11313 - 2021
Design & Analysis
of Algorithms

NP Completeness

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Algorithm for X

Solution for
» X

Input for
X

| Algorithm for Post-.
processing \' processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Figure adapted from a slide by Kevin Wayne

A reduction from problem X to problem Y:
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Problem X reduces to problem Y

(denoted as X < Y): An algorithm
for solving Y can be used to solve X.

Problem X polytime-reduces to problem Y (X <, Y):

An algorithm for solving Y can be used to solve X
in addition to a polynomial-time amount of work.

Algorithm for X

Input for B Aloori Solution for
orithm for _
X rocessin ; Y roii?sin > X

Total cost for solving X = Cost of solving Y + Cost of reduction

Reductions (Examples)

LINEAR QUADRATIC
Given b and ¢, solve bx +c¢ =0 Givena, band ¢, solve ax?+bx+c¢ =0

Reductions (Examples)

LINEAR
Given b and ¢, solve bx +c¢ =0

LINEAR reduces to QUADRATIC
LINEAR solver

b QUADRATIC
solver

o

QUADRATIC
Givena, band ¢, solve ax?+bx+c¢ =0

Reductions (Examples)

LINEAR QUADRATIC
Given b and ¢, solve bx +c¢ =0 Givena, band ¢, solve ax?+bx+c¢ =0

LINEAR reduces to QUADRATIC

LINEAR solver
b QUADRATIC >
C solver
SELECT SORT
Given a list of elements, find the k™ largest Given a list of elements, order the elements

element. in non-decreasing order.

Reductions (Examples)

LINEAR QUADRATIC
Given b and ¢, solve bx +c¢ =0 Givena, band ¢, solve ax?+bx+c¢ =0

LINEAR reduces to QUADRATIC

LINEAR solver
b QUADRATIC N
C solver
SELECT SORT
Given a list of elements, find the k™ largest Given a list of elements, order the elements
element. in non-decreasing order.
SELECT reduces to SORT SORT reduces to SELECT
Use SORT to sort the elements and then Sort the elements by repeatedly using

report the element of rank k. SELECT to find the next largest element.

Reductions (Examples)

LINEAR
Given b and ¢, solve bx +c¢ =0

LINEAR reduces to QUADRATIC
LINEAR solver

b QUADRATIC

solver

o

SELECT
Given a list of elements, find the k™ largest

element.

SELECT reduces to SORT

Use SORT to sort the elements and then
report the element of rank k.

Running Time. O(N log N) 4+ O(1)

QUADRATIC
Givena, band ¢, solve ax?+bx+c¢ =0

SORT
Given a list of elements, order the elements
in non-decreasing order.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

Running Time. O(N) X O(N)

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
Gtod.

Reductions (Examples)

SSSP (Single Source Shortest Paths) SDSP (Single Destination Shortest Paths)
Given a graph G and a source vertex s, find Given a graph G and a destination vertex d,
the shortest path from s to every vertex in find the shortest path from every vertex in
G. Gtod.

SSSP reduces to SDSP

. Create G!, a transpose of G.

e Set sto d and run SSSP on G'.

« Transpose the shortest paths tree.

Reductions (Examples)

SSSP (Single Source Shortest Paths) SDSP (Single Destination Shortest Paths)
Given a graph G and a source vertex s, find Given a graph G and a destination vertex d,
the shortest path from s to every vertex in find the shortest path from every vertex in
G. Gtod.

Running Time. O(ElogV)+ O(E+ V)

SSSP reduces to SDSP

. Create G!, a transpose of G.

e Set sto d and run SSSP on G'.

« Transpose the shortest paths tree.

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X

C. Computers can solve any problem. It is only that we might not
be clever enough to come up with an algorithm!

D. It depends.

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

G\ : Show that X reduces to Yj

B. Show that Y reduces to X

C. Computers can solve any problem. It is only that we might not
be clever enough to come up with an algorithm!

D. It depends.

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

G\ : Show that X reduces to Yj

B. Show that Y reduces to X

C. Computers can solve any problem. It is only that we might not
be clever enough to come up with an algorithm!

D. It depends.

X reducesto Y Y reduces to X
FWe can use Y to solve X. A We can use X to solve Y.

If Y is solvable: While X is unsolvable, there might be
LX is also solvable (contradiction!)J another way for solving Y not using X.

Reductions (Examples) optional

TOTALITY EQUIVALENCE
Does a given program P terminate Given two programs P, and P,. Do these two
on all possible inputs? programs produce the same output for every input?

