11313 - 2022
Design & Analysis
of Algorithms

Master Method

Three Familiar Examples

1

AT(=)+n ifn> 1
T(n) = 2
1 itn < 1

Three Familiar Examples

1 2
T(n) = 4T(5) +n ifn>1 T(n) = 2T(5) +n ifn>1
1 itn <1 1 itn <1
[@
o ® o ® ® ®

Three Familiar Examples

1 2 5
n . n ’ . .
T(n) = 4T(5) +n ifn>1 T(n) = 2T(5) +n ifn>1 T(n) = 2T(5) +n* ifn>1
1 itn <1 1 ifn <1 | itn <1
o P °
® o o o ° ° o .

Three Familiar Examples

1 2 5
n . n ’ . .
T(n) = 4T(5)+n ifn>1 T(n) = 2T(5)+n ifn>1 T(n) = 2T(5)+n ifn>1
1 itn <1 1 ifn <1 | itn <1
o P °
® o o o ° ° o .
0000 0000 0000 0000 o o @ @ O ® ® P

log, n log, n log, n

T = Y4 =6m’) T = Y2 = Owlogn T = Y, 20 = o)
i=0 i=0 i=0

Three Familiar Examples

1

AT(Z)+n ifn>1
T(n) = 2
1 itn < 1

work at the root =
@)

log, n

T = Y, 4() = 60
i=0

T(n) = {2T(5)+n ifn>1

1 ifn <1

work at the root =

log, n

Tn) = Y zi(%) — O(nlogn)
i=0

Ay L2
T(n)z{ZT(2)+n ifn>1

1 ifn <1

work at the root =

log, n

T = Y27 = o)
i=0

Three Familiar Examples

1 2 3
ATEY+n ifn> 1 2T(Z)+n ifn>1 2T(2) +n? ifn>1
T(n) = (2) n itn T(n) = (2) n itn T(n) = (2) n°- ifn
1 ifn<l1 1 ifn<1 1 ifn<l1
work at the root = n work at the root = n work at the root = 12
@ O @
O @ @, ® @ o O @;
0000 0000 0000 0000 @ @ O O O O O o

log, n log, n log, n

T = Y4 =6m) T = Y2 = 6wlogn T = Y 20 = o)
i=0 i=0 i=0

Three Familiar Examples

1

AT(Z)+n ifn>1
T(n) = 2
1 itn < 1

work at the root = n
@)

number of leaves =

log, n

T = Y, 4() = 60
i=0

T(n) = {2T(5)+n ifn>1

1 ifn <1

work at the root = n

number of leaves =

log, n

Tn) = Y zi(%) — O(nlogn)
i=0

Ay L2
T(n)z{ZT(2)+n ifn>1

1 ifn <1

work at the root = 12

number of leaves =

log, n

T = Y27 = o)
i=0

Three Familiar Examples

1 2 3
AT(ZY+n ifn>1 2T(Z2Y+n ifn>1 2T(XY+n? ifn>1
=44 Ty =14 2 T =4 ')
1 ifn<l1 1 ifn<1 1 ifn <1
work at the root = n work at the root = n work at the root = 12
@ O @
O @ O o @ o O O
0000 0000 0000 0000 Q @ O O O O @ o
number of leaves = 41°%:7 - ;2 number of leaves = 21°%:" - ;; number of leaves = 219827 — ;;

log, n log, n log, n

T = Y4 =6m) T = Y2 = 6wlogn T = Y 20 = o)
i=0 i=0 i=0

Three Familiar Examples

1 2 3
AT(ZY+n ifn>1 2T(Z2Y+n ifn>1 2T(XY+n? ifn>1
T(n) = (3) T(n) = (3) T(n) = (3)
1 ifn<l1 1 ifn<1 1 ifn<l1
work at the root = n work at the root = n work at the root = 12
@ O @
O @ O o @ o O O
0000 0000 0000 0000 Q @ O O O O @ o
number of leaves = 41°%:7 - ;2 number of leaves = 21°%:" - ;; number of leaves = 219827 — ;;
log, n log, n log, n

