CS11313 - Spring 2022

Design \& Analysis of Algorithms

Master Method
Ibrahim Albluwi

Three Familiar Examples

$$
T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

Three Familiar Examples

1
$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
2
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$

Three Familiar Examples

1
$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$

2
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

Three Familiar Examples

$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
2
3
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

$$
T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right)
$$

$T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)$

Three Familiar Examples

1
$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
2
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

work at the root $=$

$T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right)$
work at the root $=$

work at the root $=$

$$
T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)
$$

Three Familiar Examples

$T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right)$
work at the root $=n^{2}$

$T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)$

Three Familiar Examples

$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
work at the root $=n$
number of leaves $=$

$$
T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)=\Theta(n \log n) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)
$$

Three Familiar Examples

1
$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
2
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
3
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
work at the root $=n$
number of leaves $=4^{\log _{2} n}=n^{2}$
work at the root $=n$

$$
\text { number of leaves }=2^{\log _{2} n}=n
$$

work at the root $=n^{2}$

$$
T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)=\Theta(n \log n) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)
$$

Three Familiar Examples

1
$T(n)= \begin{cases}4 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
2
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}$
work at the root $=n$

number of leaves $=4^{\log _{2} n}=n^{2}$

$$
\text { number of leaves }=2^{\log _{2} n}=n
$$

$$
T(n)=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)=\Theta\left(n^{2}\right) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)=\Theta(n \log n) \quad T(n)=\sum_{i=0}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\Theta\left(n^{2}\right)
$$

Claim. If \# of leaves $>$ work at the root: $T(n)=\Theta$ (number leaves)
tree is leaf dominated
If \# of leaves \equiv work at the root: $\quad T(n)=\Theta$ (work at the root \times number of levels) all levels are the same If \# of leaves < work at the root: $T(n)=\Theta$ (work at the root)

Another Three Familiar Examples

1
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c & \text { if } n>1 \\ c & \text { if } n \leq 1\end{cases}$

$$
T(n)=c \times \sum_{i=0}^{\log _{2} n} 2^{i}=\Theta(n)
$$

Claim. If \# of leaves $>$ work at the root: $\quad T(n)=\Theta$ (number leaves)

Another Three Familiar Examples

1
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c & \text { if } n>1 \\ c & \text { if } n \leq 1\end{cases}$
work at the root $=c$
number of leaves $=2^{\log _{2} n}=n$

$$
T(n)=c \times \sum_{i=0}^{\log _{2} n} 2^{i}=\Theta(n)
$$

Claim. If \# of leaves $>$ work at the root: $\quad T(n)=\Theta$ (number leaves)
tree is leaf dominated If \# of leaves \equiv work at the root: $\quad T(n)=\Theta$ (work at the root \times number of levels) all levels are the same If \# of leaves $<$ work at the root: $\quad T(n)=\Theta$ (work at the root)

Another Three Familiar Examples

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c & \text { if } n>1 \\ c & \text { if } n \leq 1\end{cases}
$$

3

$$
T(n)= \begin{cases}T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

work at the root $=c$

$$
\text { number of leaves }=2^{\log _{2} n}=n
$$

$$
T(n)=c \times \sum_{i=0}^{\log _{2} n} 2^{i}=\Theta(n)
$$

$$
T(n)=\sum_{i=0}^{\log _{2} n} \frac{n}{2^{i}}=\Theta(n)
$$

Claim. If \# of leaves $>$ work at the root: $\quad T(n)=\Theta$ (number leaves)
tree is leaf dominated If \# of leaves \equiv work at the root: $\quad T(n)=\Theta$ (work at the root \times number of levels)
all levels are the same If \# of leaves $<$ work at the root: $\quad T(n)=\Theta$ (work at the root)

