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Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares =n — 1.

Solution 2 (by the old wise man). If you give me the max of the left half
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You. Now we have 8 problems instead of one!

Wise man. You are a lazy 21st century spoiled kid.
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Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
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Number of compares =n — 1.
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You. Oops! | know what the maximum of an array of size 1 is!

Wise man. ...
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Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares =n — 1.

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(8, 5)
1 3 8 2 4 6 4 5

You. ... | think I got it!

Wise man. ...



Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares =n — 1.

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = 8

You. ...

Wise man. The max is 8
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Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares =n — 1.

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!
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You. But this requires a lot of comparisons.



Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares =n — 1.

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = 8

You. But this requires a lot of comparisons.

. . . n n n n 1 1 1 1
nyn n n 44 4 v
Wise man. This requires sttt +— = n(2 to st +n) < n compares!



Divide & Conquer

Divide and rule

From Wikipedia, the free encyclopedia

Divide and rule (Latin: divide et impera), or divide and
conquer, in politics and sociology is gaining and maintaining
power by breaking up larger concentrations of power into
pieces that individually have less power than the one
implementing the strategy.l¢ation needed]

Tradition attributes the origin of the &
motto to Philip Il of Macedon: Greek:
dlaipel kal BaoiAeue diairei kai
basileue, in ancient Greek: «divide and
rule»



Divide & Conquer

Divide-and-conquer algorithm

From Wikipedia, the free encyclopedia

In computer science, divide and conquer is an algorithm design paradigm based on multi-
branched recursion. A divide-and-conquer algorithm works by recursively breaking down a
problem into two or more sub-problems of the same or related type, until these become
simple enough to be solved directly. The solutions to the sub-problems are then combined to
give a solution to the original problem.

This divide-and-conquer technique is the basis of efficient algorithms for all kinds of
problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g. the
Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down
parsers), and computing the discrete Fourier transform (FFT).!"]
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Basic Plan:

« Divide the array into two halves.
« Sort each half.

« Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2
Divide —

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6
Merge—— 1 3 7 8 2 4 5 6

1 2 3 4 5 6 7 8




Merge Sort Algorithm

Basic Plan:

« Divide the array into two halves.
« Sort each half.
« Merge the two sorted halves.

MERGE—SORT (a[], first, last)

first last
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Basic Plan:

« Divide the array into two halves.
« Sort each half.

« Merge the two sorted halves.

MERGE—SORT (a[], first, last)

if first >= last if the range size <=1
e it is already sorted
first last
v v
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Merge Sort Algorithm

Basic Plan:

« Divide the array into two halves.
« Sort each half.

« Merge the two sorted halves.

MERGE—SORT (a[], first, last)

if first >= last
return

mid = first + (last - first) / 2

MERGE—SORT (a, first, mid) recursively sort the
MERGE—SORT (a, mid + 1, last) left and right halves
first mid last

v v \ 4



Merge Sort Algorithm

Basic Plan:

Divide the array into two halves.
Sort each hallf.
Merge the two sorted halves.

MERGE—SORT (a[], first, last)

if first >= last
return

mid = first + (last - first) / 2

MERGE—SORT (a, first, mid)
MERGE—SORT (a, mid + 1, last)

MERGE (a, first, mid, last)

first mid last

al ]

v v Vv

merge the
sorted halves

assuming a[] is passed
by reference as in C++
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return
mid = first + (last - first) / 2

MERGE—SORT (a, first, mid)
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MERGE (a, first, mid, last)
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Merging Sorted Arrays

MERGE(a[], first, mid, last)

create array result[] of size (last - first + 1)
1= first, Jj = mid+1

i j

v v

first mid mid+1 last
le

v

result] ]



Merging Sorted Arrays

MERGE(a[], first, mid, last)
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MERGE(a[], first, mid, last)

create array result[] of size (last - first + 1)

1= first,

for (k = 0;
if

result] ]

j = mid+1

k < size;

i > mid:

mid

k++):
result|[k]

mid+1

alJ++]

last

no more
elements in the

left half

assuming that
Jj++ performs a
post-increment
as in C++



Merging Sorted Arrays

MERGE(a[], first, mid, last)

create array result[] of size (last - first + 1)
1= first, Jj = mid+1

for (k = 0; k < size; k++):

if i > mid: result[k] = a[j++]
else if j > last: result[k] = a[i++] no more
elements in the
right half
i J
v v
first mid mid+1 last
k
v

result] ]



Merging Sorted Arrays

MERGE(a[], first, mid, last)

create array result[] of size (last -

1= first,
for (k = 0;
i f
else 1if
else 1if
else:
;
v
first
k
A 4

result] ]

j = mid+1

k < size;

i > mid:
j > last:

ali]

