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Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y: X polytime-reduces Y (denoted as X <, 1) :
An algorithm for solving problem X that X can be solved using a solver for Yin
includes a solver of problem Y as a subroutine. addition to polytime amount of work.

Algorithm for X

Solution for
» X

Input for

” Algorithm for Post-

processing Y processing

Total cost for solving X = Cost of solving Y + Cost of reduction
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solver. output of Y's solver.
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o Allows calling Y's solver multiple times. o Allows calling Y's solver only once.
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solver. output of Y's solver.

Example.
4 )

SELECT Given a list of elements, find the
k" largest element.

SORT Given a list of elements, order the
elements in non-decreasing order.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.




Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:

An algorithm for solving problem X that
includes a solver of problem Y as a subroutine.

A Turing Reduction from X to Y:
o Allows calling Y's solver multiple times.
o Allows post-processing the output of Y's
solver.

Example.

SELECT Given a list of elements, find the
k" largest element.

SORT Given a list of elements, order the
elements in non-decreasing order.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

4 )

X polytime-reduces Y (denoted as X <, ) :

X can be solved using a solver for Yin
addition to polytime amount of work.

A Karp Reduction from X to Y:
o Allows calling Y's solver only once.
o Does not allow post-processing the
output of Y's solver.

Also called a many-to-one reduction:
Input to X is preprocessed such that every
YES instance of X maps to a YES answer in
Y and every NO instance of X maps to a NO
answer in Y.

Example.

CI'OTALITY reduces to EQUIVALENCE

See the slides on Reductions discussed

before.
\_




Quiz # 1 (déja vu!)

Suppose there is a proof that problem X is difficult to solve.

How can we prove that a problem Y'is also difficult to solve?

A.  Show that X reduces easily to Y.

B.  Show that Yreduces easily to X.
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Quiz # 1 (déja vu!)

Suppose there is a proof that problem X is difficult to solve.

How can we prove that a problem Y'is also difficult to solve?

G\ . Show that X reduces easily to Y. ]

B.  Show that Yreduces easily to X.

Explanation.

We know that X & EASY and we want to use this information to show that

Y & EASY. l.e. we want to show that X &€ EASY — Y & EASY) . We can achieve
this by showing that the the following contrapositive statement holds:

Y € EASY — X € EASY

o If X reduces easily to Yand Y € EASY then X € EASY.

e Since it is known that X & EASY, then Y € EASY must be false!
(otherwise, there will be a contradiction)



NEVER FORGET

If A is hard to solve and
A easily reducesto B (A <, B),

Then B is also hard to solve!



NEVER FORGET

If A is hard to solve and
A easily reducesto B (A <, B),

Then B is also hard to solve!
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What doeg it mean for a problem to be hard anyway?



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

@ Longest Paths on weighted DAGs

@ Shortest Paths on weighted graphs (no negative weights)



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

v WWO O

o Longest Paths on weighted graphs N LR IR AT AR B 10 ARl AR b



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)
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o Longest Paths on weighted graphs N LR IR AT AR B 10 ARl AR b

| Fractional Knapsack Problem

%% 0-1 Knapsack Problem NO KNOWN POLYNOMIAL TIME ALGORITHM!

Ve




A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? O Q
(a cycle that visits all the edges in G exactly once) P
VS.
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A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? O Q
(a cycle that visits all the edges in G exactly once) P
Direct solution: True if and only if each vertex O """"" O """"""" O

has an even degree!
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A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? Q Q
(a cycle that visits all the edges in G exactly once) P,
Direct solution: True if and only if each vertex Q """"" O """"""" O

has an even degree!

Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)
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Direct solution: True if and only if each vertex O ---------- O ---------- O

has an even degree!

%> Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM!



A fine line Between Hard and Easy Problems

(5) Does a graph G contain an Eulerian Cycle? Q Q
(a cycle that visits all the edges in G exactly once) P,
Direct solution: True if and only if each vertex O """"" O """"""" O

has an even degree!

%> Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM!

% Traveling Salesman Problem (TSP)
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?

NO KNOWN POLYNOMIAL TIME ALGORITHM!




A fine line Between Hard and Easy Problems

@ Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length
(can be checked using BFT)




A fine line Between Hard and Easy Problems

@ Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length
(can be checked using BFT)

xx Is a graph k-Colorable?
(can the vertices be colored using k colors or less, such
that no two adjacent vertices have the same color?)