(never enters an infinite loop!) (i.e. are they equivalent?)

Reductions (Examples) optional

TOTALITY EQUIVALENCE

Does a given program P terminate Given two programs P, and P,. Do these two

on all possible inputs? programs produce the same output for every input?
(never enters an infinite loop!) (i.e. are they equivalent?)
We know that TOTALITY is an impossible problem to solve. < see the theory

of computation
course!

Reductions (Examples) optional

TOTALITY EQUIVALENCE

Does a given program P terminate Given two programs P, and P,. Do these two

on all possible inputs? programs produce the same output for every input?
(never enters an infinite loop!) (i.e. are they equivalent?)
We know that TOTALITY is an impossible problem to solve. < see the theory

of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Reductions (Examples) optional

TOTALITY EQUIVALENCE

Does a given program P terminate Given two programs P, and P,. Do these two

on all possible inputs? programs produce the same output for every input?

(never enters an infinite loop!) (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. < see the theory
of computation
course!

How can we show that EQUIVALENCE is also impossible to solve?
Answer. Show that TOTALITY reducesto EQUIVALENCE.

Reductions (Examples) optional

TOTALITY EQUIVALENCE
Does a given program P terminate Given two programs P, and P,. Do these two
on all possible inputs? programs produce the same output for every input?
(never enters an infinite loop!) (i.e. are they equivalent?)
We know that TOTALITY is an impossible problem to solve. < see the theory
of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reducesto EQUIVALENCE.

TOTALITY reduces to EQUIVALENCE

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible, EQUIVALENCE must also be impossible.

Reductions (Examples) optional

TOTALITY EQUIVALENCE
Does a given program P terminate Given two programs P, and P,. Do these two
on all possible inputs? programs produce the same output for every input?
(never enters an infinite loop!) (i.e. are they equivalent?)
We know that TOTALITY is an impossible problem to solve. < see the theory
of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reducesto EQUIVALENCE.

TOTALITY reduces to EQUIVALENCE

« Create P, as a copy of P, except that it outputs TRUE instead of its original output.

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible, EQUIVALENCE must also be impossible.

Reductions (Examples) optional

TOTALITY EQUIVALENCE
Does a given program P terminate Given two programs P, and P,. Do these two
on all possible inputs? programs produce the same output for every input?
(never enters an infinite loop!) (i.e. are they equivalent?)
We know that TOTALITY is an impossible problem to solve. < see the theory
of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reducesto EQUIVALENCE.

TOTALITY reduces to EQUIVALENCE

« Create P, as a copy of P, except that it outputs TRUE instead of its original output.

« Create a program P, that outputs TRUE and does nothing else.

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible, EQUIVALENCE must also be impossible.

Reductions (Examples) optional

TOTALITY EQUIVALENCE

Does a given program P terminate Given two programs P, and P,. Do these two

on all possible inputs? programs produce the same output for every input?

(never enters an infinite loop!) (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. < see the theory
of computation

How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reducesto EQUIVALENCE.

TOTALITY reduces to EQUIVALENCE

« Create P, as a copy of P, except that it outputs TRUE instead of its original output.
« Create a program P, that outputs TRUE and does nothing else.
« Use EQUIVALENCE to checkif P; and P, are equivalent.

If they are equivalent, P terminates on all input. If they are not, the only possibility is
that P does not terminate on some input (since the output of P; and P, is always the same).

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known
to be impossible, EQUIVALENCE must also be impossible.

Reductions (Examples) optional

PAIR SORT
Given lists L, and L, of size N, pair the min in L, with the Given a list of elements, sort
min in L,, the next min in L; with the next min in L,, etc. them in non-decreasing order.
Example. r, = [13, 7, 3, 1, 11, 2]

L, =1[2,8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

Reductions (Examples) optional

PAIR SORT
Given lists L, and L, of size N, pair the min in L, with the Given a list of elements, sort
min in L,, the next min in L; with the next min in L,, etc. them in non-decreasing order.
Example. r, = [13, 7, 3, 1, 11, 2]

L, =1[2,8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

PAIR reduces to SORT

« Use SORT to sort L; and L,.

e Pair L,[0] with L,[0],
L,[1] with L,[1],
etc.

