
Design & Analysis
 Algorithms

Divide and Conquer & Merge Sort

CS11313 - Spring 2022

of

Ibrahim Albluwi

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5max=? max=?

maximum = max(left, right)

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

You. But how do we find the max of each half? We now have 2 problems instead of one!

Wise man. Do the same!

maximum = max(left, right)

max=? max=?

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

max=? max=?

maximum = max(left, right)

You. Now we have 4 problems instead of one!

Wise man. Do the same!

1 3 8 2 7 6 4 5 max=?max=?max=? max=?

maximum = max(left, right)
1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(left, right)

You. Now we have 8 problems instead of one!

Wise man. You are a lazy 21st century spoiled kid.

1 3 8 2 7 6 4 5

max=? max=? max=? max=? max=? max=? max=? max=?

max=? max=?

1 3 8 2 7 6 4 5 max=?max=?max=? max=?

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(left, right)

You. Oops! I know what the maximum of an array of size 1 is!

Wise man. …

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=? max=?

1 3 8 2 7 6 4 5 max=?max=?max=? max=?

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(left, right)

You. … I think I got it!

Wise man. …

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=? max=?

1 3 8 2 7 6 4 5 max=?max=?max=? max=?

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(left, right)

You. … I think I got it!

Wise man. …

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=? max=?

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(left, right)

You. … I think I got it!

Wise man. …

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=8 max=7

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

maximum = max(8, 5)

You. … I think I got it!

Wise man. …

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=8 max=7

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=8 max=7

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

You. …

Wise man. The max is 8

maximum = 8

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=8 max=7

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

You. But this requires a lot of comparisons.

maximum = 8

Finding the Max

Problem. Given an array of n elements, find the maximum element.

Solution 1. Assume the first element is the max, compare the current max to each
element in the array and update it if a larger element is found.

Number of compares = .n − 1

Solution 2 (by the old wise man). If you give me the max of the left half
and the max of the right half, I can tell you the max of the whole array!

1 3 8 2 7 6 4 5

max=1 max=3 max=8 max=2 max=7 max=6 max=4 max=5

max=8 max=7

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

1 3 8 2 7 6 4 5

max=5max=7max=3 max=8

You. But this requires a lot of comparisons.
Wise man. This requires compares!n

2 + n
4 + n

8 +… + n
n ≤ n(1

2 + 1
4 + 1

8 +… + 1
n) ≤ n

maximum = 8

Divide & Conquer

Divide & Conquer

Divide & Conquer

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2
Divide

3 8 7 1 4 5 6 2

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

Divide 3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

Divide
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 Merge

Divide

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 Merge

Divide

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7
Merge

1 3 7 8

Divide

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6
Merge

1 3 7 8

Divide

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6
Merge

1 3 7 8 2 4 5 6

Divide

Merge Sort

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6

Merge 1 3 7 8 2 4 5 6

1 2 3 4 5 6 7 8

Divide

Merge Sort

Merge Sort Algorithm

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

 MERGE-SORT(a[], first, last)

first

a[]

last

Merge Sort Algorithm

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

 if first >= last
 return

first

a[]

last

if the range size <= 1
it is already sorted

 MERGE-SORT(a[], first, last)

Merge Sort Algorithm

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

 if first >= last
 return

 mid = first + (last - first) / 2

first mid

a[]

last

 MERGE-SORT(a[], first, last)

Merge Sort Algorithm

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

first mid

a[]

last

recursively sort the
left and right halves

 MERGE-SORT(a[], first, last)

Merge Sort Algorithm

Basic Plan:

• Divide the array into two halves.

• Sort each half.

• Merge the two sorted halves.

 MERGE-SORT(a[], first, last)

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

first mid

a[]

last

merge the
sorted halves

assuming a[] is passed
by reference as in C++

Merge Sort Trace

3 8 7 1 4 5 6 2
F L

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

3 8 7 1 4 5 6 2
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

3 8 7 1 4 5 6 2
F L

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last) 3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
mF L

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last) 3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2

mF L

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last) 3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
F L

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

F Lm

3 8 7 1 4 5 6 2

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
FL

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

F Lm
3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
F Lm

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

F Lm
3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
FL

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

F Lm
3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
F Lm

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
F Lm

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
mF L

F Lm
3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
F L

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
Fm L

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

Fm L

3 8 7 1 4 5 6 2

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

Fm L

3 8 7 1 4 5 6 2
FL

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
Fm L

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Fm L
3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

