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Matrix Multiplication Review. Given two matrices  and  of sizes  and  respectively: 
•  and  must be equal for the multiplication to be valid. 
• The result of  is a matrix of size . 

 
Example.  

     

     
     
     
     

Example. Multiplying the above two matrices that are of sizes  and  requires filling  
(i.e. ) cells in the result matrix, each requiring  (i.e. ) multiplications, which makes the 
total  operations. 

 
Multiplying Multiple Matrices. Consider the following three matrices that we would like to multiply.  

These matrices can be multiplied in two different ways:   or   

Method 1.   

          requires  operations and produces a matrix  of size . 

    requires  operations and produces a matrix of size  

     operations (counting only multiplications between numbers) 

Method 2.   

          requires  operations and produces a matrix  of size . 

    requires  operations and produces a matrix of size  

     operations (counting only multiplications between numbers) 

It is clear that the order of multiplication affects the number of performed operations. 

A B d0 × d1 d2 × d3

d1 d2

A ∙ B d0 × d3

a11 a12
a21 a22
a31 a32
a41 a42

∙ [b11 b12 b13 b14

b21 b22 b23 b24] =

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

c11 = (a11 × b11) + (a12 × b21)
c12 = (a11 × b12) + (a12 × b22)
c11 = (a11 × b13) + (a11 × b23)
c11 = (a11 × b14) + (a11 × b24)

4 × 2 2 × 4 4 × 4
d0 × d3 2 d1 or d2

4 × 4 × 2 = 32

(A ∙ B ) ∙ C A ∙ (B ∙ C )

(A ∙ B ) ∙ C

(A ∙ B ) 8 × 2 × 8 = 128 K [8 × 8]

( K ) ∙ C 8 × 8 × 2 = 128 [8 × 2]

Total = 128 + 128 = 256

A ∙ (B ∙ C )

(B ∙ C ) 2 × 8 × 2 = 32 K [2 × 2]

A ∙ ( K ) 8 × 2 × 2 = 32 [8 × 2]

Total = 32 + 32 = 64

  4 × 2   2 × 4   4 × 4

A B C
[8 × 2] [2 × 8] [8 × 2]

∙∙

Cost of Matrix Multiplication. Given two matrices  and  of sizes  and  respectively,  
the number of operations performed is .

A B d0 × d1 d2 × d3

d0 × (d1 = d2) × d3



Another Example. Consider the following three matrices that we would like to multiply.  

Do the Math. Show that  requires  operations while  requires  operations. 

 

Problem Statement. 

   Matrix Chain Multiplication. Given a chain of matrices to be multiplied: 

         Find the parenthesization that requires the minimum number of operations. 

Brute Force Solution. Compute the number of operations for all possible parenthesizations and pick 
the minimum. The number of possible parenthesizations is exponential (it is called the Catalan 

Number, which is ). 

Definition.  
Given the matrix chain   , let  be the minimum number of operations that 
can be performed when multiplying the matrices  (inclusive). Hence: 

•  is the main problem we would like to solve. 

•  etc. all have a solution of 0. 
(These represent subproblems involving only one matrix in the chain) 

 

All Possible Parenthesizations. The possible parenthesizations for the matrix chain  : 

             
                       

Observation. The optimal solution is the minimum between the cost of three possible decisions: 

1. Multiply  with the result of . This covers the first two parenthesizations. 
2. Multiply the result of  with the result of . 
3. Multiply the result of  with . This covers the last two parenthesizations. 

These three decisions represent the three possible final multiplications. Each decision involves finding 
the solution for two subproblems, each involving part of the matrix chain.  

(A ∙ B ) ∙ C 2n A ∙ (B ∙ C ) 2n2

∼
4n

π n n

A1 ∙ A2 ∙ A3 ∙ … ∙ An opt(i , j )
i ⟶ j

opt(1, n)

opt(1, 1), opt(2, 2), opt(3, 3),

A1 ∙ A2 ∙ A3 ∙ A4

A1 ∙ (A2 ∙ (A3 ∙ A4)) (A1 ∙ A2) ∙ (A3 ∙ A4) ((A1 ∙ A2) ∙ A3) ∙ A4

A1 ∙ ((A2 ∙ A3) ∙ A4) (A1 ∙ (A2 ∙ A3)) ∙ A4

A1 (A1 ∙ A2 ∙ A3)
(A1 ∙ A2) (A3 ∙ A4)
(A1 ∙ A2 ∙ A3) A4

B C∙A ∙
[n × 1] [1 × n][1 × n]

A2 A3∙A1 ∙
[d0 × d1]

∙ . . . ∙ An
[d1 × d2] [d2 × d3] [dn−1 × dn]

∙
∙ ∙

∙
∙



In other words, we could write: 
  cost of multiplying  with , 
               cost of multiplying  with , 
     cost of multiplying  with       ). 