Another Three Familiar Examples

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c & \text { if } n>1 \\ c & \text { if } n \leq 1\end{cases}
$$

work at the root $=c$
number of leaves $=2^{\log _{2} n}=n$

$$
T(n)=c \times \sum_{i=0}^{\log _{2} n} 2^{i}=\Theta(n)
$$

3

$$
T(n)= \begin{cases}T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

work at the root $=n$
number of leaves $=1$

$$
T(n)=\sum_{i=0}^{\log _{2} n} \frac{n}{2^{i}}=\Theta(n)
$$

Claim. If \# of leaves $>$ work at the root: $\quad T(n)=\Theta$ (number leaves)
tree is leaf dominated If \# of leaves \equiv work at the root: $\quad T(n)=\Theta$ (work at the root \times number of levels)
all levels are the same If \# of leaves $<$ work at the root: $T(n)=\Theta$ (work at the root)

Another Three Familiar Examples

1
$T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c & \text { if } n>1 \\ c & \text { if } n \leq 1\end{cases}$
work at the root $=c$

number of leaves $=2^{\log _{2} n}=n$

2

$$
T(n)= \begin{cases}3 T\left(\frac{n}{9}\right)+\sqrt{n} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

$$
T(n)= \begin{cases}T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

work at the root $=n$

$$
T(n)=c \times \sum_{i=0}^{\log _{2} n} 2^{i}=\Theta(n)
$$

$T(n)=\sum_{i=0}^{\log _{9} n} 3^{i} \sqrt{\frac{n}{9 i}}=\Theta(\sqrt{n} \log n)$
$T(n)=\sum_{i=0}^{\log _{2} n} \frac{n}{2^{i}}=\Theta(n)$

Claim. If \# of leaves $>$ work at the root: $\quad T(n)=\Theta$ (number leaves)
tree is leaf dominated
all levels are the same If \# of leaves < work at the root: $T(n)=\Theta$ (work at the root)

Another Three Familiar Examples

$$
\text { number of leaves }=2^{\log _{2} n}=n
$$

2

$$
T(n)= \begin{cases}3 T\left(\frac{n}{9}\right)+\sqrt{n} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

work at the root $=\sqrt{n}$

number of leaves $=3^{\log _{9} n}=\sqrt{n}$

3

$$
T(n)= \begin{cases}T\left(\frac{n}{2}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

$$
\text { number of leaves }=1
$$

$$
T(n)=\sum_{i=0}^{\log _{2} n} \frac{n}{2^{i}}=\Theta(n)
$$

Claim. If \# of leaves $>$ work at the root: $T(n)=\Theta$ (number leaves)
tree is leaf dominated
all levels are the same If \# of leaves < work at the root: $T(n)=\Theta$ (work at the root)

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

$$
\begin{array}{ll}
\text { there is at least one } & \text { subproblems } \\
\text { whole subproblem! } & \text { decrease in size }
\end{array}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ (for some constant $\epsilon>0$)
Informally. If the work at the root is polynomially less than the number of leaves:

$$
T(n)=\Theta(\text { number of leaves })
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Informally. If the work at the root is polynomially less than the number of leaves:

$$
T(n)=\Theta(\text { number of leaves })
$$

Example. $\quad T(n)=4 T\left(\frac{n}{2}\right)+n \log n$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Informally. If the work at the root is polynomially less than the number of leaves:

$$
T(n)=\Theta(\text { number of leaves })
$$

Example. $\quad T(n)=4 T\left(\frac{n}{2}\right)+n \log n$

$$
\begin{aligned}
& \begin{array}{l}
f(n)=n \log n \\
n \log n=O\left(n^{\log _{2} 4-\epsilon}\right) \\
\quad=O\left(n^{2-\epsilon}\right) \quad \text { for all } \epsilon \leq 1
\end{array} \\
& T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$ (for some constant $\epsilon>0$)

Informally. If the work at the root is polynomially less than the number of leaves:

$$
T(n)=\Theta(\text { number of leaves })
$$

Example. $\quad T(n)=4 T\left(\frac{n}{2}\right)+n \log n$

$$
\begin{aligned}
& f(n)=n \log n \\
& \begin{aligned}
n \log n & =O\left(n^{\log _{2} 4-\epsilon}\right) \\
& =O\left(n^{2-\epsilon}\right) \quad \text { for all } \epsilon \leq 1
\end{aligned} \\
& T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n \log n$

$$
f(n)=n \log n
$$

$$
n \log n \neq O\left(n^{\log _{2} 2-\epsilon}\right)
$$

$$
\neq O\left(n^{1-\epsilon}\right)
$$

Case 1 does not apply!