NO KNOWN POLYNOMIAL TIME ALGORITHM!




More Hard Problems

Bin Packing

Given an unlimited number of bins (each with capacity C ), and n objects with

sizes sy, ... ,5, where 0 < s5; < C, find the minimum number of bins needed to
pack all objects.
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More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6},k= 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} «—— minsubset
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Subset Partition
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No
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What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)
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(3) Each of them poly-time reduces to all the other problems!

L.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!




A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!

L.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial
time solution for any of them or prove that any of them can't have a polynomial
time solution!




Welcome to the

P vs NP

Problem



Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.
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Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a
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Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a

simple circuit C that visits each node in G A AU mu'-:i
exactly once such that the total cost of the e i | _~%
edges in C is minimum. fi N e < d
Decision problem: \\ Lo ‘
Given a complete weighted graph G, does T O | I
G contain a simple circuit C that visits each i S

node exactly once such that the total cost

of the edges in Cis less than or equal to
some threshold T?



Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Bin-Packing

Optimization problem:

Given an unlimited number of

bins (each with capacity C ), and n [ 5|51’ 5{5
objects with sizes s, ... , s, where

0 <s; < C, find the minimum
number of bins needed to pack all
objects




Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Bin-Packing

Optimization problem:

Given an unlimited number of

bins (each with capacity C ), and n [ 5|51’ 5{5
objects with sizes s, ... , s, where

0 <s; < C, find the minimum
number of bins needed to pack all
objects

Decision problem:
Can the objects fit in less than k
bins ?




Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Graph Coloring

Optimization problem:

Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.




Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Graph Coloring

Optimization problem:

Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Decision problem:

Can the vertices be properly colored
in K or fewer colors such that
adjacent vertices are not assigned
the same color?




Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

DETNBICTEN Subset Sum

Optimization problem: Example.
Given a multi-set S of integers and an S=4{1, 1, 1, 4, 4, 5, 6}, k= 8
integer £, find a minimum subset of S .
whose elements sum up to exactly £. Possible Subsets: {1, 1, 1, 5}
{1, 1, 6}

14, 4} «— minimum



Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

DETNBICTEN Subset Sum

Optimization problem: Example.
Given a multi-set S of integers and an S=4{1, 1, 1, 4, 4, 5, 6}, k= 8
integer £, find a minimum subset of S

whose elements sum up to exactly «. Possible Subsets: {1, 1, 1, 5}

{1, 1, 6}

Decision problem: {4, 4} «— minimum

Does S contain a subset whose
elements sum up to exactly k?



Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Hamiltonian Cycle

Decision problem:
Is there a cycle that visits each
vertex in the graph once?



Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answetr.

Hamiltonian Cycle ETGIIN Subset Partition

Decision problem: Decision problem:

Is there a cycle that visits each Given a set S of integers, Can we partition

vertex in the graph once? S into two subsets of exactly the same
size?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S ={1, 2, 3, 4, 5}
No



Given a solver for the optimization version of TSP, how can we solve the
decision version?



Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

It L > T :There is no tour of length less than T.
If L < T :There is a tour of length less than T.



Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

It L > T :There is no tour of length less than T.
If L < T :There is a tour of length less than T.
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If the decision version of a problem is hard, does this imply that the optimization
version is also hard?



If the decision version of a problem is hard, does this imply that the optimization
version is also hard?

Answer. Yes.

The decision version is no harder (as hard or easier) than the optimization version.

(" )

TSPgec <, TSP
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To discuss and prove hardness,
we will consider only decision problems!



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time.

» Given a list of integers L and an integer K:
is Kin L?
Is there an integer in L that is greater than K ?
Do any two numbers in L sum to K ?

» Given a permutation of elements P:
is P sorted in ascending order?
is P a palindrome?

» Given a graph G:
Is there a spanning tree whose sum of edge weights is less than T ?
Is there a path between vand win a graph Gless than T?
Is there a cycle in the graph?
Is the graph connected?
etc.



Which of the following decision problems are notin P ?

A.  Traveling Salesman Problem.
B.  0-1Knapsack.

C. Bin-Packing.

D.  All of the above.

@ I don't know.



Which of the following decision problems are notin P ?

