
Design & Analysis
 Algorithms

Master Method

CS11313 - Spring 2022

of

Ibrahim Albluwi

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1

1

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1

21

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

work at the root = n work at the root = n work at the root = n2

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

work at the root = n work at the root = n work at the root = n2

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

work at the root = n work at the root = n work at the root = n2

number of leaves = = 4log2 n n2 number of leaves = = 2log2 n n number of leaves = = 2log2 n n

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

work at the root = n work at the root = n work at the root = n2

number of leaves = = 4log2 n n2 number of leaves = = 2log2 n n number of leaves = = 2log2 n n

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Three Familiar Examples

T(n) = {4T(n
2) + n if n > 1

1 if n ≤ 1

Three Familiar Examples

T(n) = {2T(n
2) + n if n > 1

1 if n ≤ 1
T(n) = {2T(n

2) + n2 if n > 1

1 if n ≤ 1

321

work at the root = n work at the root = n work at the root = n2

number of leaves = = 4log2 n n2 number of leaves = = 2log2 n n number of leaves = = 2log2 n n

T(n) =
log2 n

∑
i=0

4i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

) = T(n) =
log2 n

∑
i=0

2i(
n
2i

)2 =Θ(n log n)Θ(n2) Θ(n2)

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1

Another Three Familiar Examples

1

T(n) = c ×
log2 n

∑
i=0

2i = Θ(n)

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1

Another Three Familiar Examples

1

work at the root = c

number of leaves = = 2log2 n n

T(n) = c ×
log2 n

∑
i=0

2i = Θ(n)

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1
T(n) = {T(n

2) + n if n > 1

1 if n ≤ 1

31

work at the root = c

number of leaves = = 2log2 n n

T(n) = c ×
log2 n

∑
i=0

2i = T(n) =
log2 n

∑
i=0

n
2i

=Θ(n) Θ(n)

Another Three Familiar Examples

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1
T(n) = {T(n

2) + n if n > 1

1 if n ≤ 1

31

work at the root = c work at the root = n

number of leaves = = 2log2 n n number of leaves = 1

T(n) = c ×
log2 n

∑
i=0

2i = T(n) =
log2 n

∑
i=0

n
2i

=Θ(n) Θ(n)

Another Three Familiar Examples

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1
T(n) = {3T(n

9) + n if n > 1

1 if n ≤ 1
T(n) = {T(n

2) + n if n > 1

1 if n ≤ 1

321

work at the root = c work at the root = n

number of leaves = = 2log2 n n number of leaves = 1

T(n) = c ×
log2 n

∑
i=0

2i = T(n) =
log2 n

∑
i=0

n
2i

=Θ(n) Θ(n)

Another Three Familiar Examples

T(n) =
log9 n

∑
i=0

3i n
9i

= Θ(n log n)

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

T(n) = {2T(n
2) + c if n > 1

c if n ≤ 1
T(n) = {3T(n

9) + n if n > 1

1 if n ≤ 1
T(n) = {T(n

2) + n if n > 1

1 if n ≤ 1

321

work at the root = c work at the root = n work at the root = n

number of leaves = = 2log2 n n number of leaves = = 3log9 n n number of leaves = 1

T(n) = c ×
log2 n

∑
i=0

2i = T(n) =
log2 n

∑
i=0

n
2i

=Θ(n) Θ(n)

Another Three Familiar Examples

T(n) =
log9 n

∑
i=0

3i n
9i

= Θ(n log n)

Claim. tree is leaf dominated

 all levels are the same

 tree is root dominated

If # of leaves ≻ work at the root: T(n) = Θ(number leaves)

If # of leaves ≡ work at the root: T(n) = Θ(work at the root × number of levels)

If # of leaves ≺ work at the root: T(n) = Θ(work at the root)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

Master Method

there is at least one
whole subproblem!

subproblems
decrease in size

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If the work at the root is polynomially less than the number of leaves:

 T(n) = Θ(number of leaves)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If the work at the root is polynomially less than the number of leaves:

 T(n) = Θ(number of leaves)

Example. T(n) = 4T(n
2) + n log n

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

Informally. If the work at the root is polynomially less than the number of leaves:

 T(n) = Θ(number of leaves)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Example.

 for all

T(n) = 4T(n
2) + n log n

f(n) = n log n
n log n = O(nlog2 4−ϵ)

= O(n2−ϵ) ϵ ≤ 1
T(n) = Θ(n2)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

Informally. If the work at the root is polynomially less than the number of leaves:

 T(n) = Θ(number of leaves)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Example.

 for all

T(n) = 4T(n
2) + n log n

f(n) = n log n
n log n = O(nlog2 4−ϵ)

= O(n2−ϵ) ϵ ≤ 1
T(n) = Θ(n2)

Example.

 Case 1 does not apply!