T = Y4 =6m) T = Y2 = 6wlogn T = Y 20 = o)
i=0 i=0 i=0

Claim. If # of leaves > work at the root: T(n) = O@(number leaves) leaf
It # of leaves = work at the root: T(n) = @(work at the root X number of levels)

If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1
T(n) = 2T(5) +c iftn>1
c ifn <1
®
@ @
[@ ® @
log, n

Claim. If # of leaves > work at the root: T(n) = O@(number leaves) leaf
It # of leaves = work at the root: T(n) = @(work at the root X number of levels)
If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1

2T(=) +c¢ ifn>1
T(n) = 2
C ifn<l

work at the root = ¢

number of leaves = 21927 _

log, n
T(n) = cX Z 2! = O(n)
i=0
Claim. If # of leaves > work at the root: T(n) = ®@(number leaves) leaf

It # of leaves = work at the root: T(n) = @(work at the root X number of levels)
If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1 3
2T(2)+c¢ ifn>1 T(S)+n ifn>1
T(n) = (3) T(n) = (3)
C itn <1 1 itn <1
work at the root = ¢
@ @
O
O O
O
O O @, @,
O
number of leaves = 21°%:2" — ;;
log, n | log, n n
T(n) = cx 2 2 =) T(n) = 2 = = 6
i=0 i=0
Claim. If # of leaves > work at the root: T(n) = ®@(number leaves) leaf

It # of leaves = work at the root: T(n) = @(work at the root X number of levels)

If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1 3
2T(2Y+c¢ ifn>1 T(X)+n ifn>1
T(n) = (3) T(n) = (3)
C itn <1 1 itn <1
work at the root = ¢ work at the root = n
@ @
O
O O
O
O O @, @,
O
number of leaves = 21°%:2" — ;; number of leaves = 1
log, n ' log, n n
T(n) = cx 2 2 = @) T(n) = 2 = = 6
i=0 i=0
Claim. If # of leaves > work at the root: T(n) = O@(number leaves) leaf

It # of leaves = work at the root: T(n) = @(work at the root X number of levels)

If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1 2 3
2T(2)+c¢ ifn>1 3T(Z ifn>1 T(X)+n ifn>1
C itn<1 1 ifn<l1 1 itn <1
work at the root = ¢ work at the root = n
® O @
O
O @, O O O
O
O O @, o 000 000 000
O
number of leaves = 21°%:2" — ;; number of leaves = 1
log, n | logg n 7 log, n n
T = ¢ X 2! = 0O T = 3, /— = 1 T = — =0
(n) = c ZO (n) (n) ZO Vo = ©Wnlogn) T 2o = O
Claim. If # of leaves > work at the root: T(n) = O@(number leaves) leaf

It # of leaves = work at the root: T(n) = @(work at the root X number of levels)

If # of leaves < work at the root: T(n) = O(work at the root) root

Another Three Familiar Examples

1 2 3
2T(S) +c ifn>1 3T(= ifn>1 T(=)+n ifn>1
C iftn<1 1 ifn<l1 1 ifn<1
work at the root = ¢ work at the root = \/Z work at the root = n
® O ®
®
® ® O » ®
O
® ® ® ® 000 000 000
®
number of leaves = 2/°%22" = 5 number of leaves = 31°%" - \/E number of leaves = 1
log, n | logg n 7 log, n n
T(n) = cX 2 =0 T = 3, /— = 0O | T(n) = — =0
(n) 25 (n) (n) 25 Vo = ©Wnlogn) T 25 (n)
Claim. If # of leaves > work at the root: T(n) = ®@(number leaves) leaf

It # of leaves = work at the root: T(n) = @(work at the root X number of levels)

If # of leaves < work at the root: T(n) = O(work at the root) root

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1

O(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:

Master Method

Given a recurrence equation of the following form:

T(n) =

aT(%) + f(n) if n>1
O(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:

there is at least one subproblems
whole subproblem! decrease in size

Master Method

Given a recurrence equation of the following form:

n
/7NN
aT(=) + f(n if n>1 7y
ron < { TG +
(1) if n=1
Where n is a positive integer, a > 1 and b > 1, then:
f(n) = work at the root Number of leaves = a'°%" = p'°%¢

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1

O(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:

Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Informally. If the work at the root is polynomially less than the number of leaves:

T(n) = O(number of leaves)

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

n
7 7N\
aT(=) + f(n) if n>1 4,
T(n) = >) + f
O(1) it n=1
Where n is a positive integer, a > 1 and b > 1, then:

Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Informally. If the work at the root is polynomially less than the number of leaves:

T(n) = O(number of leaves)
Example. T(n) = 4T(%) + nlogn

f(n) = work at the root Number of leaves = a'°%" = p'°%¢

Master Method

Given a recurrence equation of the following form:

Llf&
==
al(3) + f(n it n>1
ron < { TG +
O(1) it n=1
Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Informally. If the work at the root is polynomially less than the number of leaves:
T(n) = O(number of leaves)
Example. T(n) = 4T(%) + nlogn
f(n) =nlogn
nlogn = O(n'°%24-¢)
=0(n*°) foralle <1
T(n) = O(n”)
f(n) = work at the root Number of leaves = gq!°%" = p,'°%¢

Master Method

Given a recurrence equation of the following form:

==
al(3) + f(n it n>1 -
ron = 4 @TG) + S
O(1) it n=1
Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Informally. If the work at the root is polynomially less than the number of leaves:
T(n) = O(number of leaves)
Example. T(n) = 4T(%) +nlogn Example. T(n) = 2T(%) + nlogn
f(n)=nlogn f(n)=nlogn
nlogn = O(n'°%24-¢) nlogn # O(n'°%2%7¢)
= 0(n* ¢ foralle<1 #+ 0(n'=°)
T(n) = O(n?) Case 1 does not apply!
f(n) = work at the root Number of leaves = gq!°%" = p,'°%¢

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®% then T(n)=O(f(n)slogn)

Informally. If the work at the root is asymptotically the same as the number of leaves:

T(n) = O(work at the root X number of levels)

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

D
7 /NN
al(=) + f(n it n>1 R,
ron = 4 @TG) + S
O(1) if n=1
Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®% then T(n)=O(f(n)slogn)

Informally. If the work at the root is asymptotically the same as the number of leaves:

T(n) = O(work at the root X number of levels)

Example. T(n) = 2T(%) +n

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

n
7 7NN
al(3) + f(n it n>1 (5,
ron = 4 @TG) + S
O(1) it n=1
Where n is a positive integer, a > 1 and b > 1, then:

Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) =B[N then T(n) = O(f(n)elogn)
Informally. If the work at the root is asymptotically the same as the number of leaves:

T(n) = O(work at the root X number of levels)
Example. T(n) = 2T(%) +n

f(n) = n = O(n'°e?)

T(n) = O(nlogn)

f(n) = work at the root Number of leaves = gq!°%" = p,'°%¢

Master Method

Given a recurrence equation of the following form:

/700N
al(=) + f(n it n>1 4,
ron = 4 @TG) + S
O(1) it n=1
Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case 2. It f(n) = BO(n'°8) then T(n) = O(f(n)elogn)
Informally. If the work at the root is asymptotically the same as the number of leaves:
T(n) = O(work at the root X number of levels)
Example. T(n) = 2T(%) + nlogn

f(n) = nlogn # ©(n'°%?)
Case 2 does not apply

Example. T(n) = 2T(%) +n

f(n) = n = O(n'°%?)
T(n) = O(nlogn)

