Matrix Chain Multiplication

Matrix Multiplication Review. Given two matrices A and B of sizes $d_{0} \times d_{1}$ and $d_{2} \times d_{3}$ respectively:

- d_{1} and d_{2} must be equal for the multiplication to be valid.
- The result of $A \bullet B$ is a matrix of size $d_{0} \times d_{3}$.

Example.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{array}\right] \cdot\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}
\end{array}\right]} \\
& 4 \times 2 \\
& 2 \times 4 \\
& 4 \times 4
\end{aligned}
$$

Cost of Matrix Multiplication. Given two matrices A and B of sizes $d_{0} \times d_{1}$ and $d_{2} \times d_{3}$ respectively, the number of operations performed is $d_{0} \times\left(d_{1}=d_{2}\right) \times d_{3}$.

Example. Multiplying the above two matrices that are of sizes 4×2 and 2×4 requires filling 4×4 (i.e. $d_{0} \times d_{3}$) cells in the result matrix, each requiring 2 (i.e. d_{1} or d_{2}) multiplications, which makes the total $4 \times 4 \times 2=32$ operations.

Multiplying Multiple Matrices. Consider the following three matrices that we would like to multiply.

$$
\underset{[8 \times 2]}{A} \cdot \underset{[2 \times 8]}{B} \cdot \underset{[8 \times 2]}{C}
$$

These matrices can be multiplied in two different ways: $(A \cdot B) \cdot C$ or $A \bullet(B \cdot C)$

Method 1. $(A \cdot B) \cdot C$
$(A \cdot B)$ requires $8 \times 2 \times 8=128$ operations and produces a matrix K of size $[8 \times 8]$.
$\left(\begin{array}{ll}K\end{array}\right) \cdot C$ requires $8 \times 8 \times 2=128$ operations and produces a matrix of size $[8 \times 2]$
Total $=128+128=256$ operations (counting only multiplications between numbers)

Method 2. $A \cdot(B \cdot C)$
$(B \cdot C)$ requires $2 \times 8 \times 2=32$ operations and produces a matrix K of size $[2 \times 2]$.
$A \bullet(K)$ requires $8 \times 2 \times 2=32$ operations and produces a matrix of size $[8 \times 2]$ Total $=32+32=64$ operations (counting only multiplications between numbers)

It is clear that the order of multiplication affects the number of performed operations.

Another Example. Consider the following three matrices that we would like to multiply.

$$
\underset{[1 \times n]}{A} \cdot \underset{[n \times 1]}{B} \quad \stackrel{C}{[1 \times n]}
$$

Do the Math. Show that $(A \cdot B) \cdot C$ requires $2 n$ operations while $A \bullet(B \cdot C)$ requires $2 n^{2}$ operations.

Problem Statement.

Matrix Chain Multiplication. Given a chain of matrices to be multiplied:

$$
\begin{array}{cccccc}
A_{1} \cdot A_{2} & \bullet & A_{3} & \bullet & \cdots & \bullet
\end{array} A_{n}
$$

Find the parenthesization that requires the minimum number of operations.

Brute Force Solution. Compute the number of operations for all possible parenthesizations and pick the minimum. The number of possible parenthesizations is exponential (it is called the Catalan Number, which is $\sim \frac{4^{n}}{\pi n \sqrt{n}}$.

Definition.

Given the matrix chain $A_{1} \bullet A_{2} \bullet A_{3} \bullet \ldots \bullet A_{n}$, let $\operatorname{opt}(i, j)$ be the minimum number of operations that can be performed when multiplying the matrices $i \longrightarrow j$ (inclusive). Hence:

- $\operatorname{opt}(1, n)$ is the main problem we would like to solve.
- $\operatorname{opt}(1,1), \operatorname{opt}(2,2), \operatorname{opt}(3,3)$, etc. all have a solution of $\mathbf{0}$.
(These represent subproblems involving only one matrix in the chain)

All Possible Parenthesizations. The possible parenthesizations for the matrix chain $A_{1} \bullet A_{2} \bullet A_{3} \bullet A_{4}$:
$A_{1} \bullet\left(A_{2}\right.$ • $\left.\left(A_{3} \cdot A_{4}\right)\right)$
$\left(A_{1} \bullet A_{2}\right) \bullet\left(A_{3} \bullet A_{4}\right)$
$\left(\left(A_{1} \cdot A_{2}\right) \bullet A_{3}\right) \bullet A_{4}$
$A_{1} \bullet\left(\left(A_{2} \cdot A_{3}\right) \cdot A_{4}\right)$
$\left(A_{1} \cdot\left(A_{2} \bullet A_{3}\right)\right) \bullet A_{4}$

Observation. The optimal solution is the minimum between the cost of three possible decisions:

1. Multiply A_{1} with the result of $\left(A_{1} \bullet A_{2} \bullet A_{3}\right)$. This covers the first two parenthesizations.
2. Multiply the result of $\left(A_{1} \bullet A_{2}\right)$ with the result of $\left(A_{3} \bullet A_{4}\right)$.
3. Multiply the result of $\left(A_{1} \bullet A_{2} \bullet A_{3}\right)$ with A_{4}. This covers the last two parenthesizations.