Reductions (Examples) optional

PAIR SORT
Given lists L, and L, of size N, pair the min in L, with the Given a list of elements, sort
min in L,, the next min in L; with the next min in L,, etc. them in non-decreasing order.
Example. r, = [13, 7, 3, 1, 11, 2]

L, =1[2,8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

PAIR reduces to SORT SORT reduces to PAIR
+ Use SORT to sort L; and L. o Let L, be the list to be sorted.
e Pair L;[0] with L,[0], « Create L, containing the numbers 1 to N.
L,[1] with L,[1],

. Extract the sorted version of L, from the

etc. result of applylng PAIR on Ll and L2.

Reductions (Examples) optional

L=[1,7,3,2] e PATR
. L,=[1,2,3,4]— NG

a .
Implication. h
_ J
r N

SORT reduces to PAIR
 Let L, be the list to be sorted.
» Create L, containing the numbers 1 to N.

. Extract the sorted version of L, from the

g result of applying PAIR on L, and L,.
y,

Reductions (Examples) optional

L=[1,7,3,2] e PATR
L L,=[1,2,3,4]— KNGS

~ L)
Implication.
« We already know that any comparison based algorithm for SORT performs
Q(N log N) compares in the worst case.
\ J
~ R

SORT reduces to PAIR
 Let L, be the list to be sorted.
» Create L, containing the numbers 1 to N.

. Extract the sorted version of L, from the

g result of applying PAIR on L, and L,.
y,

Reductions (Examples) optional

L=[1,7,3,2] e PATR
L L,=[1,2,3,4]— KNGS

4 e)
Implication.
« We already know that any comparison based algorithm for SORT performs
Q(N log N) compares in the worst case.
« 'The reduction from SORT to PAIR requires only ®(N) amount of work
(creating L, and extracting the result)
\ y,
~ A

SORT reduces to PAIR
 Let L, be the list to be sorted.
» Create L, containing the numbers 1 to N.

. Extract the sorted version of L, from the

g result of applying PAIR on L, and L,.
y,

Reductions (Examples) optional

L=[1,7,3,2] e PATR
L L,=[1,2,3,4]— KNGS

4 e)
Implication.
« We already know that any comparison based algorithm for SORT performs
Q(N log N) compares in the worst case.
« 'The reduction from SORT to PAIR requires only ®(N) amount of work
(creating L, and extracting the result)
¢ PAIR must require (N log N) compares in the worst case.
Otherwise, the Q(N log N) lower bound for SORT is not correct (contradiction!)
\ y,
~ A

SORT reduces to PAIR
 Let L, be the list to be sorted.
» Create L, containing the numbers 1 to N.

. Extract the sorted version of L, from the

g result of applying PAIR on L, and L,.
y,

NEVER FORGET

If A is hard to solve and
A easily reducesto B (A <, B),

Then B is also hard to solve!

NEVER FORGET

If A is hard to solve and
A easily reducesto B (A <, B),

Then B is also hard to solve!

!

@

_— /‘".

<

What doeg it mean for a problem to be hard anyway?

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs
Shortest Paths on weighted DAGs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs
Shortest Paths on weighted DAGs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs
Shortest Paths on weighted DAGs
@ Longest Paths on weighted DAGs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs
Shortest Paths on weighted DAGs
@ Longest Paths on weighted DAGs
Shortest Paths on weighted graphs (no negative weights)

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

@ Longest Paths on weighted DAGs

@ Shortest Paths on weighted graphs (no negative weights)

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

v WWO O

o Longest Paths on weighted graphs [N L IR T VR A AR R 2 SR

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

r WOO

o Longest Paths on weighted graphs [N L IR T VR A AR R 2 SR

| Fractional Knapsack Problem

%% 0-1 Knapsack Problem NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Ve

A fine line Between Hard and Easy Problems

@ Shortest Paths on unweighted graphs
@ Shortest Paths on weighted DAGs
@ Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

o Longest Paths on weighted graphs [N L IR T VR A AR R 2 SR

@ Fractional Knapsack Problem

%% 0-1 Knapsack Problem NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Change Making for canonical coin systems

%% Change Making for arbitrary coin systems

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? O VQ
(a cycle that visits all the edges in G exactly once) T é

A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? O vQ

(a cycle that visits all the edges in G exactly once) P e, e :

A
Direct solution: True if and only if each vertex 04 ------- DI
has an even degree!

A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? O VQ

(a cycle that visits all the edges in G exactly once) P e, e :

A
Direct solution: True if and only if each vertex 04 ------- DI
has an even degree!

Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex
has an even degree!

%> Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

L 4
L 4
*
*
L 4
*
L 4
.0
*

*
*
*
*
*
*
*
*
‘O
¢

A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? Q VC)

(a cycle that visits all the edges in G exactly once) P e, e

A
Direct solution: True if and only if each vertex 04 ------- DI é
has an even degree!

%> Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

% Traveling Salesman Problem (TSP)
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

@ Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length
(can be checked using BFT)

xx Is a graph k-Colorable?
(can the vertices be colored using k colors or less, such
that no two adjacent vertices have the same color?)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

More Hard Problems

Bin Packing

Given an unlimited number of bins (each with capacity C), and n objects with

sizes sy, ... ,5, where 0 < s5; < C, find the minimum number of bins needed to
pack all objects.

! s[5’ 5|5
113 3

More Hard Problems

Bin Packing

Given an unlimited number of bins (each with capacity C), and n objects with

sizes sy, ... ,5, where 0 < s5; < C, find the minimum number of bins needed to
pack all objects.

Syl NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

! s[5’ 5|5
113 3

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6},k= 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} «—— minsubset

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6},k= 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} «—— minsubset

>yl NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6},k= 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} «—— minsubset

>yl NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Partition
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6},k= 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} «—— minsubset

>yl NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Partition
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No

>l NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset

Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

O

(3) Each of them poly-time reduces to all the other problems!

L.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial
time solution for any of them or prove that any of them can't have a polynomial
time solution!

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!

L.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial
time solution for any of them or prove that any of them can't have a polynomial
time solution!

Welcome to the

P vs NP

Problem

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a

¥y <
o === -

simple circuit C that visits each node in G A)’

exactly once such that the total cost of the AR | L\,

edges in Cis minimum. fi \ { = “d
) ; A:)"”f» -

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a

simple circuit C that visits each node in G A AU mu'-:i
exactly once such that the total cost of the e i | _~%
edges in C is minimum. fi N e < d
Decision problem: \\ Lo ‘
Given a complete weighted graph G, does T O | I
G contain a simple circuit C that visits each i S

node exactly once such that the total cost

of the edges in Cis less than or equal to
some threshold T?

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Bin-Packing

Optimization problem:

Given an unlimited number of

bins (each with capacity C), and n [5|51’ 515
objects with sizes s, ... , s, where

0 <s; < C, find the minimum
number of bins needed to pack all
objects

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Bin-Packing

Optimization problem:

Given an unlimited number of

bins (each with capacity C), and n [5|51’ 515
objects with sizes s, ... , s, where

0 <s; < C, find the minimum
number of bins needed to pack all
objects

Decision problem:
Can the objects fit in less than k
bins ?

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Graph Coloring

Optimization problem:

Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Graph Coloring

Optimization problem:

Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Decision problem:

Can the vertices be properly colored
in K or fewer colors such that
adjacent vertices are not assigned
the same color?

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

DETNBICTEN Subset Sum

Optimization problem: Example.
Given a multi-set S of integers and an S=4{1, 1, 1, 4, 4, 5, 6}, k= 8
integer £, find a minimum subset of S .
whose elements sum up to exactly £. Possible Subsets: {1, 1, 1, 5}
{1, 1, 6}

14, 4} «— minimum

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

DETNBICTEN Subset Sum

Optimization problem: Example.
Given a multi-set S of integers and an S=4{1, 1, 1, 4, 4, 5, 6}, k= 8
integer £, find a minimum subset of S

whose elements sum up to exactly «. Possible Subsets: {1, 1, 1, 5}

{1, 1, 6}

Decision problem: {4, 4} «— minimum

Does S contain a subset whose
elements sum up to exactly k?

Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Hamiltonian Cycle

Decision problem:
Is there a cycle that visits each
vertex in the graph once?

Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Hamiltonian Cycle ETGIIN Subset Partition

Decision problem: Decision problem:

Is there a cycle that visits each Given a set S of integers, Can we partition

vertex in the graph once? S into two subsets of exactly the same
size?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S ={1, 2, 3, 4, 5}
No

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Given a solver tor the decision version of TSP, how can we solve the
optimization version?

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

It L > T :There is no tour of length less than T.
If L < T :There is a tour of length less than T.

Given a solver for the decision version of TSP, how can we solve the
optimization version?

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

It L > T :There is no tour of length less than T.
If L < T :There is a tour of length less than T.

Given a solver for the decision version of TSP, how can we solve the
optimization version?

Answer.

- Compute a bound B for the length of the shortest tour (e.g. the sum of the edge
weights int he graph, or V X the largest weight)

 Use binary search to find the length of the shortest tour:

Use the solver of the decision problem to answer the question:
Is there a tour of length less than B/2 ?