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$
Informally. If the work at the root is asymptotically the same as the number of leaves:

$$
T(n)=\Theta(\text { work at the root } \times \text { number of levels })
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$
Informally. If the work at the root is asymptotically the same as the number of leaves:

$$
T(n)=\Theta(\text { work at the root } \times \text { number of levels })
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$
Informally. If the work at the root is asymptotically the same as the number of leaves:

$$
T(n)=\Theta(\text { work at the root } \times \text { number of levels })
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n$

$$
\begin{aligned}
& f(n)=n=\Theta\left(n^{\log _{2} 2}\right) \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$
Informally. If the work at the root is asymptotically the same as the number of leaves:

$$
T(n)=\Theta(\text { work at the root } \times \text { number of levels })
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n$

$$
\begin{aligned}
& f(n)=n=\Theta\left(n^{\log _{2} 2}\right) \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n \log n$
$f(n)=n \log n \neq \Theta\left(n^{\log _{2} 2}\right)$
Case 2 does not apply

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$

Case 3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ then $T(n)=\Theta(f(n))$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$

Case 3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ then $T(n)=\Theta(f(n))$ (for some constant $\epsilon>0$)

Informally. If work at the root is polynomially greater than the \# of leaves: $T(n)=\Theta$ (work at the root)

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$

Case 3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ then $T(n)=\Theta(f(n))$ (for some constant $\epsilon>0$)

Informally. If work at the root is polynomially greater than the \# of leaves: $T(n)=\Theta$ (work at the root)
Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n^{2}$

$$
\begin{aligned}
& f(n)=n^{2}=\Omega\left(n^{\log _{2} 2+\epsilon}\right)=\Omega\left(n^{1+\epsilon}\right) \quad \text { for all } \epsilon \leq 1 \\
& T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
(for some constant $\epsilon>0$)

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$

Case 3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ then $\quad T(n)=\Theta(f(n))$
(for some constant $\epsilon>0$)
Informally. If work at the root is polynomially greater than the \# of leaves: $T(n)=\Theta$ (work at the root)

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n^{2}$

$$
\begin{aligned}
& f(n)=n^{2}=\Omega\left(n^{\log _{2} 2+\epsilon}\right)=\Omega\left(n^{1+\epsilon}\right) \\
& T(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

Example. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n \log n$ $f(n)=n \log n \neq \Omega\left(n^{1+\epsilon}\right)$
Case 3 does not apply

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Master Method

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

Case 2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta(f(n) \bullet \log n)$

Case 3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ then $T(n)=\Theta(f(n))$
(for some constant $\epsilon>0$)
provided that there are constants $c<1$ and n_{0}, \quad Regularity Condition: such that $a f\left(\frac{n}{b}\right) \leq c f(n)$ for all $n \geq n_{0}$. work at children \leq work at the parent

$$
f(n)=\text { work at the root } \quad \| \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Case 1 (Examples)

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1 (Tree is leaf-dominated)

$$
\text { If } \begin{aligned}
f(n) & =O\left(n^{\log _{b} a-\epsilon}\right) \quad \text { then } \\
T(n) & =\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

(for some constant $\epsilon>0$)
Recurrence $\quad f(n) \quad$ Case 1 condition Reaves

$$
T(n)=4 T\left(\frac{n}{2}\right)+n
$$

$$
T(n)=2 T\left(\frac{n}{2}\right)+c
$$

$$
T(n)=3 T\left(\frac{n}{2}\right)+\sqrt{n}
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Case 1 (Examples)

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 1 (Tree is leaf-dominated)

$$
\text { If } \begin{aligned}
f(n) & =O\left(n^{\log _{b} a-\epsilon}\right) \quad \text { then } \\
T(n) & =\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