In General. Given a chain of  matrices to multiply, there are  possible split points (i.e.  
possible decisions to take on what the final multiplication should be). 
 
    
     
   
  … 
   

For each split point, there are two subproblems to solve and a final multiplication to be performed 
between the resulting matrix on the left of the split point and the resulting matrix on the right of the 
split point. 
 
Observation. 

 

 

 
Optimal Substructure. Assuming    and  . 

Using this optimal substructure on : 

  , 
               , 
           ). 

opt(1, 4) = min( opt(1, 1) + opt(2, 4) + A1 (A1 ∙ A2 ∙ A3)
opt(1, 2) + opt(3, 4) + (A1 ∙ A2) (A3 ∙ A4)
opt(1, 3) + opt(4, 4) + (A1 ∙ A2 ∙ A3) A4

n n − 1 n − 1

A1 ∙ (A2 ∙ A3 ∙ A4 ∙ . . . ∙ An−1 ∙ An)
(A1 ∙ A2) ∙ (A3 ∙ A4 ∙ . . . ∙ An−1 ∙ An)
(A1 ∙ A2 ∙ A3) ∙ (A4 ∙ . . . ∙ An−1 ∙ An)

(A1 ∙ A2 ∙ A3 ∙ A4 ∙ . . . ∙ An−1) ∙ An

0 ≤ i ≤ n i ≤ j ≤ n

A1 ∙ A2 ∙ A3 ∙ A4

opt(1, 4) = min( opt(1, 1) + opt(2, 4) + d0 × d1 × d4

opt(1, 2) + opt(3, 4) + d0 × d2 × d4

opt(1, 3) + opt(4, 4) + d0 × d3 × d4

∙
∙

∙

∙

opt(i, j ) = {
0 if i = j or i = 0
min

i ≤ k < j
{opt(i, k) + opt(k + 1, j ) + di−1 × dk × dj} otherwise

Ai+1 Ai+2∙Ai ∙
[di−1 × di]

∙. . . ∙ Ak
[di × di+1] [di+1 × di+2] [dk−1 × dk]

Consider the following parenthesization:

• Regardless of how matrices i to k are multiplied, the resulting matrix must be of size   

• Regardless of how matrices k+1 to j are multiplied, the resulting matrix must be of size  

Multiplying the result of    with the result of   requires  operations. 

[di−1 × dk]

[dk × dj]

(Ai ⟶ Ak) (Ak+1 ⟶ Ai) di−1 × dk × dj

)( ∙ )( Ak+2∙Ak+1 . . . ∙ Aj∙
[dk × dk+1] [dk+1 × dk+2] [dk−1 × dj]



A Partial Trace. The highlighted subproblems are overlapping. 

 

Bottom-up Solution. 
We need to create a 2D array for  
storing the results of subproblems to  
avoid computing the more than once. 

Note that: 
• The diagonal starting at column 0  

represents subproblems of size 0 matrices,  
• The diagonal starting at column 1  

represents subproblems of size 1 matrix,  
• The diagonal starting at column 2 

represents subproblems of size 2 matrices, 
• etc. 