3 8 7 1 4 5 6 2
FL

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Fm L
3 8 7 1 4 5 6 2

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 7 1 4 5 6 2
Fm L

mF L

F Lm
3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

3 8 1 7 4 5 6 2
Fm L

mF L

F Lm
3 8 1 7 4 5 6 2

3 8 1 7 4 5 6 2

Merge Sort Trace

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

mF L

F Lm
3 8 1 7 4 5 6 2

3 8 1 7 4 5 6 2

Merge Sort Trace

mF L

1 3 7 8 4 5 6 2

1 3 7 8 4 5 6 2

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

F Lm
 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last) 1 3 7 8 4 5 6 2

Merge Sort Trace

1 3 7 8 4 5 6 2

1 3 7 8 4 5 6 2
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

1 3 7 8 4 5 6 2

F Lm

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6

1 3 7 8 2 4 5 6

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last) 1 3 7 8 4 5 6 2

Merge Sort Trace

1 3 7 8 2 4 5 6

1 3 7 8 2 4 5 6
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

1 3 7 8 2 4 5 6
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

1 2 3 4 5 6 7 8
F Lm

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Merge Sort Trace

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 7 1 4 5 6 2

3 8 1 7 4 5 2 6

1 3 7 8 2 4 5 6

1 2 3 4 5 6 7 8

 MERGE-SORT(a[], first, last)

 if first >= last
 return

 mid = first + (last - first) / 2

 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

Merging

Sorted Arrays

Merging Sorted Arrays

0 1 1 3 3 4 5

Merged sorted array

1 2 2 4 5 6 8

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8
Done!

0 1 1 1 2 2 3 3 4 4 5 5 6 6

Merging Sorted Arrays

Merged sorted array

0 1 1 3 3 4 5 1 2 2 4 5 6 8
Done! Done!

0 1 1 1 2 2 3 3 4 4 5 5 6 8

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

Merging Sorted Arrays

first mid mid+1 last

k

result[]

i j

 MERGE(a[], first, mid, last)

Merging Sorted Arrays

first mid mid+1 last

i j

k

result[]

 MERGE(a[], first, mid, last)

we know exactly
how many
elements will
be copied

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

 for (k = 0; k < size; k++):

Merging Sorted Arrays

first mid mid+1 last

i j

k

result[]

 MERGE(a[], first, mid, last)

no more
elements in the
left half

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

 for (k = 0; k < size; k++):
 if i > mid: result[k] = a[j++]

assuming that
j++ performs a
post-increment
as in C++

Merging Sorted Arrays

first mid mid+1 last

i j

k

result[]

 MERGE(a[], first, mid, last)

no more
elements in the
right half

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

 for (k = 0; k < size; k++):
 if i > mid: result[k] = a[j++]
 else if j > last: result[k] = a[i++]

Merging Sorted Arrays

first mid mid+1 last

i j

k

result[]

 MERGE(a[], first, mid, last)

compare the
elements and
copy the smaller

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

 for (k = 0; k < size; k++):
 if i > mid: result[k] = a[j++]
 else if j > last: result[k] = a[i++]
 else if a[i] <= a[j]: result[k] = a[i++]
 else: result[k] = a[j++]

 create array result[] of size (last – first + 1)
 i = first, j = mid+1

 for (k = 0; k < size; k++):
 if i > mid: result[k] = a[j++]
 else if j > last: result[k] = a[i++]
 else if a[i] <= a[j]: result[k] = a[i++]
 else: result[k] = a[j++]

 copy result[] into a[first ... last]

Merging Sorted Arrays

first mid mid+1 last

i j

k

result[]

 MERGE(a[], first, mid, last)

we assume the
array result is
local to the
function and
is deleted once
the function
terminates

Number of Data Moves:

size = s1 + s2
Merged sorted array

size = s1
sorted array

size = s2
sorted array

Merging Sorted Arrays (Analysis)

Number of Data Moves:

• Worst case: data moves.

• Best case: data moves.

2(s1 + s2)
2(s1 + s2)

Merging Sorted Arrays (Analysis)

all elements in both subarrays have
to be copied to the merged array
and then back to the original array

size = s1 + s2
Merged sorted array

size = s1
sorted array

size = s2
sorted array

Number of Data Compares:

Merging Sorted Arrays (Analysis)

Number of Data Moves:

• Worst case: data moves.

