order (using comparisons only)

MIN 

Given a list of N elements, find the minimum 
element (using comparisons only)

MIN Solver

SORT Solver

Sorted L

L FOR i=0 TO N-1:
L[i] to L[N-1]

Index of the min

SORT reduces to MIN

SWAP(L[i], L[min])

Sorting time =  (time for MIN Solver + swapping time) 

If the complexity of MIN Solver is less than , the sorting complexity becomes 
less than  , which is impossible (the sorting lower bound is ).

N ×

log N
N log N Ω(N log N )