Therefore, we will fill the diagonals one by one (smallest subproblems followed by larger subproblems) 

We assume that the input to the problem is the dimensions  , which are stored in d[0], 
d[1], …, d[n], where d[] is a 1D array of size n+1. 

d0, d1, …, dn

A1 A2 A3 A4

0 0 0 0

A1 0

A2 0

A3 0

A4 0

 is the  
main problem to 
be solved

opt(1, 4)

the base cases are 
on the main 
diagonal (i = j )these are invalid 

subproblems (i > j )



 

 

Example Trace. 
Assume that d[] = {10, 1, 2, 3, 4}:  

   

SOLVE(i, j, d[], SPLIT[][], RESULT[][]):

IF i >= j: 
    RESULT[i][j] = 0 
    RETURN 

RESULT[i][j] =  
FOR  k = i  to  j-1:  
    cost = RESULT[i][k] + OPT[k+1][j] + (d[i-1] * d[k] * d[j]) 
    IF cost < RESULT[i][j]: 
       RESULT[i][j] = cost 
       SPLIT[i][j] = k

∞

MCM(d[], n):

Create array RESULT[n+1][n+1]  
Create array SPLIT[n+1][n+1]  

FOR every diagonal diag = 0  to  n-1: 
    FOR every row i = 1  to  n - diag: 
        j = i + diag 
        SOLVE(i, j, d, SPLIT, RESULT) 

RETURN RESULT[1][n]

stores at SPLIT[i][j] the optimal 
split point for opt(i, j)

solve opt(i, j)

A1 A2 A3 A4

0 0 0 0

A1 0 20 36 58

A2 0 6 18

A3 0 24

A4 0

A1 A2 A3 A4

A1 1 1 1

A2 2 3

A3 3

A4

OPT[][] SPLIT[][]

∙ A2 A3A1 ∙
[10 × 1]

∙ A4
[1 × 2] [2 × 3] [3 × 4]



RESULT[1][2] = d[0] x d[1] x d[2] + opt[1][1] + opt[2][2] = 20 + 0 + 0 = 20 
 SPLIT[1][2] = 1 

RESULT[2][3] = d[1] x d[2] x d[3] + opt[2][2] + opt[3][3] = 6 + 0 + 0 = 6    
 SPLIT[1][2] = 2 

RESULT[3][4] = d[2] x d[3] x d[4] + opt[3][3] + opt[4][4] = 24 + 0 + 0 = 24 
 SPLIT[1][2] = 2 

RESULT[1][3] = min( d[0] x d[1] x d[3] + opt[1][1] + opt[2][3] = 30 +  0 + 6 = 36, 
                    d[0] x d[2] x d[3] + opt[1][2] + opt[3][3] = 60 + 20 + 0 = 80) 
             = 36 
 SPLIT[1][3] = 1 

RESULT[2][4] = min( d[1] x d[2] x d[4] + opt[2][2] + opt[3][4] =  8 + 0 + 24 = 36, 
                    d[1] x d[3] x d[4] + opt[2][3] + opt[4][4] = 12 + 6 + 0  = 18) 
             = 18 
 SPLIT[2][4] = 3 

RESULT[1][4] = min(d[0] x d[1] x d[4] + opt[1][1] + opt[2][4] = 40 + 0 + 18  = 58, 
                   d[0] x d[2] x d[4] + opt[1][2] + opt[3][4] = 80 + 20 + 24 = 124,  
                   d[0] x d[3] x d[4] + opt[1][3] + opt[4][4] = 120 + 36 + 0 = 156) 
             = 58 
 SPLIT[1][4] = 1 

Running Time Analysis 

Counting how many times cost is computed in function SOLVE: 

There are n diagonals: 
  
  
  
  
  

Total =  

Diagonal 0 : n cells × 0 computations
Diagonal 1 : n − 1 cells × 1 computation
Diagonal 2 : n − 2 cells × 2 computations
Diagonal 3 : n − 3 cells × 3 computations
Diagonal n − 1 : n − (n − 1) cells × n − 1 computations

n−1

∑
i=0

(n − i ) × i =
n−1

∑
i=0

ni − i2 = n
n−1

∑
i=0

i −
n−1

∑
i=1

i2 = n
2 × n(n − 1) − n

6 (n + 1)(2n + 1) = Θ(n3)



 
Printing the Optimal Parenthesization. 
 

A1 A2 A3 A4

A1 1 1 1

A2 2 3

A3 3

A4

PRINT(SPLIT[][], i, j):

IF (i == j): 
  DISPLAY "A" + i 
  RETURN 

DISPLAY "(" 

PRINT(SPLIT, i, SPLIT[i][j]) 
PRINT(SPLIT, SPLIT[i][j]+1, j) 

DISPLAY ")"

SPLIT[][]


