CS11313 - Spring 2022 Design & Analysis of Algorithms

Master Method

Ibrahim Albluwi

 $\mathbf{1}$ $T(n) = \begin{cases} 4T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$

1

$$T(n) = \begin{cases} 4T(\frac{n}{2}) + n & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases}$$
2

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases}$$

1

$$T(n) = \begin{cases} 4T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$
2

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$
3

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n^2 & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

1

$$T(n) = \begin{cases} 4T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$
2

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n^2 & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T$$

$$n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T(n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

Claim. If # of leaves > work at the root:
$$T(n) = \Theta(\text{number leaves})$$
tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{number of levels})$ all levels are the sameIf # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$ tree is root dominated

 $\mathbf{1}$ $T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1\\ c & \text{if } n \le 1 \end{cases}$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{ number of levels})$ all levels are the sameIf # of leaves < work at the root:</td> $T(n) = \Theta(\text{work at the root})$ tree is root dominated

 $\mathbf{1}$ $T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1\\ c & \text{if } n \le 1 \end{cases}$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{ number of levels})$ all levels are the sameIf # of leaves < work at the root:</td> $T(n) = \Theta(\text{work at the root})$ tree is root dominated

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1\\ c & \text{if } n \le 1 \end{cases}$$

1

$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$ $T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{ number of levels})$ all levels are the sameIf # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$ tree is root dominated

3

$$T(n) = \begin{cases} T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$$
$$T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{ number of levels})$ all levels are the sameIf # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$ tree is root dominated

1

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1 \\ c & \text{if } n \le 1 \end{cases} \quad T(n) = \begin{cases} 3T(\frac{n}{9}) + \sqrt{n} & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases} \quad T(n) = \begin{cases} T(\frac{n}{2}) + n & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n) \qquad T(n) = \sum_{i=0}^{\log_9 n} 3^i \sqrt{\frac{n}{9^i}} = \Theta(\sqrt{n \log n}) \qquad T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{number of levels})$ all levels are the sameIf # of leaves < work at the root:</td> $T(n) = \Theta(\text{work at the root})$ tree is root dominated

$$1 \qquad 2 \qquad 3$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1 \\ c & \text{if } n \le 1 \end{cases} \qquad T(n) = \begin{cases} 3T(\frac{n}{9}) + \sqrt{n} & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases} \qquad T(n) = \begin{cases} T(\frac{n}{2}) + n & \text{if } n > 1 \\ 1 & \text{if } n \le 1 \end{cases}$$
work at the **root** = c
$$work \text{ at the root} = \sqrt{n}$$

$$work at the root = \sqrt{n}$$

$$umber \text{ of } \textbf{leaves} = 2^{\log_2 n} = n$$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 3^i \sqrt{\frac{n}{9^i}} = \Theta(\sqrt{n} \log n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$ tree is leaf dominatedIf # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{number of levels})$ all levels are the sameIf # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$ tree is root dominated

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

there is at least one whole subproblem!

subproblems decrease in size

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If $f(n) = O(n^{\log_b a - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Informally. If the work at the root is *polynomially less* than the number of leaves: $T(n) = \Theta(\text{number of leaves})$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If $f(n) = O(n^{\log_b a - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Informally. If the work at the root is *polynomially less* than the number of leaves: $T(n) = \Theta(\text{number of leaves})$

Example. $T(n) = 4T(\frac{n}{2}) + n \log n$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Informally. If the work at the root is *polynomially less* than the number of leaves: $T(n) = \Theta(\text{number of leaves})$

Example. $T(n) = 4T(\frac{n}{2}) + n \log n$ $f(n) = n \log n$ $n \log n = O(n^{\log_2 4 - \epsilon})$ $= O(n^{2-\epsilon}) \quad \text{for all } \epsilon \le 1$ $T(n) = \Theta(n^2)$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Informally. If the work at the root is *polynomially less* than the number of leaves: $T(n) = \Theta(\text{number of leaves})$

Example. $T(n) = 4T(\frac{n}{2}) + n \log n$ Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n \log n$ $f(n) = n \log n$ $n \log n = O(n^{\log_2 4 - \epsilon})$ $n \log n \neq O(n^{\log_2 2 - \epsilon})$ $= O(n^{2-\epsilon})$ for all $\epsilon \le 1$ $\neq O(n^{1-\epsilon})$ $T(n) = \Theta(n^2)$ Case 1 does not apply!