• Best case: data moves.

2(s1 + s2)
2(s1 + s2)

size = s1 + s2
Merged sorted array

size = s1
sorted array

size = s2
sorted array

Number of Data Compares:

• Worst case: compares (e.g. merge [1, 3, 5] with [0, 2, 4]).

• Best case: compares (e.g. merge [7, 8, 9, 10] with [0, 2]).

s1 + s2 − 1
min(s1, s2)

Merging Sorted Arrays (Analysis)

Number of Data Moves:

• Worst case: data moves.

• Best case: data moves.

2(s1 + s2)
2(s1 + s2)

size = s1 + s2
Merged sorted array

size = s1
sorted array

size = s2
sorted array

For Merge Sort
 work is needed to merge two sorted arrays of size each.Θ(n) n

2
(considering data compares and moves)

Merging Sorted Arrays (Analysis)

Number of Data Compares:

• Worst case: compares (e.g. merge [1, 3, 5] with [0, 2, 4]).

• Best case: compares (e.g. merge [7, 8, 9, 10] with [0, 2]).

s1 + s2 − 1
min(s1, s2)

Number of Data Moves:

• Worst case: data moves.

• Best case: data moves.

2(s1 + s2)
2(s1 + s2)

size = s1 + s2
Merged sorted array

size = s1
sorted array

size = s2
sorted array

Merge Sort Analysis

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1Number of Compares:
(in the worst case)

Merge Sort Analysis

time to sort an
array of size n

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1Number of Compares:
(in the worst case)

Merge Sort Analysis

time to sort
the left half

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1Number of Compares:
(in the worst case)

time to sort an
array of size n

Merge Sort Analysis

time to sort
the right half

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1Number of Compares:
(in the worst case)

time to sort
the left half

time to sort an
array of size n

Merge Sort Analysis

time to merge
two sorted arrays
of size eachn

2

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1Number of Compares:
(in the worst case)

time to sort
the right half

time to sort
the left half

time to sort an
array of size n

Merge Sort Analysis

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1

= 0

if n > 1

if n ≤ 1

Number of Compares:
(in the worst case)

Merge Sort Analysis

Running Time: T(n) = T(⌈ n
2 ⌉) + T(⌊ n

2 ⌋) + n − 1

= 0

if n > 1

if n ≤ 1

Number of Compares:
(in the worst case)

For simplicity. We will assume that the array size is a power of two and that the
worst case number of compares to merge the two sorted halves = n:

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

(These assumptions do not affect the correctness of the analysis)

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

time to
merge

n

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

time to
merge

n

2(n
2)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

time to
merge

n

4(n
4)

Recursion Tree

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

n

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

time to
merge

n

n

Recursion Tree

n
2 (2)

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

n

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

log2(n)

height time to
merge

n

Recursion Tree

n

n

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

n

Merge Sort Analysis

T(n)

T(n
2) T(n

2)

T(n
4) T(n

4) T(n
4) T(n

4)

T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8) T(n
8) T(n

8)

T(n
n) T(n

n) T(n
n) T(n

n) T(n
n) T(n

n) T(n
n)T(n

n)

log2(n)

height time to
merge

n

Total Time = n log2(n)

Recursion Tree

n

n

n

Running Time: 2T(n
2) + n

0
if n > 1
if n ≤ 1

T(n) ={

Data Compares:

• in the worst case

• in the best case

∼ n log2(n)
∼ 1

2 n log2(n)

Merge Sort Analysis

Total amount of work: in the best case, worst case and average case.Θ(n log n)

Data Moves: in the best, worst and average case∼ 2n log2(n)

Data Compares:

• in the worst case

• in the best case

∼ n log2(n)
∼ 1

2 n log2(n)

Merge Sort Analysis

Total amount of work: in the best case, worst case and average case.Θ(n log n)

Data Moves: in the best, worst and average case∼ 2n log2(n)

make sure you understand why
and can do the analysis!

Data Compares:

• in the worst case

• in the best case

∼ n log2(n)
∼ 1

2 n log2(n)

Merge Sort Analysis

 if (n == 0): return

 foo(n / 2)
 foo(n / 2)

 linear(n)

 foo(n)

solve two subproblems of half the size.

do a linear amount of work.