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1

O(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = O(n'°e9) then T(n) = O(f(n)elogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = O(n'°e9) then T(n) = O(f(n)elogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = ®(work at the root)

log, n log, a

f(n) = work at the root Number of leaves = a =n

Master Method

Given a recurrence equation of the following form:

/700N
al(=) + f(n it n>1 4,
v = T +)
O(1) if n=1
Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = 0On"°%% then 7T(n) = O(f(n)elogn)
Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = ®(work at the root)

Example. T(n) = 2T(5) + n’

f(n) = n* = Q(n'°22¢) = Q(n'*¢) foralle <1
T(n) = O(n?)
f(n) = work at the root Number of leaves = a'°%" = p'°%¢

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)
Case 2. If f(n) = O(n'°e9) then T(n) = O(f(n)elogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)

Informally. If work at the root is polynomially greater than the # of leaves: T(n) = ®(work at the root)

Example. T(n) = 2T(%) + n? Example. T(n) = 2T(%) + nlogn
fn) = n® = Q(n*=2+) = Q(n'+) fn) = nlogn # Q(n'*+)
T(n) = O(n?) Case 3 does not apply
f(n) = work at the root Number of leaves = a'°%" = p'°%¢

Master Method

Given a recurrence equation of the following form:

oo = { aT(%) + f(n) if n>1
a(1) if n=1

Where n is a positive integer, a > 1 and b > 1, then:
Case 1. If f(n)=0n"°%%€) then T(n)= O(n'°%%) (for some constant € > 0)

Case2. If f(n)=Om°®% then T(n)=O(f(n)slogn)

Case 3. If f(n) =Qn'°%%€) then T(n)= O(f(n)) (for some constant € > 0)
provided that there are constants ¢ < 1 and n,, Regularity Condition:
such that af(%) < c¢f(n) tforall n > n, work at children <

work at the parent

f(n) = work at the root Number of leaves = a'°%" = p'°%¢

Case 1 (Examples)

Given a recurrence equation of the following form: Case 1 (Tree is leaf-dominated)
al(=) + f(n) if n>1 If f(n)=O0n"°%%¢) then
I'(n) = b |
O(1) if n=1 T(n) = B(n"=)

(for some constant € > 0)

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence f(n) # of leaves Case 1 condition Result

T(n) = 4T(§) +n

T(n) = 2T(§) +c

T(n) = 3T(5) +/n

log, n log, a

f(n) = work at the root Number of leaves = a =n

Case 1 (Examples)

Given a recurrence equation of the following form: Case 1 (Tree is leaf-dominated)
al(=) + f(n) if n>1 If f(n)=O0n"°%%¢) then
I'(n) = b |
O(1) if n=1 T(n) = B(n"=)

(for some constant € > 0)

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence f(n) # of leaves Case 1 condition Result
T(n) = 4T(2) + " oz = 2 = 0 T(n) = O(n?)
2 B If we pick ¢ <1
. -0 l—e
T(n) =2T(3) +c¢ C nlog?2 — 51 X) T(n) = O(n)

If we pick e <1

n0.5 — O(I”l 1.585—6)

T(n) = 3T(Z) + log,3 _ ,,1.585 T(n) = @518
W=3TG+yn W aed=n lfwe picke < 1.085 0= O

log, n log, a

f(n) = work at the root Number of leaves = a =n

Case 3 (Examples)

Given a recurrence equation of the following form:

T { aT(%) + f(n) if n>1

O(1) it n=1

Where n is a positive integer, a > 1 and b > 1, then:

Case 3 (Tree is root-dominated)

If f(n) = Qn'°%%¢) then
I(n) = O(f(n))
(for some constant € > 0)

Regularity Condition: af(%) < cf(n)
for somec < 1

Recurrence # of leaves Case 3 condition

af(%) < cf(n) Result

T(n) = 2T(3) + n’

T(n) = T(%) +n

T(n) = T(%) +log,n

f(n) = work at the root Number of leaves = a

log, n log, a

- n

Case 3 (Examples)