These three decisions represent the three possible final multiplications. Each decision involves finding the solution for two subproblems, each involving part of the matrix chain.

In other words, we could write:

$$
\begin{aligned}
\operatorname{opt}(1,4)=\min (\quad & \operatorname{opt}(1,1)+\operatorname{opt}(2,4)+\operatorname{cost} \text { of multiplying } A_{1} \text { with }\left(A_{1} \bullet A_{2} \bullet A_{3}\right), \\
& \operatorname{opt}(1,2)+\operatorname{opt}(3,4)+\text { cost of multiplying }\left(A_{1} \cdot A_{2}\right) \text { with }\left(A_{3} \cdot A_{4}\right), \\
& \left.\operatorname{opt}(1,3)+\operatorname{opt}(4,4)+\text { cost of multiplying }\left(A_{1} \cdot A_{2} \cdot A_{3}\right) \text { with } A_{4}\right) .
\end{aligned}
$$

In General. Given a chain of n matrices to multiply, there are $n-1$ possible split points (i.e. $n-1$ possible decisions to take on what the final multiplication should be).

$$
\begin{aligned}
& A_{1} \bullet\left(A_{2} \cdot A_{3} \cdot A_{4} \cdot \ldots \text { • } A_{n-1} \text { • } A_{n}\right) \\
& \left(A_{1} \cdot A_{2}\right) \cdot\left(A_{3} \cdot A_{4} \cdot \ldots \cdot A_{n-1} \cdot A_{n}\right) \\
& \left(A_{1} \cdot A_{2} \bullet A_{3}\right) \bullet\left(A_{4} \bullet \ldots \bullet A_{n-1} \bullet A_{n}\right) \\
& \left(A_{1} \bullet A_{2} \bullet A_{3} \bullet A_{4} \bullet \ldots \bullet A_{n-1}\right) \bullet A_{n}
\end{aligned}
$$

For each split point, there are two subproblems to solve and a final multiplication to be performed between the resulting matrix on the left of the split point and the resulting matrix on the right of the split point.

Observation.

Consider the following parenthesization:

$$
\begin{aligned}
& \left(A_{i} \bullet A_{i+1} \bullet A_{i+2} \bullet \ldots \bullet A_{k}\right) \bullet\left(A_{k+1} \bullet A_{k+2} \bullet \ldots \cdot A_{j}\right) \\
& {\left[\begin{array} { l l l l l }
{ d _ { i - 1 } \times d _ { i }] }
\end{array} \left[\begin{array}{ll}
\left.d_{i} \times d_{i+1}\right] & {\left[d_{i+1} \times d_{i+2}\right]}
\end{array} \quad\left[d_{k-1} \times d_{k}\right] \quad\left[d_{k} \times d_{k+1}\right] \quad\left[d_{k+1} \times d_{k+2}\right] \quad\left[d_{k-1} \times d_{j}\right]\right.\right.}
\end{aligned}
$$

- Regardless of how matrices i to k are multiplied, the resulting matrix must be of size $\left[d_{i-1} \times d_{k}\right]$
- Regardless of how matrices $k+1$ to j are multiplied, the resulting matrix must be of size $\left[d_{k} \times d_{j}\right]$

Multiplying the result of ($A_{i} \longrightarrow A_{k}$) with the result of ($A_{k+1} \longrightarrow A_{i}$) requires $d_{i-1} \times d_{k} \times d_{j}$ operations.

Optimal Substructure. Assuming $0 \leq i \leq n$ and $i \leq j \leq n$.

$$
\operatorname{opt}(i, j)= \begin{cases}0 & \text { if } i=j \text { or } i=0 \\ \min _{i \leq k<j}\left\{\operatorname{opt}(i, k)+\operatorname{opt}(k+1, j)+d_{i-1} \times d_{k} \times d_{j}\right\} & \text { otherwise }\end{cases}
$$

Using this optimal substructure on $A_{1} \bullet A_{2} \bullet A_{3} \bullet A_{4}$:

$$
\left.\begin{array}{rl}
\operatorname{opt}(1,4)=\min (\quad & \operatorname{opt}(1,1)+\operatorname{opt}(2,4)+d_{0} \times d_{1} \times d_{4} \\
& \operatorname{opt}(1,2)+\operatorname{opt}(3,4)+d_{0} \times d_{2} \times d_{4} \\
& \operatorname{opt}(1,3)+\operatorname{opt}(4,4)+d_{0} \times d_{3} \times d_{4}
\end{array}\right) .
$$

A Partial Trace. The highlighted subproblems are overlapping.

Bottom-up Solution.

We need to create a 2D array for storing the results of subproblems to avoid computing the more than once.