T(n) = 2T(n
2) + n log n

f(n) = n log n
n log n ≠ O(nlog2 2−ϵ)

≠ O(n1−ϵ)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If the work at the root is asymptotically the same as the number of leaves:

 T(n) = Θ(work at the root × number of levels)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If the work at the root is asymptotically the same as the number of leaves:

 T(n) = Θ(work at the root × number of levels)

Example. T(n) = 2T(n
2) + n

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If the work at the root is asymptotically the same as the number of leaves:

 T(n) = Θ(work at the root × number of levels)

Example.

T(n) = 2T(n
2) + n

f(n) = n = Θ(nlog2 2)
T(n) = Θ(n log n)

Informally. If the work at the root is asymptotically the same as the number of leaves:

 T(n) = Θ(work at the root × number of levels)

Example.

T(n) = 2T(n
2) + n

f(n) = n = Θ(nlog2 2)
T(n) = Θ(n log n)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Example.

 Case 2 does not apply

T(n) = 2T(n
2) + n log n

f(n) = n log n ≠ Θ(nlog2 2)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

 Case 3. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f(n)) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

 Case 3. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f(n)) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = Θ(work at the root)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

 Case 3. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f(n)) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = Θ(work at the root)

Example.

T(n) = 2T(n
2) + n2

f(n) = n2 = Ω(nlog2 2+ϵ) = Ω(n1+ϵ)
T(n) = Θ(n2)

for all ϵ ≤ 1

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

 Case 3. If then (for some constant)

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f(n)) ϵ > 0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = Θ(work at the root)

Example.

T(n) = 2T(n
2) + n2

f(n) = n2 = Ω(nlog2 2+ϵ) = Ω(n1+ϵ)
T(n) = Θ(n2)

Example.

 Case 3 does not apply

T(n) = 2T(n
2) + n log n

f(n) = n log n ≠ Ω(n1+ϵ)

Master Method

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

 Case 1. If then (for some constant)

 Case 2. If then

 Case 3. If then (for some constant)

 provided that there are constants and ,
 such that for all .

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a) ϵ > 0

f(n) = Θ(nlogb a) T(n) = Θ(f(n) ∙ log n)

f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f(n)) ϵ > 0

c < 1 n0
af(n

b) ≤ cf(n) n ≥ n0

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

Regularity Condition:
work at children
work at the parent

≤

Case 1 (Examples)

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

 If then

 (for some constant)

f(n) = O(nlogb a−ϵ)
T(n) = Θ(nlogb a)

ϵ > 0

 Case 1 (Tree is leaf-dominated)

T(n) = 4T(n
2) + n

Recurrence f(n) # of leaves Case 1 condition Result

T(n) = 2T(n
2) + c

T(n) = 3T(n
2) + n

Case 1 (Examples)

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

 If then

 (for some constant)

f(n) = O(nlogb a−ϵ)
T(n) = Θ(nlogb a)

ϵ > 0

 Case 1 (Tree is leaf-dominated)

n nlog2 4 = n2 T(n) = Θ(n2)T(n) = 4T(n
2) + n

n = O(n2−ϵ)
If we pick ϵ ≤ 1

Recurrence f(n) # of leaves Case 1 condition Result

c nlog2 2 = n1 T(n) = Θ(n)T(n) = 2T(n
2) + c

c = O(n1−ϵ)
If we pick ϵ ≤ 1

n nlog2 3 = n1.585T(n) = 3T(n
2) + n

n0.5 = O(n1.585−ϵ)
If we pick ϵ ≤ 1.085

T(n) = Θ(n1.585)

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

 If then

 (for some constant)

f(n) = Ω(nlogb a+ϵ)
T(n) = Θ(f(n))

ϵ > 0

 Case 3 (Tree is root-dominated)

T(n) = 2T(n
2) + n2

Recurrence # of leaves Case 3 condition Result

Case 3 (Examples)

af(n
b) ≤ cf(n)

Regularity Condition: af(n
b) ≤ cf(n)

T(n) = T(n
2) + n

T(n) = T(n
2) + log2 n

for some c < 1

Given a recurrence equation of the following form:

Where n is a positive integer, and , then:

T(n) = { aT(n
b) + f(n) if n > 1

Θ(1) if n = 1

a ≥ 1 b > 1

 = work at the root | Number of leaves f(n) = alogb n = nlogb a

 If then

 (for some constant)

f(n) = Ω(nlogb a+ϵ)
T(n) = Θ(f(n))

ϵ > 0

 Case 3 (Tree is root-dominated)

nlog2 2 = n1 T(n) = Θ(n2)
n2 = Ω(n1+ϵ)

If we pick ϵ ≤ 1

Recurrence # of leaves Case 3 condition Result

1 T(n) = Θ(n)
n = Ω(n0+ϵ)

If we pick ϵ ≤ 1

nlog1 2 = n0 log2 n ≠ Ω(n0+ϵ)

Case 3 (Examples)

af(n
b) ≤ cf(n)

