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Case 1 (Examples)

Given a recurrence equation of the following form: 
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1.                   ,         ,  ,      # of leaves =  

       if we pick ,  Therefore  Case 1 applies:   
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Regularity condition does not hold. 
There is no constant c for which  

 is always true for large n.n
2 (2 cos( n

2 )) ≤ cn(2 cos n)



optional



Proof # 1

1.  Prove the master theorem.



Proof # 2

1.  Prove that the regularity condition always holds if  f(n) = O(nd)



Proof # 3

1.  Prove that if the regularity condition is true then  is also true  
      but not the other way round.

f(n) = Ω(nlogb(a)+ϵ)