Note that:

- The diagonal starting at column 0 represents subproblems of size 0 matrices,
- The diagonal starting at column 1 represents subproblems of size 1 matrix,
- The diagonal starting at column 2 represents subproblems of size 2 matrices,

		A1	A2	A3	A4	$\operatorname{opt}(1,4)$ is the main problem to be solved
	0	0	0	0		
A1		0				
A2			0			
A3				0		
A4					0	the base cases are on the main
		e in lem				

- etc.

Therefore, we will fill the diagonals one by one (smallest subproblems followed by larger subproblems)

We assume that the input to the problem is the dimensions $d_{0}, d_{1}, \ldots, d_{n}$, which are stored in $\mathrm{d}[0]$, $d[1], \ldots, d[n]$, where $d[]$ is a 1D array of size $n+1$.

```
MCM(d[], n):
Create array RESULT[n+1][n+1]
Create array SPLIT[n+1][n+1]\longrightarrow}\longrightarrow\begin{array}{l}{\mathrm{ stores at SPLIT[i][j] the}}\\{\mathrm{ split point for opt (i, j)}}
```

FOR every diagonal diag = 0 to $\mathrm{n}-1$:
FOR every row $i=1$ to $n-d i a g:$
j = i + diag
SOLVE (i, j, d, SPLIT, RESULT) \longrightarrow solve opt (i, j)
RETURN RESULT[1][n]
SOLVE(i, j, d[], SPLIT[][], RESULT[][]):
IF $i>=j:$
RESULT[i][j] $=0$
RETURN

```
RESULT[i][j] = \infty
```

FOR $k=i$ to $j-1$:
cost $=$ RESULT[i][k] + OPT[k+1][j] + (d[i-1] * d[k] * d[j])
IF cost < RESULT[i][j]:
RESULT[i][j] = cost
SPLIT[i][j] $=k$

Example Trace.
Assume that $d[]=\{10,1,2,3,4\}$:
$A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4}$ [10×1] [1×2] [2×3] [3×4]


```
\(\operatorname{RESULT}[2][3]=\mathrm{d}[1] \times \mathrm{d}[2] \times \mathrm{d}[3]+\operatorname{opt}[2][2]+\operatorname{opt}[3][3]=6+0+0=6\)
    SPLIT[1][2] = 2
```

```
RESULT[3][4] = d[2] x d[3] x d[4] + opt[3][3] + opt[4][4] = 24 + 0 + 0 = 24
    SPLIT[1][2] = 2
```

```
\(\operatorname{RESULT}[1][3]=\min (d[0] x \operatorname{d[1]} x d[3]+\operatorname{opt}[1][1]+\operatorname{opt}[2][3]=30+0+6=36\),
    \(d[0] \times \mathrm{d}[2] \times \mathrm{d}[3]+\operatorname{opt}[1][2]+\operatorname{opt}[3][3]=60+20+0=80)\)
    \(=36\)
    SPLIT[1][3] = 1
```

```
\(\operatorname{RESULT}[2][4]=\min (d[1] \times \mathrm{d}[2] \times \mathrm{d}[4]+\operatorname{opt}[2][2]+\operatorname{opt}[3][4]=8+0+24=36\),
    \(d[1] \times \mathrm{d}[3] \times \mathrm{d}[4]+\operatorname{opt}[2][3]+\operatorname{opt}[4][4]=12+6+0=18)\)
    \(=18\)
    SPLIT[2][4] = 3
```

$\operatorname{RESULT}[1][4]=\min (d[0] \times \mathrm{d}[1] \times \mathrm{d}[4]+\operatorname{opt}[1][1]+\operatorname{opt}[2][4]=40+0+18=58$,
$d[0] \times \mathrm{d}[2] \mathrm{x} \mathrm{d[4]}+\operatorname{opt}[1][2]+\operatorname{opt}[3][4]=80+20+24=124$,
$d[0] \times \mathrm{d}[3] \mathrm{x} \mathrm{d[4]}+\operatorname{opt}[1][3]+\operatorname{opt}[4][4]=120+36+0=156)$
$=58$
SPLIT[1][4] = 1

Running Time Analysis

Counting how many times cost is computed in function SOLVE:

There are n diagonals:

Diagonal	$0:$	n cells \times	0 computations
Diagonal	$1:$	$n-1$ cells \times	1 computation
Diagonal	$2:$	$n-2$ cells \times	2 computations
Diagonal	$3:$	$n-3$ cells \times	3 computations

Diagonal $n-1: n-(n-1)$ cells $\times n-1$ computations

Total $=\sum_{i=0}^{n-1}(n-i) \times i=\sum_{i=0}^{n-1} n i-i^{2}=n \sum_{i=0}^{n-1} i-\sum_{i=1}^{n-1} i^{2}=\frac{n}{2} \times n(n-1)-\frac{n}{6}(n+1)(2 n+1)=\Theta\left(n^{3}\right)$

Printing the Optimal Parenthesization.

PRINT (SPLIT[][], i, j):
IF (i == j):
\quad DISPLAY "A" + i
\quad RETURN
DISPLAY "("
PRINT(SPLIT, i, SPLIT[i][j])
PRINT(SPLIT, SPLIT[i][j]+1, j)
DISPLAY ")"