<= al[j]:

mid

k++) :
result|[
result|
result|
result[

mid+1

e~

first + 1)
= a[j++]
= a[i++]
= a[i++] compare the
- elements and
= al)tt. copy the smaller
last



Merging Sorted Arrays

MERGE(a[], first, mid, last)

create array result[] of size (last - first + 1)
1= first, Jj = mid+1

for (k = 0; k < size; k++):

if i > mid: result[k] = a[j++]
else if j > last: result[k] = a[i++]
else if a[i] <= a[j]: result[k] = a[i++] we assume the
- . _ array result s
else: result[k] = a[j++] local to the
function and
is deleted once
copy result[] into a[first ... last] — the function
terminates
i J
\ 4 \ 4
first mid mid+1 last
k
\ 4

result] ]
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Merging Sorted Arrays (Analysis)

size = §; size = §,

size = 5| + 5,

Number of Data Moves:
- Worst case: 2(s; +s,) data moves.

- Bestcase: 2(s;+s,) data moves.

Number of Data Compares:
- Worst case: s; + 5, — 1 compares (e.g. merge [1, 3, 5] with [0, 2, 4]).

- Best case: min(s,s,) compares (e.g. merge (7, 8,9, 10] with [0, 2]).

For Merge Sort

O(n) work is needed to merge two sorted arrays of size % each.
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Merge Sort Analysis

Number of Compares: T(n) = T( [%1) +  T( L%J) + n—1
time to sort an time to sort time to sort time to merge
array of size n the left half  the right half two sorted arrays

of size % each
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Merge Sort Analysis

Number of Compares: T(n) = T{( [%1) + T( L%J) + n-—1 if n>1
0 it n<1

For simplicity. We will assume that the array size is a power of two and that the
worst case number of compares to merge the two sorted halves = n:

0 it n<1



Merge Sort Analysis

T(n)

2T(§) + n ifn>1
{() if n<1

Recursion Tree

T(n)

T(Z) T(%)



Merge Sort Analysis

2T(Z) + n ifn>1
T(n)={ 2
0 if n<1

Recursion Tree

T(n)

T(Z) T(%)

T(3) T(3) T(3) T(3)



Merge Sort Analysis

2T(Z) + n ifn>1
T(n)={ 2
0 if n<1

Recursion Tree

T(n)

T(Z) T(%)
T(<) T(<) T(<) T(<)

4 4 4 4

%) 1% T%) TE) TE) TE TE)  TE)



Merge Sort Analysis

2T(Z) + n ifn>1
T(n)={ 2
0 if n<1

Recursion Tree

T(n)

T(Z) T(%)
T(<) T(<) T(<) T(<)

4 4 4 4

%) 1% T%) TE) TE) TE TE)  TE)



Merge Sort Analysis

2T(Z) + n ifn>1
T(n)={ 2
0 if n<1

Recursion Tree time to
merge
T(n)
(%) T(3) n
(%) (%) (%) T(%)

T TE) T T3 T TE T TE)



Merge Sort Analysis

2T(Z) + n ifn>1
T(n)={ 2
0 if n<1

Recursion Tree time to
merge
T(n)
T(3) T(3) n
(%) (%) T(%) (%) 2(4)

%) 1% T%) TE) TE) TE TE)  TE)
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0

it n>1
if n<1

Recursion Tree time to
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T(%) T(%) n
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0

it n>1
if n<1

Recursion Tree time to
T(n) merge

T(5) T(5) n

T(%) T(%) T(%) T(%) n

T(z) T3 T3 TG I3 TE) TG TE) n
T(%) ...... T(%) ...... T(%) ...... T(%) ...... T(%) ...... T(%) ...... T(%) ...... T(%) %(2)
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2T(Z) + n ifn>1
T(n)={ 2 .
0 if n<1

_ Recursion Tree time to
height merge
I(n)
T() T() :
OB T T T3 T3 "
T TS T T T TE) T T "



Merge Sort Analysis

T(n) = { gT(%) T 11122?1 Total Time = 1 log, ()
height R“T(I)l free orge
.
T(%) T(%) "
oy T(%) T(%) T(%) "
T TE) TE) T TG T T T "
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~ %n log,(n) in the best case

Data Moves: ~ 2nlog,(n) in the best, worst and average case

Total amount of work: ®(nlog n) in the best case, worst case and average case.



Merge Sort Analysis

Data Compares:

~ nlog,(n) in the worst case
22() make sure you understand why

~ %n log,(n) in the best case and can do the analysis!

Data Moves: ~ 2nlog,(n) in the best, worst and average case

Total amount of work: ®(n log n) in the best case, worst case and average case.