2 ∙ (n
2)2 ≤ c ∙ n2

1
2 n2 ≤ c ∙ n2

Regularity Condition: af(n
b) ≤ cf(n)

1 ∙ (n
2) ≤ c ∙ n

1
2 n ≤ c ∙ n

pick 0.5 < c < 1

for some c < 1

pick 0.5 ≤ c < 1

T(n) = 2T(n
2) + n2

T(n) = T(n
2) + n

T(n) = T(n
2) + log2 n

Exercises

1. , , , # of leaves =

 if we pick , Therefore Case 1 applies:

2. , , , # of leaves =

 if we pick , Therefore Case 1 applies:

3. , , , # of leaves =

 . Therefore, Case 2 applies:

4. , , , # of leaves =

 , Case 3 might apply. Check the regularity condition: .
 is true. Therefore, Case 3 applies:

T(n) = 3T(n
2) + n n f(n) = n n a = 3 b = 2 nlog2 3 = n1.585

n1.5 = O(n1.585−ϵ) ϵ ≤ 0.085 T(n) = Θ(n1.585)

T(n) = 2T(n
2) + log2 n f(n) = log2 n a = 2 b = 2 nlog2 2 = n1

log2 n = O(n1−ϵ) ϵ < 1 T(n) = Θ(n)

T(n) = T(n
2) + c f(n) = c a = 1 b = 2 nlog2 1 = n0 = 1

f(n) = Θ(nlogb a) T(n) = Θ(c × log n)

T(n) = T(n
2) + n log2 n f(n) = n log2 n a = 1 b = 2 nlog2 1 = n0 = 1

n log2 n = Ω(n0+ϵ) af(n
b) ≤ cf(n)

1 ∙ n
2 log2

n
2 ≤ c ∙ n log2 n T(n) = Θ(n log n)

Exercises

1. , , , # of leaves =

 if we pick , Therefore Case 1 applies:

2. , , , # of leaves =

 if we pick , Therefore Case 1 applies:

3. , , , # of leaves =

 . Therefore, Case 2 applies:

4. , , , # of leaves =

 , Case 3 might apply. Check the regularity condition: .
 is true. Therefore, Case 3 applies:

T(n) = 3T(n
2) + n n f(n) = n n a = 3 b = 2 nlog2 3 = n1.585

n1.5 = O(n1.585−ϵ) ϵ ≤ 0.085 T(n) = Θ(n1.585)

T(n) = 2T(n
2) + log2 n f(n) = log2 n a = 2 b = 2 nlog2 2 = n1

log2 n = O(n1−ϵ) ϵ < 1 T(n) = Θ(n)

T(n) = T(n
2) + c f(n) = c a = 1 b = 2 nlog2 1 = n0 = 1

f(n) = Θ(nlogb a) T(n) = Θ(c × log n)

T(n) = T(n
2) + n log2 n f(n) = n log2 n a = 1 b = 2 nlog2 1 = n0 = 1

n log2 n = Ω(n0+ϵ) af(n
b) ≤ cf(n)

1 ∙ n
2 log2

n
2 ≤ c ∙ n log2 n T(n) = Θ(n log n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(n
2) + T(n

3) + Θ(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(n
2) + T(n

3) + Θ(n) Subproblems are not of an equal size.

Examples for Cases Where the Master Method does not Apply

1.

2.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

Subproblems are not of an equal size.

Examples for Cases Where the Master Method does not Apply

1.

2.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

 is not positivef(n)

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

6.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

T(n) = 2T(n
2) + Θ(n log n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

 is not positivef(n)

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

6.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

T(n) = 2T(n
2) + Θ(n log n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

 is not positivef(n)

No polynomial separation between
and the number of leaves.

f(n)

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

6.

7.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

T(n) = 2T(n
2) + Θ(n log n)

T(n) = T(n
2) + n(2 cos n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

 is not positivef(n)

No polynomial separation between
and the number of leaves.

f(n)

Examples for Cases Where the Master Method does not Apply

1.

2.

3.

4.

5.

6.

7.

T(n) = T(n
2) + T(n

3) + Θ(n)

T(n) = 2T(n − 1) + Θ(n)

T(n) = 1
2 T(n

2) + Θ(n)

T(n) = nT(n
2) + Θ(n)

T(n) = 2T(n
2) − n

T(n) = 2T(n
2) + Θ(n log n)

T(n) = T(n
2) + n(2 cos n)

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

 is not positivef(n)

No polynomial separation between
and the number of leaves.

f(n)

Regularity condition does not hold.
There is no constant c for which

 is always true for large n.n
2 (2 cos(n

2)) ≤ cn(2 cos n)

optional

Proof # 1

1. Prove the master theorem.

Proof # 2

1. Prove that the regularity condition always holds if f(n) = O(nd)

Proof # 3

1. Prove that if the regularity condition is true then is also true
 but not the other way round.

f(n) = Ω(nlogb(a)+ϵ)