(for some constant $\epsilon>0$)

Recurrence	$f(n)$	\# of leaves	Case 1 condition	Result
$T(n)=4 T\left(\frac{n}{2}\right)+n$	n	$n^{\log _{2} 4}=n^{2}$	$n=O\left(n^{2-\epsilon}\right)$ If we pick $\epsilon \leq 1$	$T(n)=\Theta\left(n^{2}\right)$
$T(n)=2 T\left(\frac{n}{2}\right)+c$	c	$n^{\log _{2} 2}=n^{1}$	$c=O\left(n^{1-\epsilon}\right)$ If we pick $\epsilon \leq 1$	$T(n)=\Theta(n)$
$T(n)=3 T\left(\frac{n}{2}\right)+\sqrt{n}$	\sqrt{n}	$n^{\log _{2} 3}=n^{1.585}$	$n^{0.5}=O\left(n^{1.585-\epsilon}\right)$ If we pick $\epsilon \leq 1.085$	$T(n)=\Theta\left(n^{1.585}\right)$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 3 (Tree is root-dominated)

$$
\text { If } \begin{aligned}
f(n) & =\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad \text { then } \\
T(n) & =\Theta(f(n))
\end{aligned}
$$

(for some constant $\epsilon>0$)
Regularity Condition: $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some $c<1$

Case 3 condition $\quad a f\left(\frac{n}{b}\right) \leq c f(n) \quad$ Result
$T(n)=2 T\left(\frac{n}{2}\right)+n^{2}$
$T(n)=T\left(\frac{n}{2}\right)+n$

$$
T(n)=T\left(\frac{n}{2}\right)+\log _{2} n
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

Where n is a positive integer, $a \geq 1$ and $b>1$, then:

Case 3 (Tree is root-dominated)

$$
\text { If } \begin{aligned}
f(n) & =\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad \text { then } \\
T(n) & =\Theta(f(n))
\end{aligned}
$$

(for some constant $\epsilon>0$)
Regularity Condition: $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some $c<1$
Case 3 condition $\quad a f\left(\frac{n}{b}\right) \leq c f(n) \quad$ Result
$n^{2}=\Omega\left(n^{1+\epsilon}\right) \quad 2 \cdot\left(\frac{n}{2}\right)^{2} \leq c \cdot n^{2}$
If we pick $\epsilon \leq 1 \quad \frac{1}{2} n^{2} \leq c \cdot n^{2}$
$T(n)=\Theta\left(n^{2}\right)$
pick $0.5<c<1$
$n=\Omega\left(n^{0+\epsilon}\right) \quad 1 \bullet\left(\frac{n}{2}\right) \leq c \bullet n$

$$
T(n)=\Theta(n)
$$

If we pick $\epsilon \leq 1 \quad \frac{1}{2} n \leq c \cdot n$ pick $0.5 \leq c<1$

$$
T(n)=T\left(\frac{n}{2}\right)+\log _{2} n \quad n^{\log _{1} 2}=n^{0} \quad \log _{2} n \neq \Omega\left(n^{0+\epsilon}\right)
$$

$$
f(n)=\text { work at the root } \quad \mid \quad \text { Number of leaves }=a^{\log _{b} n}=n^{\log _{b} a}
$$

Exercises

1. $T(n)=3 T\left(\frac{n}{2}\right)+n \sqrt{n}$
2. $\quad T(n)=2 T\left(\frac{n}{2}\right)+\log _{2} n$
3. $T(n)=T\left(\frac{n}{2}\right)+c$
4. $T(n)=T\left(\frac{n}{2}\right)+n \log _{2} n$