A.  Traveling Salesman Problem.
B. 0-1Knapsack.
C. Bin-Packing.

D. All of the above.

A problem is in P if it has a polynomial time

[@ We don't know] solution.

A problem is not in P if there is a proof that it does
not have a polynomial time solution.

While we don't have polynomial time solutions for
these problems, no one proved that these problems
do not have polynomial time solutions!



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Is there A HAMILTONIAN Cycle?

Given a graph G, and a path C (a witness), can we verity in
polynomial time if C is a hamiltonian cycle?

Yes!
1. Check that the first and last vertices are the same.
2. Check that no other vertices repeat.

3. Check that the path has exactly V edges and that
they are all in G.



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Given a graph G, a length L, and a path C s Sl v

(a witness), can we verify in polynomial time if C ,r, e, \ ~
is a hamiltonian cycle of length less than L? A% Sl W “4
;‘-% o



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Given a graph G, a length L, and a path C s s Sl e ‘
(a witness), can we verify in polynomial time if C f/ e, 1 2"\
is a hamiltonian cycle of length less than L? RO % W S N
N\ (e
Yes! \ RN, 3 R .
1. Check that Cis a Hamiltonian cycle. -' Y I

2. Check that the sum of the edge weights is
less than L.



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Example SUBSET-SUM is in NP

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verity in polynomial time if

| H| < K and that its elements sum to
L?

Yes!



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Example SUBSET-SUM Example SUBSET-PARTITION
Given a multi-set S, two integers K and Given a multi-set S, two subsets H; and
L, and a subset H of S (a witness), can H, of S (a witness), can we verify in

we verity in polynomial time if polynomial time if |H, |+ |H,| = | S|

| H| < K and that its elements sum to and that the sum of the elements in H,
L? = the sum of the elements in H,?

Yes! Yes!



Every problem that is in P is also in NP.

A. True.
B. False.

@ We don't know.



Every problem that is in P is also in NP.

QA' True.) If a pr.ol?lem IS sol.vgble ih polynomigl
time, it is also verifiable in polynomial
time.
B. False.

We can always solve the problem to
verify a given witness!

@ We don't know.



Every problem that is in NP is also in P.

A. True.
B. False.

@ We don't know.



Every problem that is in NP is also in P.

A. True.

B. False.

[@ We don't know}

Does easy verification imply that finding a solution is also easy?

« No one knows!

« No one yet found a problem that
is in NP but is not in P!

« This is a $1,000,000 question!




Two Possible World Views

US

No one knows which is true!



What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?



What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Example. Given a chessboard, is there a move that guarantees black to win?
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What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verity in

polynomial time if the move will guarantee black to win! (we can do exponential amount
of work to check all possible black and white moves to see if black will win!)



What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verity in

polynomial time if the move will guarantee black to win! (we can do exponential amount
of work to check all possible black and white moves to see if black will win!)

Another Example. Does graph G have a unique Hamiltonian cycle?



What is in a name?

What does NP stand for?

A.  Not Polynomial.
B.  No Pakeup Exam.

C. No Problem.

D. None of the aPove.



What is in a name?

What does NP stand for?

A.  Not Polynomial.
B.  No Pakeup Exam.

C. No Problem.

CD : None of the aPove.j

NP stands for: Non-deterministically Polynomial.
L.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions
all at the same time (call TM a non-deterministic machine).

If a problem is verifiable in polynomial time, TM can solve the problem by guessing
all the possible solutions and verifying them at once (in polynomial time!)



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.

How do we show that all problems in NP

reduce to a certain problem???



Cook-Levin Theorem (1971)

VERTEX COVER ) ~ = A
~ Steve Cook  Leonid Levin
1982 Turing Award

HAMILTON CYCLE)

( 3-COLOR

( EXACT COVER CLIQUE

(SUBSET SUM ( INDEPENDENT SET)

PARTITION )

All problems in NP poly-time reduce to SAT.