Eliminate the left or right half based on the answer and repeat.

If the decision version of a problem is hard, does this imply that the optimization
version is also hard?

If the decision version of a problem is hard, does this imply that the optimization
version is also hard?

Answer. Yes.

The decision version is no harder (as hard or easier) than the optimization version.

To discuss and prove hardness,
we will consider only decision problems!

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time.

» Given a list of integers L and an integer K:
is Kin L?
Is there an integer in L that is greater than K ?
Do any two numbers in L sum to K ?

» Given a permutation of elements P:
is P sorted in ascending order?
is P a palindrome?

» Given a graph G:
Is there a spanning tree whose sum of edge weights is less than T ?
Is there a path between vand win a graph Gless than T?
Is there a cycle in the graph?
Is the graph connected?

» Given a set of activities, can we schedule X activities without overlap?
etc.

Which of the following problems are notin P ?

A. Traveling Salesman Problem.
B. 0-1Knapsack.

C. Bin-Packing.

D. All of the above.

@ I don't know.

Which of the following problems are notin P ?

A. Traveling Salesman Problem.
B. 0-1Knapsack.

C. Bin-Packing.

D. All of the above.

[@ We don't know] A problem is in P if it has a polynomial time

solution.

A problem is not in P if there is a proof that it does
not have a polynomial time solution.

No one proved that these problems do not have
polynomial time solutions!

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Is there A HAMILTONIAN Cycle?

Given a graph G, and a path C (a witness), can we verity in
polynomial time if C is a hamiltonian cycle?

Yes!
1. Check that the first and last vertices are the same.
2. Check that no vertex repeats.
3. Check that the path has exactly V edges.

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Given a graph G, a length L, and a path C s s Sl e ‘
(a witness), can we verify in polynomial time if C f/ e, 1 2"\
is a hamiltonian cycle of length less than L? RO % W S N
N\ (e
Yes! \ RN, 3 R .
1. Check that Cis a Hamiltonian cycle. -' Y I

2. Check that the sum of the edge weights is
less than L.

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Example SUBSET-SUM is in NP

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verity in polynomial time if

| H| < K and that its elements sum to
L?

Yes!

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Example SUBSET-SUM Example SUBSET-PARTITION
Given a multi-set S, two integers K and Given a multi-set S, two subsets H; and
L, and a subset H of S (a witness), can H, of S (a witness), can we verify in

we verity in polynomial time if polynomial time if |H, |+ |H,| = | S|

| H| < K and that its elements sum to and that the sum of the elements in H,
L? = the sum of the elements in H,?

Yes! Yes!

Every problem that is in P is also in NP.

A. True.
B. False.

@ We don't know.

Every problem that is in P is also in NP.

QA' True.) If a pr.ol?lem IS sol.vgble ih polynomigl
time, it is also verifiable in polynomial
time.
B. False.

We can always solve the problem to
verify a given witness!

@ We don't know.

Every problem that is in NP is also in P.

A. True.
B. False.

@ We don't know.

Every problem that is in NP is also in P.

A. True.

B. False.

[@ We don't know}

Does easy verification imply that finding a solution is also easy?

« No one knows!

« No one yet found a problem that
is in NP but is not in P!

« This is a $1,000,000 question!

Two Possible World Views

US

No one knows which is true!

What are examples of problems that are not in NP?

What are examples of problems that are not in NP?

Example 1. Given a program P is there an input I that makes P terminate
in less than s steps?

Example 2. Given a chessboard, is there a move that guarantees black to win?

B W so
2
Y

24

2
d AR
Wy

What is in a name?

What does NP stand for?

A. Not Polynomial.
B. No Pakeup Exam.

C. No Problem.

D. None of the aPove.

What is in a name?

What does NP stand for?

A. Not Polynomial.
B. No Pakeup Exam.

C. No Problem.

CD : None of the aPove.j

NP stands for: Non-deterministically Polynomial.
L.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions
all at the same time (call TM a non-deterministic machine).

If a problem is verifiable in polynomial time, TM can solve the problem by guessing
all the possible solutions and verifying them at once (in polynomial time!)

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.

How do we show that all problems in NP

reduce to a certain problem???

Cook-Levin Theorem (1971)

VERTEX COVER) ~ = A
~ Steve Cook Leonid Levin
1982 Turing Award

HAMILTON CYCLE)

(3-COLOR

(EXACT COVER CLIQUE

(SUBSET SUM (INDEPENDENT SET)

PARTITION)

All problems in NP poly-time reduce to SAT.