Merge Sort Analysis

Data Compares:

~ nlog,(n) in the worst case

~ %n log,(n) in the best case

Data Moves: ~ 2nlog,(n) in the best, worst and average case

Total amount of work: ®(nlog n) in the best case, worst case and average case.

Generally: Code that follows the pattern below has a running time of ®(n log n)

if (n == 0): return

foo(n / 2)

foo(n / 2) solve two subproblems of half the size.

linear(n) do a linear amount of work.



Empirical Analysis

Running time estimates:
- Laptop executes 108 compares/second.
- Supercomputer executes 10'2 compares/second.

insertion sort (n2) mergesort (n log n)
home instant 2.8 hours 317 years instant 1 second 18 min
super instant 1 second 1 week instant instant instant

Bottom line. Good algorithms are better than supercomputers.
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Merge Sort Analysis

Definition. A sorting algorithm is in-place if it uses O(log n) extra space.

Memory Analysis. Merge Sort is not in-place:

It requires ®(n) extra space for the merge operation.

It also requires ®(log n) extra memory for the recursion stack.

An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

Sorting a Linked List. Can be done using Merge Sort in ®(n log n) time and using
O(log n) extra memory.

write a C++ program that merges two sorted linked lists

Extra  Without allocating any new node or deleting any node.

headn

Merging two sorted linked lists




Merge Sort History

Introduced by John von Neumann in
1948 as an example of the algorithms

that could be executed on his newly
designed machine (EDVAC)
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Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

MERGE—SORT (a[], first, last)

if last - first + 1 <= CUTOFF:
insertion-Sort(a, first, last)
return

mid = first + (last - first) / 2
MERGE—SORT (a, first, mid)
MERGE—-SORT(a, mid + 1, last)

MERGE (a, first, mid, last)

Too many recursive calls at the leafs
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Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

o Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
o Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
» Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

« Improves the performance in the best case.
« Performs well on partially sorted data and other special types of data.
« Requires extra data compares to identify the sorted runs.



Timsort

o Introduced by Tim Peters in 2002 for use in the
Python Programming Language.

» Bottom-up Merge Sort that exploits natural runs,
uses insertion sort in addition to other
optimizations.

» Performs well on many kinds of real-world data.

A <

v 8 0

<

python android Java Rust swift octave

» Very widely used.

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1lg(N!) comparisons needed, and
as few as N-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous
runs "intelligently". Everything else is complication for speed, and some
hard-won measure of memory efficiency.

https://bugs.python.org/filed4451/timsort.txt
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Analysis Question

How can we merge three sorted arrays into one sorted array?

Solution 1 Solution 2

Give}ll three sorted arrays A, Band C of Use three pointers to implement an

size = each, merge A and B into a new algorithm similar to the one described
array named AB and then merge AB and C. before for merging two sorted arrays.

a4 5 ] c : J' .
a4 s ] c

ABC

ABC

Two comparisons are needed to find

the minimum of three numbers.
Worst case number of compares:

In the worst case, no array will be
T Aand B: ~n++n = = - -
O merge A and b: =n+—-n = =1 completely copied much earlier than

To merge AB and C: %n +%n —n the other two arrays.

s The total worst case number of

2 3
Total = §n+§n = gl’l compares ~ n



Analysis Question

Which requires less comparisons in the worst case: 2-way merge sort or 3-way
merge sort?



Analysis Question

Which requires less comparisons in the worst case: 2-way merge sort or 3-way
merge sort?

Solution.

2-way merge sort requires ~ 7log,(n) compares in the worst case.
3-way merge sort requires in the worst case:

o If solution 1 is used:

s log,(n)

5
~ =nlog,(n) = =n = 1.05nlog,(n
S logs(m) = =2 2(n)
o If solution 2 is used:
lo
~ 2nlog,(n) = 2n 8201 1 26nlog,(n)
log,(3)

2-way merge sort requires less comparisons!
In fact, the number of compares done by 2-way merge sort is optimal.
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Interview Question

How can we shuffle a Linked List in O(n log n) time and using O(log n)
extra memory?

Goal. Rearrange the elements in the linked list such that all possible n! permutations
are equally likely.

Shuffle when sorting

Use Merge Sort. Instead of comparing elements during the merge operation to
decide on which list to copy from, flip a coin to pick randomly a list to copy from.

Note. If shuffling does not have to be in-place, we can copy the elements to an array,

use Knuth's Shuflle to shuffle the array (runs in ®(n)), and then copy the elements
back to the linked list.

for 1 = last down to 1:
j = random integer (0 <= j <= 1)
swap a[i] with a[j]



These slides are partially based on:
https://www.cs.princeton.edu/courses/archive/fall21/cos226/lectures/22Mergesort.pdf
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