Given a recurrence equation of the following form: Case 3 (Tree is root-dominated)
T al(;) + f(n) if n>1 If f(n)=Qn"°%) then
n) =
O(1) it n=1 I(n) = O(f(n))

(for some constant € > 0)

Regularity Condition: af(%) < cf(n)
for somec < 1

Where n is a positive integer, a > 1 and b > 1, then:

Recurrence # of leaves Case 3 condition af(%) < cf(n) Result
log, 2 1 n2 = Q(nHe) 2. (%)2 sce n2 ® 2
24 = T =
T(n) = 2T(%) + n? " " If we pick e <1 %nz < cen? () (")
pick 0.5 < c <1
| n = Q') le(3)<cen o0 = O

T(n)=T(%)+n If we picke < 1 %ngc-n
pick0.5<c <1

T(n) = T(%) + log2n nlogi2 — ,0 logzn * Q(n0+€)

f(n) = work at the root Number of leaves = g'°%" = /%% ¢

Exercises

1. T(n) =3T(5) + ny/n

2. T(n) = 2T(%) + log, n

3. T(n)= T(%) +c

4. T(n) = T(%) + nlog,n

Exercises

L 1T(n)= 3T(%) + ”\/E f(n) = n\/Z, a=3,b=2, #ofleaves = nl°83 = p1->%

nl> = O(n!°%7¢) if we pick € < 0.085, Therefore Case 1 applies: T(n) = O(n'>%)

2. T(n)=2T(3)+log,n f(n) = log, n, a=2,b=2, # of leaves = n'°%22 = !

log,n = O(n'=¢) if we pick € < 1, Therefore Case 1 applies: T(n) = O(n)

3. Tm)=T()+c f(n) =c, a=1,b=2, # of leaves = n'°221 =% = 1

f(n) = O(n'°% %), Therefore, Case 2 applies: T(n) = O(c X log n)

4. T(n) = T(%) + nlog,n f(n) =nlog,n, a=1, b =2, #ofleaves = noel = 50 =1

nlog,n = Qn'*¢), Case 3 might apply. Check the regularity condition: af(%) < cf(n).
I e % logzg < cenlog,n istrue. Therefore, Case 3 applies: T(n) = O(nlogn)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)

2. T(n)=2Tn—-1) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)

2. T(n)=2Tn—-1) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2Tn—-1) + O(n)

3. T(n) = %T(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2Tn—-1) + O(n)

3. T(n) = %T(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2Tn—-1) + O(n)
3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2Tn—-1) + O(n)
3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT($) + O(n)

5. T(n) = 2T(§) —n

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT($) + O(n)

5. T(n) = 2T(§) —n

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

5. T(n) = 2T(§) —n

6. T(n) = 2T(%) + O(nlogn)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

5. T(n) = 2T(§) —n

6. T(n) = 2T(%) + O(nlogn)

Examples for Cases Where the Master Method does not Apply

1. T(n) = T(%) + T(%) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

5. T(n) = 2T(§) —n

6. T(n)= 2T(§) + O(nlogn)

7. T(n) = T(%) + n(2 cos n)

Examples for Cases Where the Master Method does not Apply

1. T(n) =T(3) + T(5) + O(n)
2. T(n)=2T(n— 1)+ O(n)

3. T(n) = T(%) + O(n)

4. T(n) = nT(%) + O(n)

5. T(n) =2T(5) —n

6. T(n) = 2T(§) + O(nlogn)

7. T(n) = T(%) + n(2 cos n)
There is no constant ¢ for which
%(2 COS(%)) < cn(2 cos n) is always true for large n.

optional

Proof # 1

1. Prove the master theorem.

Proof # 2

1. Prove that the regularity condition always holds if f(n) = On?

Proof # 3

1. Prove that if the regularity condition is true then f(n) = Q(n'°8(“*¢) is also true
but not the other way round.