CKNAPSACK) CBIN PACKING)

What is SAT?

slide by Kevin Wayne

Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation. X; Or X;
Clause. A disjunction of literals. Ci =x v Xy, V Xg
Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation. X; Or X;
Clause. A disjunction of literals. Ci =x v Xy, V Xg
Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

What values for x;, x,, x; and x, satisty the following formula?

<D=(x1vx2vx3)A(xlvx2vx3) A(xlvxzvx4)

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation. X; Or X;
Clause. A disjunction of literals. Ci =x v Xy, V Xg
Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

What values for x;, x,, x; and x, satisty the following formula?
D =(371vx2vx3)A(x1vx_2vx3) A(;lvxzvx4)

Answer. x; = TRUE, x,=TRUE, x; = FALSE, x, = FALSE

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

Key Facts.
e SAT isin NP.

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

Key Facts.

« SAT isin NP.
Given a formula and boolean values for the variables, it is easy to verity if these

values satisty the formula!
« Itis not clear if SAT is also in P.

We can try all possible 2" boolean assignments.
We don't know if a polynomial time solution exists.

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

Key Facts.

SAT is in NP.
Given a formula and boolean values for the variables, it is easy to verity if these
values satisty the formula!

It is not clear if SAT is also in P.
We can try all possible 2" boolean assignments.
We don't know if a polynomial time solution exists.

All problems in in NP reduce to SAT in polynomial time.

This is the Cook-Levin Theorem.
The details of the proof are beyond the scope of this course.

In a nutshell, Cook and Levin showed how any decision problem that is in

NP can be converted (in polynomial time) to the problem of satisfying a

boolean formula.
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)

adapted from a slide by Kevin Wayne

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue) Bred) Bblue) Cred) Cblue

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue) Bred) Bblue) Cred) Cblue

2. Enforce that each vertex has one color:

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue) Bred) Bblue) Cred) Cblue

2. Enforce that each vertex has one color:
(Area V Apie) N Aoy A Appe) = TRUE
(Brea V Bpie) N B,y A Byy,) =TRUE
(Crea vV Cpue) N (Crpy N Cpyye) = TRUE

3. Enforce that no adjacent vertices have the same color:

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue) Bred) Bblue) Cred) Cblue

2. Enforce that each vertex has one color:
(Area V Apie) N Aoy A Appe) = TRUE
(Brea V Bpie) N B,y A Byy,) =TRUE
(Crea vV Cpue) N (Crpy N Cpyye) = TRUE

3. Enforce that no adjacent vertices have the same color:
(Areq A Breg) A ~Apye A Bpye) = TRUE
(Area A Cred) A 7(Apye A Cype) = TRUE
7(Breg A Cre) A 7Bpye A Cype) = TRUE

The graph is 2-colorable if the above boolean expressions are satisfiable!

Reduction Example optional

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue) Bred) Bblue) Cred) Cblue

2. Enforce that each vertex has one color:
(Area V Apie) N Aoy A Appe) = TRUE
(Brea V Bpie) N B,y A Byy,) =TRUE
(Crea vV Cpue) N (Crpy N Cpyye) = TRUE

Can be easily
converted to CNF.

3. Enforce that no adjacent vertices have the same color:
(Areq A Breg) A ~Apye A Bpye) = TRUE
(Area A Cred) A 7(Apye A Cype) = TRUE
7(Breg A Cre) A 7Bpye A Cype) = TRUE

The graph is 2-colorable if the above boolean expressions are satisfiable!

How do we show that a problem other than SAT is NP-Complete?

A. Be as clever as Cook and Levin and show how all problems
in NP reduce to this new problem.

B. Noneed! SAT is the only NP-Complete Problem!

C. None of the above.

How do we show that a problem other than SAT is NP-Complete?

A. Be as clever as Cook and Levin and show how all problems
in NP reduce to this new problem.

B. Noneed! SAT is the only NP-Complete Problem!

CC . None of the above.)

How do we show that a problem other than SAT is NP-Complete?

A. Be as clever as Cook and Levin and show how all problems
in NP reduce to this new problem.

B. Noneed! SAT is the only NP-Complete Problem!

CC . None of the above.)

To show that a problem is NP-Complete:
1. Show that it is in NP,

2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to A and A poly-time reduces to B,
then all problems in NP poly-time reduce to B'!