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If $f(n) = O(n^{\log_b a - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(f(n) \cdot \log n)$

Informally. If the work at the root is *asymptotically the same* as the number of leaves:

 $T(n) = \Theta(\text{work at the root } \times \text{ number of levels})$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(f(n) \cdot \log n)$

Informally. If the work at the root is *asymptotically the same* as the number of leaves:

 $T(n) = \Theta(\text{work at the root } \times \text{ number of levels})$

Example. $T(n) = 2T(\frac{n}{2}) + n$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(f(n) \cdot \log n)$

Informally. If the work at the root is *asymptotically the same* as the number of leaves:

 $T(n) = \Theta(\text{work at the root } \times \text{ number of levels})$

Example. $T(n) = 2T(\frac{n}{2}) + n$ $f(n) = n = \Theta(n^{\log_2 2})$ $T(n) = \Theta(n \log n)$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Informally. If the work at the root is asymptotically the same as the number of leaves:

 $T(n) = \Theta(\text{work at the root } \times \text{ number of levels})$

Example. $T(n) = 2T(\frac{n}{2}) + n$ Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n = \Theta(n^{\log_2 2})$ $f(n) = n \log n \neq \Theta(n^{\log_2 2})$ $f(n) = n \log n \neq \Theta(n^{\log_2 2})$ $T(n) = \Theta(n \log n)$ Case 2 does not apply

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Case 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Case 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$)

Informally. If work at the root is *polynomially greater* than the # of leaves: $T(n) = \Theta(\text{work at the root})$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \bullet \log n)$

Case 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$)

Informally. If work at the root is *polynomially greater* than the # of leaves: $T(n) = \Theta(\text{work at the root})$

Example.
$$T(n) = 2T(\frac{n}{2}) + n^2$$

 $f(n) = n^2 = \Omega(n^{\log_2 2 + \epsilon}) = \Omega(n^{1+\epsilon})$ for all $\epsilon \le 1$
 $T(n) = \Theta(n^2)$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \bullet \log n)$

Case 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$)

Informally. If work at the root is *polynomially greater* than the # of leaves: $T(n) = \Theta(\text{work at the root})$

Example.
$$T(n) = 2T(\frac{n}{2}) + n^2$$
Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n^2 = \Omega(n^{\log_2 2 + \epsilon}) = \Omega(n^{1+\epsilon})$ $f(n) = n \log n \neq \Omega(n^{1+\epsilon})$ $T(n) = \Theta(n^2)$ Case 3 does not apply

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \bullet \log n)$

Case 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$) provided that there are constants c < 1 and n_0 , ______ Regularity Condition: such that $af(\frac{n}{b}) \le cf(n)$ for all $n \ge n_0$. Regularity Condition: work at children \le work at the parent

Case 1 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1 (Tree is leaf-dominated)

If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then
 $T(n) = \Theta(n^{\log_b a})$

(for some constant $\epsilon > 0$)

Recurrence	f(n)	# of leaves	Case 1 condition	Result
$T(n) = 4T(\frac{n}{2}) + n$				
$T(n) = 2T(\frac{n}{2}) + c$				
$T(n) = 3T(\frac{n}{2}) + \sqrt{n}$				

Case 1 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1 (Tree is leaf-dominated)

If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then
 $T(n) = \Theta(n^{\log_b a})$
(for some constant $\epsilon > 0$)

of leaves Recurrence f(n)**Case 1 condition** Result $n = O(n^{2-\epsilon})$ $T(n) = \Theta(n^2)$ $T(n) = 4T(\frac{n}{2}) + n$ $n^{\log_2 4} = n^2$ п If we pick $\epsilon \leq 1$ $c = O(n^{1-\epsilon})$ $T(n) = 2T(\frac{n}{2}) + c$ $n^{\log_2 2} = n^1$ $T(n) = \Theta(n)$ С If we pick $\epsilon \leq 1$ $n^{0.5} = O(n^{1.585-\epsilon})$ $T(n) = \Theta(n^{1.585})$ $T(n) = 3T(\frac{n}{2}) + \sqrt{n}$ \sqrt{n} $n^{\log_2 3} = n^{1.585}$ If we pick $\epsilon \leq 1.085$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 3 (Tree is root-dominated)

If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$

(for some constant $\epsilon > 0$)

Regularity Condition: $af(\frac{n}{b}) \le cf(n)$ for some c < 1

Recurrence	# of leaves	Case 3 condition	$af(\frac{n}{b}) \le cf(n)$	Result

 $T(n) = 2T(\frac{n}{2}) + n^2$

 $T(n) = T(\frac{n}{2}) + n$

 $T(n) = T(\frac{n}{2}) + \log_2 n$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 3 (Tree is root-dominated)

If $f(n) = \Omega(n^{\log_b a + \epsilon})$ then $T(n) = \Theta(f(n))$

(for some constant $\epsilon > 0$)

Regularity Condition: $af(\frac{n}{b}) \le cf(n)$ for some c < 1

Recurrence	# of leaves	Case 3 condition	$af(\frac{n}{b}) \le cf(n)$	Result
$T(n) = 2T(\frac{n}{2}) + n^2$	$n^{\log_2 2} = n^1$	$n^2 = \Omega(n^{1+\epsilon})$ If we pick $\epsilon \le 1$	$2 \cdot \left(\frac{n}{2}\right)^2 \le c \cdot n^2$ $\frac{1}{2}n^2 \le c \cdot n^2$ $pick \ 0.5 < c < 1$	$T(n) = \Theta(n^2)$
$T(n) = T(\frac{n}{2}) + n$	1	$n = \Omega(n^{0+\epsilon})$ If we pick $\epsilon \le 1$	$1 \cdot \left(\frac{n}{2}\right) \le c \cdot n$ $\frac{1}{2}n \le c \cdot n$ pick $0.5 \le c < 1$	$T(n) = \Theta(n)$
$T(n) = T(\frac{n}{2}) + \log_2 n$	$n^{\log_1 2} = n^0$	$\log_2 n \neq \Omega(n^{0+\epsilon})$		FAIL
f(n) = work at the	root Number of	leaves $= a^{\log_b n} = n$	$\log_b a$