CKNAPSACK) CBIN PACKING)

What is SAT?

slide by Kevin Wayne



Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation. X; Or X;
Clause. A disjunction of literals. Ci =x v Xy, V Xg
Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

adapted from a slide by Kevin Wayne
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Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,
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SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
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Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation. X; Or X;
Clause. A disjunction of literals. Ci =x v Xy, V Xg
Conjunctive normal form (CNF). A propositional ® = CACyA Cin C,

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

What values for x;, x,, x; and x, satisty the following formula?
D =(371vx2vx3)A(x1vx_2vx3) A(;lvxzvx4)

Answer. x; = TRUE, x,=TRUE, x; = FALSE, x, = FALSE

adapted from a slide by Kevin Wayne



Boolean Satisfiability (SAT)

Key Facts.
e SAT isin NP.
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Boolean Satisfiability (SAT)

Key Facts.

« SAT isin NP.
Given a formula and boolean values for the variables, it is easy to verity if these

values satisty the formula!
« Itis not clear if SAT is also in P.

We can try all possible 2" boolean assignments.
We don't know if a polynomial time solution exists.

adapted from a slide by Kevin Wayne



Boolean Satisfiability (SAT)

Key Facts.

SAT is in NP.
Given a formula and boolean values for the variables, it is easy to verity if these
values satisty the formula!

It is not clear if SAT is also in P.
We can try all possible 2" boolean assignments.
We don't know if a polynomial time solution exists.

All problems in NP reduce to SAT in polynomial time.

This is the Cook-Levin Theorem.
The details of the proof are beyond the scope of this course.

In a nutshell, Cook and Levin showed how any decision problem that is in

NP can be converted (in polynomial time) to the problem of satisfying a
boolean formula of a polynomial size).
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)
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Reduction Example

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.




Reduction Example

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue ) Bred ) Bblue ) Cred ) Cblue




Reduction Example

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue ) Bred ) Bblue ) Cred ) Cblue

2. Enforce that each vertex has one color:



Reduction Example

Graph Coloring reduces to SAT in polynomial time.
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Reduction Example

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue ) Bred ) Bblue ) Cred ) Cblue

2. Enforce that each vertex has one color:
(Ared V Appe) N (Ao A Appe) = TRUE
(Brea V Bpie) N B,y A Byy,) =TRUE
(Crea V Cpue) N (Crpy N Cpye) = TRUE

3. Enforce that no adjacent vertices have the same color:
(Area A Breg) A ~Apye A Byye) = TRUE
(Area A Cred) A 7(Apye A Cype) = TRUE
7(Breg A Cro) A 7Bpye A Cype) = TRUE



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
Ared > Ablue ) Bred ) Bblue ) Cred ) Cblue

2. Enforce that each vertex has one color:
(Ared V Appe) N (Ao A Appe) = TRUE
(Brea V Bpie) N B,y A Byy,) =TRUE
(Crea V Cpue) N (Crpy N Cpye) = TRUE

Can be converted to

. _ a CNF with ©(E + V)
3. Enforce that no adjacent vertices have the same color: clauses

_'(Ared A B red) A _'(Ablue A B blue) = TRUE
_'(Ared A Cred) A _'(Ablue A Cblue) = TRUE
o (B red A Cred) A _'(B blue A Cblue) = TRUE

The graph is 2-colorable if the above boolean expressions are satisfiable!



How do we show that a problem other than SAT is NP-Complete?

A.  Be as clever as Cook and Levin and show how all problems
in NP reduce to this new problem.

B. Noneed! SAT is the only NP-Complete Problem!

C. None of the above.
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How do we show that a problem other than SAT is NP-Complete?

A.  Be as clever as Cook and Levin and show how all problems
in NP reduce to this new problem.

B. Noneed! SAT is the only NP-Complete Problem!

CC . None of the above.)

To show that a problem is NP-Complete:
1. Show that it is in NP,

2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to A and A poly-time reduces to B,
then all problems in NP poly-time reduce to B'!



SAT is not The Only NP-Complete Problem!

SAT
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Key Finding. SAT poly-time reduces to many problems!

Implication. All of these problems are NP-Complete!
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SAT is not The Only NP-Complete Problem!

adapted from a slide by Kevin Wayne
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Again ... Two Possible World Views

If P # NP If P
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NP-Complete
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Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.
B. No.

C. None of the above.
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Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

(C . None of the above. )

Maybe if P # NP.
No if P = NP.

There are, however, problems in NP that we could not yet prove to be in P and
could not also prove to be NP-Complete!

Examples. Integer Factoring and Graph Isomorphism.



NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a set of inequalities, is there a @—1 solution? X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

.szl, x1=1, x2=0

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a set of inequalities, is there a @—1 solution? X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

XOzl, x1=1, x2=0

1. ILP 1s 1n NP.

Given values for the variables, we can verity in
polynomial time if the inequalities are true.

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming) X1+ x2= |1
Given a set of inequalities, is there a @—1 solution? X0 + X2 >
Xo+ X1+ X2< 2

Task. Show that ILP is NP-Complete Example. A solution for the above is:

XOzl, x1=1, x2=0

1. ILP 1s in NP.

Given values for the variables, we can verity in
polynomial time if the inequalities are true.

2. SAT poly-time reduces to ILP.

X1 V X% V X = TRUE (1=x) + X, + X3 > 1
X1 V X V X3 = TRUE x + (I—-x) + X3 > 1
X1 V X V X = TRUE l1=x) + d=-x) + (1-xy > 1
Xy V X V x;, = TRUE (I=x) + (1-xy) + x; =1

X, V. x3 V x4, =TRUE (1-x) + i o+ ox =1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

ILP (binaryInteger Linear Programming)

Given a set of inequalities, is there a ©—1 solution?

Task. Show that ILP is NP-Complete.

2. SAT poly-time reduces to ILP.

X1 VX V X = TRUE (1—=x))
X1 V X V X3 = TRUE X
X1 V X V X3 = TRUE (1 —xp)
X vV X vV x;, = TRUE (1 —xp)

Example SAT instance

X1 + X2 > 1
X0 + X2 > |
Xo+ X1 + X2 < 2

Example. A solution for the above is:
XOzl, x1=1, x2=0

+ X, + X3 > 1
+ (1—-x) + X3 > 1
+ (1=-x) + (-x3) > 1
+ (1 —x,) + x; >1

(1 —x,) + X3 + x; >1

Equivalent ILP instance.

A clause is true iff any variable is true An inequality > 1 iff any variable is 1 and is not

and is not negated or is false and is
negated.

negated or is 0 and is negated.

Creating these inequalities is linear in the number

of boolean clauses (i.e. this is a polytime reduction)

Examples by Kevin Wayne
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NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. gm)o\w clique size m-g size m_4

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. 3m)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

Given a graph G and a subgraph of vertices S, we can check in polynomial time if
the size of the set is m and every vertex in S is connected to every other vertex in S.

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\lque o
is NP-Complete. gm)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.
2. SAT poly-time reduces to CLIQUE. Example
(.xl \Y ’XTZ \Y .X3) N (’X?l \Y x2) N (.XTZ \Y X3)

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. gm)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (X, V5 VX)) A VX)) AV X)
clause (m groups)

X5
O

X @ A3

X @

@ @i

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. 3m)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (5, VI, V) AV X)AW@V ;)
clause (m groups)
X
« Connect every vertex to all the other 4.2
. . x
vertices in the other groups unless the X 3
variable is its negation. ®
@
@
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Examples by Kevin Wayne
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CLIQUE Given a graph G, and
an integer m, is there a complete
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2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (5, VI, V) AV X)AW@V ;)
clause (m groups)
X
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CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. 3m)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example

« Create a group of vertices for every (X VH VX)) AV X)) A GV X)
clause (m groups)

« Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. 3m)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (5, VI, V) AV X)AW@V ;)
clause (m groups)
X
« Connect every vertex to all the other _’.2
. . x
vertices in the other groups unless the X 3
variable is its negation. 7’

% .é A
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NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE orlﬁmo\\ not o o c\lque o o c\nque o
is NP-Complete. 3m)o\w clique size m-g size m_4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (X, V5 VX)) A VX)) AV X)
clause (m groups)
X
« Connect every vertex to all the other <
A%

vertices in jche othel.* groups unless the X @
variable is its negation.

X
A‘Xz

Examples by Kevin Wayne




NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE Oriﬁino\\ not o o c\ique o-F o c\ique oF
is NP-Complete. 3m)°\\ c\ique size m=3 size m=4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (X, V5 VX)) A VX)) AV X)
clause (m groups)
X
« Connect every vertex to all the other <
A%

vertices in the other groups unless the x O
variable is its negation.