SAT is not The Only NP-Complete Problem!

SAT

< 3-COLOR> ILP VERTEX COVER >

l / \ Dick Karp
1985 Turing Award
C EXACT COVER) C CLIQUE) C HAMILTON CYCLE)

C SUBSET SUM) (INDEPENDENT SET)

(PARTITION >

/ N\
CKNAPSACK) CBIN PACKING)

Key Finding. SAT poly-time reduces to many problems!

Implication. All of these problems are NP-Complete!

slide by Kevin Wayne

SAT is not The Only NP-Complete Problem!

adapted from a slide by Kevin Wayne

VERTEX COVER) S el [eert Levin B Karp

N

C HAMILTON CYC LE)

%
SUBSET SUM »(INDEPENDENT SET)
/ pARTlTION> All of these problems are NP-complete.
A A provably efficient algorithm for any one of them

(KNAPSACKD (BIN PACKING) would yield a provably efficient algorithm for all of them

(3-COLOR>
¢

EXACT COVER

CLIQUE™

World View if P = NP
NP-Complete
(3 COLOR é VERTEX covmz)
l W

i CLIQUE CHAM|LTON CYCLE)
(sussn SUM INDEPENDENT sa)

EXACT COVER

(KNAPSACK) (BIN PACKING>
C S N ODD?) (S THERE A CYCLE?) (IS THERE AN EULERIAN CYCLE?) (IS THERE A NUMBER < K?)

C IS THERE A PATH SHORTER THAN L?) C IS THERE A SPANNING TREE SHORTER THAN L?) P

\—

C IS L A PALINDROM?)

Again ... Two Possible World Views

If P # NP If P

P=NP =
0S

NP-Complete

NP

NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a system of inequalities, find a ©—1 solution. X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

.szl, x1=1, x2=0

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a system of inequalities, find a ©—1 solution. X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

XOzl, x1=1, x2=0

1. ILP 1s 1n NP.

Given values for the variables, we can verity in
polynomial time if the inequalities are true.

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a system of inequalities, find a ©—1 solution. X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

XOzl, x1=1, x2=0

1. ILP 1s in NP.

Given values for the variables, we can verity in
polynomial time if the inequalities are true.

2. SAT poly-time reduces to ILP.

X1 V X V X3 = TRUE (1—=x) + X, + X3 > 1
X1 V X V X = TRUE x + (I—-x) + X3 > 1
X1 V X V X3 = TRUE 1=-x) + d-x) + (1-—x > 1
X1 vV X V x; =TRUE (1=x) + (I —xy) + x; 21

X V x3 V x4, =TRUE (1-x) + i o+ ox 21

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two

vertices are adjacent?

Example. Black vertices form an

Task. Show that IS is NP-Complete.
independent set of size 5

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two

vertices are adjacent?

Example. Black vertices form an

Task. Show that IS is NP-Complete.
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

Example. (Xl V)(72 V)63) AN (‘fl V X2 Vv X3) A (xl Vv .XT2 V .X3)

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5
1. IS 1s in NP.
Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k. @ @ @

2. SAT poly-time reduces to IS.

 Create a node for each literal in each clause. @ @ @
®» ® @

Example. (Xl V)(72 V)63) AN (‘fl V X2 Vv .X3) A (xl Vv .XT2 V .X3)

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS 1s in NP.
Given a set S of vertices in G, we can verify in A
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

« Create a node for each literal in each clause.
« Connect each node to the literals in the same clause.

¢

Example. (Xl V)(72 V)63) AN (‘fl V X2 Vv .X3) A (xl Vv .XT2 V .X3)

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

g

« Create a node for each literal in each clause.
« Connect each node to the literals in the same clause.
 Connect each literal to its negation.

§

Example. (Xl V .X/Tz V)(?3) AN (‘fl V X2 Vv .X3) A (xl Vv .fz V .X3)

NP-Completeness (Proof Examples) optional

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in A
polynomial time if any two are adjacent and if | S| = k. X1 @

2. SAT poly-time reduces to IS.

« Create a node for each literal in each clause.
X3

 Connect each node to the literals in the same clause.
« The expression is satisfiable iff there is an independent '

set of size = the number of clauses.
Example. (Xl V .X/Tz V)(?3) N (‘fl V X2 V .X3) 7A\ (xl V .fz V .X3)

3

 Connect each literal to its negation.

g

NP-Completeness (Proof Examples) optional

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover Of size 5

NP-Completeness (Proof Examples) optional

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover Of size 5

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand it |S| = &.