Exercises

1.
$$T(n) = 3T(\frac{n}{2}) + n\sqrt{n}$$

2.
$$T(n) = 2T(\frac{n}{2}) + \log_2 n$$

3.
$$T(n) = T(\frac{n}{2}) + c$$

4.
$$T(n) = T(\frac{n}{2}) + n \log_2 n$$

Exercises

1.
$$T(n) = 3T(\frac{n}{2}) + n\sqrt{n}$$
 $f(n) = n\sqrt{n}$, $a = 3, b = 2,$ # of leaves = $n^{\log_2 3} = n^{1.585}$
 $n^{1.5} = O(n^{1.585 - \epsilon})$ if we pick $\epsilon \le 0.085$, Therefore **Case 1** applies: $T(n) = \Theta(n^{1.585})$

2. $T(n) = 2T(\frac{n}{2}) + \log_2 n$ $f(n) = \log_2 n$, a = 2, b = 2, # of leaves = $n^{\log_2 2} = n^1$ $\log_2 n = O(n^{1-\epsilon})$ if we pick $\epsilon < 1$, Therefore **Case 1** applies: $T(n) = \Theta(n)$

- 3. $T(n) = T(\frac{n}{2}) + c$ f(n) = c, a = 1, b = 2, # of leaves = $n^{\log_2 1} = n^0 = 1$ $f(n) = \Theta(n^{\log_b a})$. Therefore, **Case 2** applies: $T(n) = \Theta(c \times \log n)$
- 4. $T(n) = T(\frac{n}{2}) + n \log_2 n$ $f(n) = n \log_2 n, a = 1, b = 2, # of leaves = n^{\log_2 1} = n^0 = 1$ $n \log_2 n = \Omega(n^{0+\epsilon})$, **Case 3** might apply. Check the regularity condition: $af(\frac{n}{b}) \le cf(n)$. $1 \cdot \frac{n}{2} \log_2 \frac{n}{2} \le c \cdot n \log_2 n$ is true. Therefore, **Case 3** applies: $T(n) = \Theta(n \log n)$

1.
$$T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$$

1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$

Subproblems decrease linearly in size.

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$

Subproblems decrease linearly in size.

3. $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$

Subproblems decrease linearly in size.

3. $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$

Number of subproblems is less than 1.

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- 2. $T(n) = 2T(n-1) + \Theta(n)$

Subproblems decrease linearly in size.

- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- **4.** $T(n) = nT(\frac{n}{2}) + \Theta(n)$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- **5.** $T(n) = 2T(\frac{n}{2}) n$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- 5. $T(n) = 2T(\frac{n}{2}) n$ f(n) is not positive

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- 5. $T(n) = 2T(\frac{n}{2}) n$ f(n) is not positive
- 6. $T(n) = 2T(\frac{n}{2}) + \Theta(n \log n)$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- 2. $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- 5. $T(n) = 2T(\frac{n}{2}) n$ f(n) is not positive
- 6. $T(n) = 2T(\frac{n}{2}) + \Theta(n\log n)$
- No polynomial separation between f(n) and the number of leaves.

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- **2.** $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- **4.** $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- 5. $T(n) = 2T(\frac{n}{2}) n$
 - f(n) is not positive

6. $T(n) = 2T(\frac{n}{2}) + \Theta(n \log n)$

No polynomial separation between f(n)and the number of leaves.

7. $T(n) = T(\frac{n}{2}) + n(2 \cos n)$

- 1. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$ Subproblems are not of an equal size.
- 2. $T(n) = 2T(n-1) + \Theta(n)$ Subproblems decrease linearly in size.
- **3.** $T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$ Number of subproblems is less than 1.
- 4. $T(n) = nT(\frac{n}{2}) + \Theta(n)$ Number of subproblems is not constant.
- 5. $T(n) = 2T(\frac{n}{2}) n$ f(n)
 - f(n) is not positive

- 6. $T(n) = 2T(\frac{n}{2}) + \Theta(n \log n)$
- 7. $T(n) = T(\frac{n}{2}) + n(2 \cos n)$

No polynomial separation between f(n) and the number of leaves.

Regularity condition does not hold. There is no constant *c* for which $\frac{n}{2}(2\cos(\frac{n}{2})) \le cn(2\cos n)$ is always true for large *n*.

optional

Proof # 1

1. Prove the master theorem.

Proof # 2

1. Prove that the regularity condition always holds if $f(n) = O(n^d)$

Proof # 3

1. Prove that if the regularity condition is true then $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ is also true but not the other way round.