« A clique of size m corresponds to m %
literals being true (formula is satisfiable).
The clique contains exactly 1 vertex from each group 30O
(vertices in the same group are not connected) and a Ox,

variable and its negation can't be in the clique.

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Task. Show that CLIQUE Oriﬁino\\ not o o c\ique o-F o c\ique oF
is NP-Complete. 3m)°\\ c\ique size m=3 size m=4

1. CLIQUE 1s 1n NP.

2. SAT poly-time reduces to CLIQUE. Example
« Create a group of vertices for every (X, V5 VX)) A VX)) AV X)
clause (m groups)
X
« Connect every vertex to all the other <
A%

vertices in the other groups unless the x O
variable is its negation.

« A clique of size m corresponds to m %
literals being true (formula is satisfiable).

If the number of literals = NV, the construction takes X3 0O
O(N?) time (i.e. this is a polytime reduction) Ox,

Examples by Kevin Wayne



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two

vertices are adjacent?

Example. Black vertices form an

Task. Show that IS is NP-Complete.
independent set of size 5
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Example. Black vertices form an

Task. Show that IS is NP-Complete.
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1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

Example. (.xl V )(72 V .X?3) AN (‘fl V X2 Vv X3) A (.xl Vv .fz V .X3)



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5
1. IS is in NP.
Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k. @ @ @

2. SAT poly-time reduces to IS.

« Create a node for each literal in each clause. @ @ @
®» ® @

Example. (.xl V )(72 V .f3) AN (‘fl V X2 Vv X3) A (.xl Vv .fz V X3)



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.
Given a set S of vertices in G, we can verify in A
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

« Create a node for each literal in each clause.
« Connect each node to the literals in the same clause.

¢

Example. (.xl V )(72 V .X?3) AN (‘fl V X2 Vv X3) A (.xl Vv .fz V .X3)



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if | S| = k.

2. SAT poly-time reduces to IS.

g !

« Create a node for each literal in each clause.
« Connect each node to the literals in the same clause.
 Connect each literal to its negation.

§

Example. (.xl V )(72 V .f3) AN (‘fl V X2 Vv X3) A (.xl Vv .fz V X3)



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

Given a set S of vertices in G, we can verify in A
polynomial time if any two are adjacent and if | S| = k. X1 @

2. SAT poly-time reduces to IS.

« Create a node for each literal in each clause.
X3

« Connect each node to the literals in the same clause.
« The expression is satisfiable iff there is an independent '

set of size = the number of clauses.
Example. (.xl V )(72 V .f3) N (‘fl V X2 Vv X3) N (.xl Vv .fz V X3)

3

 Connect each literal to its negation.

g



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

2. SAT poly-time reduces to IS.
« Create a node for each literal in each clause. @
« Connect each node to the literals in the same clause.
 Connect each literal to its negation.

A @
- The expression is satisfiable iff there is an independent
49)
X3

set of size = the number of clauses.

The independent set contains only 1 vertex from each group. Two vertices in the
same group can't be in the setand a variable and its negation can't be in the

set (because these are connected with edges in the constructed graph)
Example. (.xl V )(72 Vv .f3) /AN (‘fl V X2 Vv X3) A\ (.xl Vv .fz Vv X3)

g



NP-Completeness (Proof Examples)

INDEPENDENT-SET (IS)

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Task. Show that IS is NP-Complete. Example. Black vertices form an
independent set of size 5

1. IS is in NP.

2. SAT poly-time reduces to IS.
« Create a node for each literal in each clause. @

A1
« Connect each node to the literals in the same clause.

 Connect each literal to its negation.

- The expression is satisfiable iff there is an independent
49
X3

set of size = the number of clauses.

If the number of literals = IV, the construction takes
O(N?) time (i.e. this is a polytime reduction)

Example. (.xl V )(72 V .f3) N (‘fl V X2 Vv X3) N (.xl Vv .fz V X3)

g



NP-Completeness (Proof Examples)

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.

Example. Black vertices form a
vertex cover of size 5
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VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover of size 5

1. VCis in NP,

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand it |S| = &.
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NP-Completeness (Proof Examples)

VERTEX-COVER (VC)

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete. Example. Black vertices form a
vertex cover of size 5

1. VCis in NP,

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in Sand it |S| = &.