Exercises

1. $T(n)=3 T\left(\frac{n}{2}\right)+n \sqrt{n} \quad f(n)=n \sqrt{n}, \quad a=3, b=2, \quad \#$ of leaves $=n^{\log _{2} 3}=n^{1.585}$ $n^{1.5}=O\left(n^{1.585-\epsilon}\right)$ if we pick $\epsilon \leq 0.085$, Therefore Case 1 applies: $T(n)=\Theta\left(n^{1.585}\right)$
2. $\quad T(n)=2 T\left(\frac{n}{2}\right)+\log _{2} n \quad f(n)=\log _{2} n, \quad a=2, b=2, \quad$ \# of leaves $=n^{\log _{2} 2}=n^{1}$ $\log _{2} n=O\left(n^{1-\epsilon}\right)$ if we pick $\epsilon<1$, Therefore Case 1 applies: $T(n)=\Theta(n)$
3. $T(n)=T\left(\frac{n}{2}\right)+c \quad f(n)=c, \quad a=1, b=2, \quad$ \# of leaves $=n^{\log _{2} 1}=n^{0}=1$ $f(n)=\Theta\left(n^{\log _{b} a}\right)$. Therefore, Case 2 applies: $T(n)=\Theta(c \times \log n)$
4. $\quad T(n)=T\left(\frac{n}{2}\right)+n \log _{2} n \quad f(n)=n \log _{2} n, \quad a=1, b=2, \quad$ \# of leaves $=n^{\log _{2} 1}=n^{0}=1$ $n \log _{2} n=\Omega\left(n^{0+\epsilon}\right)$, Case 3 might apply. Check the regularity condition: $a f\left(\frac{n}{b}\right) \leq c f(n)$. $1 \cdot \frac{n}{2} \log _{2} \frac{n}{2} \leq c \bullet n \log _{2} n$ is true. Therefore, Case 3 applies: $T(n)=\Theta(n \log n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $T(n)=2 T(n-1)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $T(n)=2 T(n-1)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $T(n)=2 T(n-1)+\Theta(n)$

Subproblems decrease linearly in size.
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $T(n)=2 T(n-1)+\Theta(n)$

Subproblems decrease linearly in size.
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$

Subproblems decrease linearly in size.

Number of subproblems is less than 1.
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$

Number of subproblems is less than 1.
Subproblems decrease linearly in size.

Number of subproblems is not constant.

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n) \quad$ Subproblems are not of an equal size.
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$

Number of subproblems is less than 1.
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$

Subproblems decrease linearly in size.

Number of subproblems is not constant.
$f(n)$ is not positive

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n)$
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$
6. $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n \log n)$

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.
$f(n)$ is not positive

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n)$
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$
6. $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n \log n)$

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.
$f(n)$ is not positive

No polynomial separation between $f(n)$ and the number of leaves.

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n)$
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$
6. $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n \log n)$

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.
$f(n)$ is not positive

No polynomial separation between $f(n)$ and the number of leaves.
7. $\quad T(n)=T\left(\frac{n}{2}\right)+n(2 \cos n)$

Examples for Cases Where the Master Method does not Apply

1. $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{3}\right)+\Theta(n)$
2. $\quad T(n)=2 T(n-1)+\Theta(n)$
3. $T(n)=\frac{1}{2} T\left(\frac{n}{2}\right)+\Theta(n)$
4. $T(n)=n T\left(\frac{n}{2}\right)+\Theta(n)$
5. $T(n)=2 T\left(\frac{n}{2}\right)-n$
6. $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n \log n)$
7. $\quad T(n)=T\left(\frac{n}{2}\right)+n(2 \cos n)$

Subproblems are not of an equal size.

Subproblems decrease linearly in size.

Number of subproblems is less than 1.

Number of subproblems is not constant.
$f(n)$ is not positive

No polynomial separation between $f(n)$ and the number of leaves.

Regularity condition does not hold.
There is no constant c for which
$\frac{n}{2}\left(2 \cos \left(\frac{n}{2}\right)\right) \leq c n(2 \cos n)$ is always true for large n.

optional

1. Prove the master theorem.

Proof \# 2

1. Prove that the regularity condition always holds if $f(n)=O\left(n^{d}\right)$

Proof \# 3

1. Prove that if the regularity condition is true then $f(n)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$ is also true but not the other way round.
