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Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®%  then T(n)=O(f(n)slogn)

Informally. If the work at the root is asymptotically the same as the number of leaves:

T(n) = O(work at the root X number of levels)

log, n log, a

f(n) = work at the root Number of leaves = a =n



Master Method

Given a recurrence equation of the following form:

D
7 /NN
al(=) + f(n it n>1 R,
ron = 4 @TG) + S
O(1) if n=1
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Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®%  then T(n)=O(f(n)slogn)

Informally. If the work at the root is asymptotically the same as the number of leaves:

T(n) = O(work at the root X number of levels)

Example. T(n) = 2T(%) +n

log, n log, a

f(n) = work at the root Number of leaves = a =n



Master Method
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Where n is a positive integer, a > 1 and b > 1, then:

Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) =B[N then T(n) = O(f(n)elogn)
Informally. If the work at the root is asymptotically the same as the number of leaves:
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Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case 2. It f(n) = BO(n'°8 ) then T(n) = O(f(n)elogn)
Informally. If the work at the root is asymptotically the same as the number of leaves:
T(n) = O(work at the root X number of levels)
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Given a recurrence equation of the following form:
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a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = O(n'°e9) then T(n) = O(f(n)elogn)
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Informally. If work at the root is polynomially greater than the # of leaves: T(n) = ®(work at the root)
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Master Method

Given a recurrence equation of the following form:
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Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = 0On"°%% then 7T(n) = O(f(n)elogn)
Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)
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Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n)  if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = O(n'°e9) then T(n) = O(f(n)elogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = ®(work at the root)

Example. T(n) = 2T(%) + n? Example. T(n) = 2T(%) + nlogn
fn) = n® = Q(n*=2+) = Q(n'+) fn) = nlogn # Q(n'*+)
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Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n)  if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®%  then T(n)=O(f(n)slogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)
provided that there are constants ¢ < 1 and n,, Regularity Condition:
such that af(%) < c¢f(n) tforall n > n, work at children <

work at the parent

f(n) = work at the root Number of leaves = a'°%" = p'°%¢



Case 1 (Examples)

Given a recurrence equation of the following form: Case 1 (Tree is leaf-dominated)
al(=) + f(n) if n>1 If f(n)=O0n"°%%¢) then
I'(n) = b |
O(1) if n=1 T(n) = B(n"=)

(for some constant € > 0)

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence f(n) # of leaves Case 1 condition Result

T(n) = 4T(§) +n

T(n) = 2T(§) +c

T(n) = 3T(5) +/n

log, n log, a

f(n) = work at the root Number of leaves = a =n



Case 1 (Examples)

Given a recurrence equation of the following form: Case 1 (Tree is leaf-dominated)
al(=) + f(n) if n>1 If f(n)=O0n"°%%¢) then
I'(n) = b |
O(1) if n=1 T(n) = B(n"=)

(for some constant € > 0)

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence f(n) # of leaves Case 1 condition Result
T(n) = 4T(2) + " oz = 2 = 0 T(n) = O(n?)
2 B If we pick ¢ <1
. -0 l—e
T(n) =2T(3) +c¢ C nlog?2 — 51 X ) T(n) = O(n)

If we pick e <1

n0.5 — O(I”l 1.585—6)

T(n) = 3T(Z) + log,3 _ ,,1.585 T(n) = @518
W=3TG+yn W aed=n lfwe picke < 1.085 0= O

log, n log, a

f(n) = work at the root Number of leaves = a =n



Case 3 (Examples)

Given a recurrence equation of the following form:

T { aT(%) + f(n)  if n>1

O(1) it n=1

Where n is a positive integer, a > 1 and b > 1, then:

Case 3 (Tree is root-dominated)

If f(n) = Qn'°%%¢) then
I(n) = O(f(n))
(for some constant € > 0)

Regularity Condition: af(%) < cf(n)
for somec < 1

Recurrence # of leaves Case 3 condition

af(%) < cf(n) Result

T(n) = 2T(3) + n’

T(n) = T(%) +n

T(n) = T(%) +log,n

f(n) = work at the root Number of leaves = a

log, n log, a

- n



Case 3 (Examples)

Given a recurrence equation of the following form: Case 3 (Tree is root-dominated)
T al(;) + f(n)  if n>1 If f(n)=Qn"°%) then
n) =
O(1) it n=1 I(n) = O(f(n))

(for some constant € > 0)

Regularity Condition: af(%) < cf(n)
for somec < 1

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence # of leaves Case 3 condition af(%) < cf(n) Result
log, 2 1 n2 = Q(nHe) 2. (%)2 sce n2 ® 2
24 = T =
T(n) = 2T(%) + n? " " If we pick e <1 %nz < cen? () (")
pick 0.5 < c <1
| n = Q') le(3)<cen o0 = O

T(n)=T(%)+n If we picke < 1 %ngc-n
pick0.5<c <1

T(n) = T(%) + log2n nlogi2 — ,0 logzn * Q(n0+€)

f(n) = work at the root Number of leaves = g'°%" = /%% ¢



Exercises

1. T(n) =3T(5) + ny/n

2. T(n) = 2T(%) + log, n

3. T(n)= T(%) +c

4. T(n) = T(%) + nlog,n



Exercises

L 1T(n)= 3T(%) + ”\/E f(n) = n\/Z, a=3,b=2, #ofleaves = nl°83 = p1->%

nl> = O(n!°%7¢) if we pick € < 0.085, Therefore Case 1 applies: T(n) = O(n'>%)

2. T(n)=2T(3)+log,n f(n) = log, n, a=2,b=2, # of leaves = n'°%22 = !

log,n = O(n'=¢) if we pick € < 1, Therefore Case 1 applies: T(n) = O(n)

3. Tm)=T()+c f(n) =c, a=1,b=2, # of leaves = n'°221 =% = 1

f(n) = O(n'°% %), Therefore, Case 2 applies: T(n) = O(c X log n)

4. T(n) = T(%) + nlog,n f(n) =nlog,n, a=1, b =2, #ofleaves = noel = 50 =1

nlog,n = Qn'*¢), Case 3 might apply. Check the regularity condition: af(%) < cf(n).
I e % logzg < cenlog,n istrue. Therefore, Case 3 applies: T(n) = O(nlogn)



Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
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Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2Tn—-1) + O(n)
3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)
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1. T(n) = T(%) + T(%) + O(n)
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4. T(n) = nT(%) + O(n)
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5. T(n) = 2T(§) —n
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Examples for Cases Where the Master Method does not Apply

1. T(n) =T(3) + T(5) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

5. T(n) =2T(5) —n

6. T(n) = 2T(§) + O(nlogn)

7. T(n) = T(%) + n(2 cos n)
There is no constant ¢ for which
%(2 COS(%)) < cn(2 cos n) is always true for large n.



optional



Proof # 1

1. Prove the master theorem.



Proof # 2

1. Prove that the regularity condition always holds if f(n) = On?



Proof # 3

1. Prove that if the regularity condition is true then f(n) = Q(n'°8(“*¢) is also true
but not the other way round.