NP-Completeness (Proof Examples) optional

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover Of size 5

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand it |S| = &.

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

We can pick any NP-Complete problem
- for the reduction, not necessarily SAT!

NP-Completeness (Proof Examples) optional

O
O
SATISFIABILITY
CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE _ . SET
/////////:;;59V§§\\ PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED SET EXACT CLIQUE
NODE SET ARC SET ~ HAMILTON . o ... COVER COVER
CIRCUIT // \\
3-DIMENSIONAL KNAPSACK HITTING STEINER
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT
SEQUENCING PARTITION

=
T
MAX CUT >
el
v
L4 ;
FIGURE 1 - Complete Problems x
>
b
e

Dick Karp (1972)
1985 Turing Award

NP-Completeness (Proof Examples) optional

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover of size 5

1. VCis in NP,

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand it |S| = &.

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

NN, NAN,

NP-Completeness (Proof Examples) optional

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover of size 5

1. VCis in NP,

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand if |S| =

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

S is an independent set of size k iff V — S is a vertex cover of size n —

NAL, NAL

Vertex Cover of size 4 Independent Set of size 5

NP-Completeness (Proof Examples)

TRAVELING SALESMAN PROBLEM (TSP)

Given a complete weighted graph G, does G contain a simple
circuit C that visits each node exactly once of length < T?

Task. Show that TSP is NP-Complete.

1. Show that TSP is in NP. < straight-forward

NP-Completeness (Proof Examples)

TRAVELING SALESMAN PROBLEM (TSP)

Given a complete weighted graph G, does G contain a simple
circuit C that visits each node exactly once of length < T?

Task. Show that TSP is NP-Complete.

1. Show that TSP is in NP. < straight-forward

2. HAMILTONIAN poly-time reduces to TSP.

G has a hamiltonian cycle
ift G'has a tour of length V

G
Input to the HAMILTONIAN Input to TSP

Add edge (u,v) with weight 1 if (u,v) is in G.
Add edge (u,v) with weight 2 if (&, v) is not in G.

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.
B. No.

C. None of the above.

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

[C . None of the above.)

Yesif P # NP.
Noif P = NP.

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

(C . None of the above.)

Yesif P # NP.
Noif P = NP.

There are, however, problems in NP that we could not yet prove to be in P and
could not also prove to be NP-Complete!

Examples. Integer Factoring and Graph Isomorphism.

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.

Class NP-Hard.

A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)

Definitions (Complexity Classes)

Examples.
e All NP-Complete Problems.
e TSP Optimization.
e Finding the Longest Simple Path.

Class NP-Hard.
A problem is NP-Hard if all problems in NP reduce to it in polynomial time.

(at least as hard as the hardest problems in NP)

Two Possible World Views

NP-Hard

If P # NP

P =NP =
NP-Complete

0US

If P

NP

Living with Intractability

When you encounter an NP-complete problem Sores ot e e allseiinm e
e It is safe to assume that it is intractable. < solve all instances in polynomial
e What to do? E,

Four successful approaches
e Don't try to solve intractable problems.
e Try to solve real-world problem instances.
e Look for approximate solutions (not discussed in this lecture).
e Exploit intractability.

slide by Kevin Wayne

Living with Intractability: Don't Try To Solve |t!

Knows no theory
COMPUTERS AND INTRACTABILITY

.gs, 1 A Gude 10 the Theory of NP-Completeness

."“ ; sl ﬂ A’j’

| CS— e

Knows computability

| can't find an efficient algorithm.
| guess I'm just to dumb.

Knows intractability

ML LL Lo

j
| can't find an efficient algorithm, \ %E i
because no such algorithm is possible! d____

| can't find an efficient algorithm,
but neither can all these famous people!

slide by Kevin Wayne

Living with Intractability: Solve Real-World Instances

Observations
e Worst-case inputs may not occur for practical problems.
e Instances that do occur in practice may be easier to solve.
Reasonable approach: relax the condition of guaranteed poly-time algorithms.

SAT
e Chaff solves real-world instances with 10,000+ variables.
* Princeton senior independent work (1) in 2000. , TSP solution for 13,509 US cities

TSP N
e Concorde routinely solves large real-world instances. | Y o

e 85.900-city instance solved in 2006.

ILP
e CPLEX routinely solves large real-world instances.
e Routinely used in scientific and commercial applications.

slide by Kevin Wayne