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

S is an independent set of size k ift V — § is a vertex cover of size | V| — k.

NN, NN,

Vertex Cover of size 4 Independent Set of size 5



Vertex Cover and Independent Set

Claim. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set iff V - S is a vertex cover.

. Let S be any independent set.

. Consider an arbitrary edge (u, v).

. Sindependent =>ué& Sorvé&S = ueV-SorveV-S.
- Thus, V - S covers (u, v).

. Let V- S beany vertex cover.

. Consider two nodesu&Ee Sandv E S.

. Observe that (u, v) & E since V - S is a vertex cover.

. Thus, no two nodes in S are joined by an edge = S independent seft. =

Slide by Kevin Wayne



NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G, HAMILTONIAN Given a graph G, does
does G contain a simple circuit of length < G contain a simple circuit that visits
T that visits each node exactly once? each node only once.

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

1. Show that TSP is in NP. < straight-forward




NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G, HAMILTONIAN Given a graph G, does
does G contain a simple circuit of length < G contain a simple circuit that visits
T that visits each node exactly once? each node only once.

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

1. Show that TSP is in NP. < straight-forward

2. HAMILTONIAN poly-time reduces to TSP.

G has a hamiltonian cycle
iff G'has a tour of length V

(If length >V then an edge that is not
part of the original graph was used)

G
Input to HAMILTONIAN Input to TSP

Add edge (u,v) with weight 1 if (u,v) is in G.
Add edge (u,v) with weight 2 if (&, v) is not in G.



NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G, HAMILTONIAN Given a graph G, does
does G contain a simple circuit of length < G contain a simple circuit that visits
T that visits each node exactly once? each node only once.

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

1. Show that TSP is in NP. < straight-forward

2. HAMILTONIAN poly-time reduces to TSP.

G has a hamiltonian cycle

) ift G'has a tour of length V
(If length >V then an edge that is not

part of the original graph was used)

G This construction runs in
Input to HAMILTONIAN Input to TSP @(Vz) o p0|ytime reduction!

Add edge (u,v) with weight 1 if (4, v) is in G.
Add edge (u,v) with weight 2 if (&, v) is not in G.



Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time
(i.e. in O(n°), where n is the input size and c is a constant)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance [ or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

e Itisin NP.
e All problems in NP reduce to it in polynomial time.

Class NP-Hard.

A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)



Definitions (Complexity Classes)

Examples.
e All NP-Complete Problems.
e TSP Optimization.
e Finding the Longest Simple Path.

Class NP-Hard.
A problem is NP-Hard if all problems in NP reduce to it in polynomial time.

(at least as hard as the hardest problems in NP)




Two Possible World Views

NP-Hard

If P # NP

P =NP =
NP-Complete

0US

If P

NP



Living with Intractability

When you encounter an NP-complete problem Sores ot e e allseiinm e
e It is safe to assume that it is intractable. < solve all instances in polynomial
e What to do? E,

Four successful approaches
e Don't try to solve intractable problems.
e Try to solve real-world problem instances.
e Look for approximate solutions (not discussed in this lecture).
e Exploit intractability.

slide by Kevin Wayne



Living with Intractability: Don't Try To Solve |t!

Knows no theory
COMPUTERS AND INTRACTABILITY

.gs, 1 A Gude 10 the Theory of NP-Completeness

."“ ; sl ﬂ A’j’

| CS— e

Knows computability

| can't find an efficient algorithm.
| guess I'm just to dumb.

Knows intractability

ML LL Lo

j
| can't find an efficient algorithm, \ %E i
because no such algorithm is possible! d____

| can't find an efficient algorithm,
but neither can all these famous people!

slide by Kevin Wayne



Living with Intractability: Solve Real-World Instances

Observations
e Worst-case inputs may not occur for practical problems.
e Instances that do occur in practice may be easier to solve.
Reasonable approach: relax the condition of guaranteed poly-time algorithms.

SAT
e Chaff solves real-world instances with 10,000+ variables.
* Princeton senior independent work (1) in 2000. , TSP solution for 13,509 US cities

TSP N
e Concorde routinely solves large real-world instances. | Y o

e 85.900-city instance solved in 2006.

ILP
e CPLEX routinely solves large real-world instances.
e Routinely used in scientific and commercial applications.

slide by Kevin Wayne