Generally: Code that follows the pattern below has a running time of Θ(n log n)

Total amount of work: in the best case, worst case and average case.Θ(n log n)

Data Moves: in the best, worst and average case∼ 2n log2(n)

Empirical Analysis

By Kevin Wayne

Merge Sort Analysis

Definition. A sorting algorithm is in-place if it uses extra space. O(log n)

Merge Sort Analysis

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

Merge Sort Analysis

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

1 4 5 6 2 3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

head

Merge Sort Analysis

1

4 5 6 2 3 3 7

Merging two sorted linked lists

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

head

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3

head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3

head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3 4

head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3 4 5

head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3 4 5 6

head

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3 4 5 6

head

7

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Merge Sort Analysis

1

4 5 6

2

3 3 7

Merging two sorted linked lists

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

1

result

2

3 3 4 5 6

head

7

Merge Sort Analysis

1 4 5 62 3 3 7

Merging two sorted linked lists

Extra

write a C++ program that merges two sorted linked lists
without allocating any new node or deleting any node.

Sorting a Linked List. Can be done using Merge Sort in time and using
 extra memory.

Θ(n log n)
O(log n)

Definition. A sorting algorithm is in-place if it uses extra space.

Memory Analysis. Merge Sort is not in-place:

• It requires extra space for the merge operation.
(when merging the two halves of size each)

• It also requires extra memory for the recursion stack.

• An in-place implementation of Merge Sort is possible but difficult and
probably not worth it!

O(log n)

Θ(n)
n
2

Θ(log n)

head

Merge Sort History

Introduced by John von Neumann in
1948 as an example of the algorithms
that could be executed on his newly
designed machine (EDVAC)

The image to the right is John von
Neumann's handwritten code of merge

sort in the manuscript titled "A First Draft
of a Report on the EDVAC" (as reported by

Knuth in the 1970 report titled "Von
Neumann's First Computer Program")

Optimizations

 if last - first + 1 <= CUTOFF:
 insertion-Sort(a, first, last)
 return

 mid = first + (last - first) / 2
 MERGE-SORT(a, first, mid)
 MERGE-SORT(a, mid + 1, last)

 MERGE(a, first, mid, last)

 MERGE-SORT(a[], first, last)

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Too many recursive calls at the leafs

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

1 3 8 2 7 6 4 5 1 3 8 2 7 6 4 5

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.

1 3 8 2 7 6 4 5 1 3 8 2 7 6 4 5

1 3 2 8 6 7 4 5 1 3 2 8 6 7 4 5

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.

1 2 3 8 4 5 6 7 1 2 3 8 4 5 6 7

1 3 8 2 7 6 4 5 1 3 8 2 7 6 4 5

1 3 2 8 6 7 4 5 1 3 2 8 6 7 4 5

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 2 3 8 4 5 6 7 1 2 3 8 4 5 6 7

1 3 8 2 7 6 4 5 1 3 8 2 7 6 4 5

1 3 2 8 6 7 4 5 1 3 2 8 6 7 4 5

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

first run

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

first run second run

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

first run second run

 1 2 3 4 6 8 9

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9 1 3 5 8

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9 1 3 5 8

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9 1 3 5 8

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9 1 3 5 8 2 4 5 6 7

Optimizations

Use insertion sort for small Arrays. Avoids spending a lot of time on many expensive
recursive calls at the lower levels of the recursion tree.

Avoid recursion altogether! (Bottom-up Merge Sort)

• Iteratively merge all subarrays of size 1, to get sorted arrays of size 2 each.
• Iteratively merge all the sorted arrays of size 2 to get sorted arrays of size 4.
• Repeat for arrays size 4, 8, 16, etc.

Exploit Natural Runs. Do not sort subarrays that are already sorted.

1 3 8 9 2 4 6 5 1 3 8 2 7 4 5 6

 1 2 3 4 6 8 9 1 3 5 8 2 4 5 6 7

• Improves the performance in the best case.
• Performs well on partially sorted data and other special types of data.
• Requires extra data compares to identify the sorted runs.

• Introduced by Tim Peters in 2002 for use in the
Python Programming Language.

• Bottom-up Merge Sort that exploits natural runs,
uses insertion sort in addition to other
optimizations.

• Performs well on many kinds of real-world data.

• Very widely used.

Timsort

https://bugs.python.org/file4451/timsort.txt

octaveandroid swiftRustJavapython V8

How can we merge three sorted arrays into one sorted array?

Analysis Question

How can we merge three sorted arrays into one sorted array?

Analysis Question

Solution 1 Solution 2

Given three sorted arrays A, B and C of
size each, merge A and B into a new
array named AB and then merge AB and C.

Worst case number of compares:

• To merge A and B:

• To merge AB and C:

• Total =

n
3

1
3 n+ 1

3 n = 2
3 n

2
3 n+ 1

3 n = n
2
3 n+ 3

3 n = 5
3 n

AB

ABC

A B C

Use three pointers to implement an
algorithm similar to the one described
before for merging two sorted arrays.

• Two comparisons are needed to find
the minimum of three numbers.

• In the worst case, no array will be
completely copied much earlier than
the other two arrays.

• The total worst case number of
compares ∼ 2n

A B C

ABC

i j k

Which requires less comparisons in the worst case: 2-way merge sort or 3-way
merge sort?

Analysis Question

Which requires less comparisons in the worst case: 2-way merge sort or 3-way
merge sort?

Analysis Question

Solution.

• 2-way merge sort requires compares in the worst case.

• 3-way merge sort requires in the worst case:

• If solution 1 is used:

• If solution 2 is used:

2-way merge sort requires less comparisons!
In fact, the number of compares done by 2-way merge sort is optimal.

∼ n log2(n)

∼ 5
3 n log3(n) = 5

3 n
log2(n)
log2(3)

= 1.05n log2(n)

∼ 2n log3(n) = 2n
log2(n)
log2(3)

≈ 1.26n log2(n)

How can we shuffle a Linked List in time and using
extra memory?

Goal. Rearrange the elements in the linked list such that all possible n! permutations
are equally likely.

O(n log n) O(log n)

Interview Question

Shuffle when sorting
Use Merge Sort. Instead of comparing elements during the merge operation to
decide on which list to copy from, flip a coin to pick randomly a list to copy from.

Interview Question

How can we shuffle a Linked List in time and using
extra memory?

Goal. Rearrange the elements in the linked list such that all possible n! permutations
are equally likely.

O(n log n) O(log n)

Shuffle when sorting
Use Merge Sort. Instead of comparing elements during the merge operation to
decide on which list to copy from, flip a coin to pick randomly a list to copy from.

Interview Question

How can we shuffle a Linked List in time and using
extra memory?

Goal. Rearrange the elements in the linked list such that all possible n! permutations
are equally likely.

O(n log n) O(log n)

Note. If shuffling does not have to be in-place, we can copy the elements to an array,
use Knuth's Shuffle to shuffle the array (runs in), and then copy the elements
back to the linked list.

Θ(n)

 for i = last down to 1:
 j = random integer (0 <= j <= i)
 swap a[i] with a[j]

These slides are partially based on:
https://www.cs.princeton.edu/courses/archive/fall21/cos226/lectures/22Mergesort.pdf

Images:
https://static01.nyt.com/images/2012/05/06/books/review/06POUNDSTONE/06POUNDSTONE-
superJumbo.jpg?quality=75&auto=webp
https://miro.medium.com/max/1400/0*Vm6RJ1W0oroOuNEw.jpg
http://public.callutheran.edu/~reinhart/CSC521MSCS/Week5/KnuthVonNeumann.pdf
https://image.shutterstock.com/image-vector/cartoon-character-old-wise-
man-260nw-600200147.jpg

https://www.cs.princeton.edu/courses/archive/fall21/cos226/lectures/22Mergesort.pdf
https://static01.nyt.com/images/2012/05/06/books/review/06POUNDSTONE/06POUNDSTONE-superJumbo.jpg?quality=75&auto=webp
https://static01.nyt.com/images/2012/05/06/books/review/06POUNDSTONE/06POUNDSTONE-superJumbo.jpg?quality=75&auto=webp
https://miro.medium.com/max/1400/0*Vm6RJ1W0oroOuNEw.jpg
http://public.callutheran.edu/~reinhart/CSC521MSCS/Week5/KnuthVonNeumann.pdf
https://image.shutterstock.com/image-vector/cartoon-character-old-wise-man-260nw-600200147.jpg
https://image.shutterstock.com/image-vector/cartoon-character-old-wise-man-260nw-600200147.jpg

