
Design & Analysis  
      Algorithms

P, NP, NP-Complete and NP-Hard Problems

CS11921 - Fall 2023 

of

Ibrahim Albluwi



Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:  
An algorithm for solving problem X that 
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as ) : 
X can be solved using a solver for Y in 
addition to polytime amount of work.

X ⩽p Y

Algorithm for  
Y

Algorithm for X

Input for 
X Post-

processing
Pre-

processing

Total cost for solving X     =    Cost of solving Y    +   Cost of reduction

Y might be called multiple time 
(typically 1 call)

Typically less than the cost 
of solving Y

Solution for 
X
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• Does not allow post-processing the 
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Sort the elements by repeatedly using 
SELECT to find the next largest element.

Example.



Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:  
An algorithm for solving problem X that 
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as ) : 
X can be solved using a solver for Y in 
addition to polytime amount of work.

X ⩽p Y

A Turing Reduction from X to Y:  
• Allows calling Y's solver multiple times. 
• Allows post-processing the output of Y's 

solver.

A Karp Reduction from X to Y:  
• Allows calling Y's solver only once. 
• Does not allow post-processing the 

output of Y's solver.

Example.

SELECT Given a list of elements, find the 
 largest element.kth

SORT Given a list of elements, order the 
elements in non-decreasing order. 

SORT reduces to SELECT 

Sort the elements by repeatedly using 
SELECT to find the next largest element.

Also called a many-to-one reduction: 
Input to  is preprocessed such that every 
YES instance of  maps to a YES answer in 

 and every NO instance of  maps to a NO 
answer in .

X
X

Y X
Y

TOTALITY reduces to EQUIVALENCE

Example.

See the slides on Reductions discussed  
before.
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Suppose there is a proof that problem X is difficult to solve. 

How can we prove that a problem Y is also difficult to solve?

A.   Show that X reduces easily to Y. 

B.   Show that Y reduces easily to X.
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Suppose there is a proof that problem X is difficult to solve. 

How can we prove that a problem Y is also difficult to solve?

A.   Show that X reduces easily to Y. 

B.   Show that Y reduces easily to X.



• If  reduces easily to  and  then  .X Y Y ∈ EASY X ∈ EASY

We know that   and we want to use this information to show that  
. I.e. we want to show that ). We can achieve 

this by showing that the the following contrapositive statement holds: 

 

X ∉ EASY
Y ∉ EASY X ∉ EASY ⟹ Y ∉ EASY

Y ∈ EASY ⟹ X ∈ EASY

Quiz # 1 (déjà vu!)

A.   Show that X reduces easily to Y. 

B.   Show that Y reduces easily to X.

Suppose there is a proof that problem X is difficult to solve. 

How can we prove that a problem Y is also difficult to solve?

• Since it is known that , then   must be false!          
(otherwise, there will be a contradiction)

X ∉ EASY Y ∈ EASY

Explanation.



NEVER FORGET

      If A is hard to solve and  
     A easily reduces to B , 
en B is also hard to solve!

(A ⩽p B)



NEVER FORGET

What does it mean for a problem to be hard anyway?

      If A is hard to solve and  
     A easily reduces to B , 
en B is also hard to solve!

(A ⩽p B)



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs 

Shortest Paths on weighted DAGs 

Longest Paths on weighted DAGs 

Shortest Paths on weighted graphs (no negative weights)

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs 

Shortest Paths on weighted DAGs 

Longest Paths on weighted DAGs 

Shortest Paths on weighted graphs (no negative weights) 

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

 NO KNOWN POLYNOMIAL TIME ALGORITHM!



A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs 

Shortest Paths on weighted DAGs 

Longest Paths on weighted DAGs 

Shortest Paths on weighted graphs (no negative weights) 

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

Fractional Knapsack Problem 

0-1 Knapsack Problem

has an efficient greedy algorithm

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

 NO KNOWN POLYNOMIAL TIME ALGORITHM!
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A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex  
has an even degree!

Does a graph G contain a Hamiltonian Cycle?  
(a cycle that visits all the vertices in G exactly once)

Traveling Salesman Problem (TSP) 
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

 NO KNOWN POLYNOMIAL TIME ALGORITHM!



A fine line Between Hard and Easy Problems

Is a graph 2-Colorable? 
(can the vertices be colored using 2 colors, such that 
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length 
(can be checked using BFT)



A fine line Between Hard and Easy Problems

Is a graph 2-Colorable? 
(can the vertices be colored using 2 colors, such that 
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length 
(can be checked using BFT)

Is a graph k-Colorable?  
(can the vertices be colored using k colors or less, such  
that no two adjacent vertices have the same color?)

 NO KNOWN POLYNOMIAL TIME ALGORITHM!



More Hard Problems

Bin Packing  
Given an unlimited number of bins (each with capacity C ), and n objects with 
sizes  where , find the minimum number of bins needed to 
pack all objects. 

s1, … , sn 0 < si ≤ C
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2
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1
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More Hard Problems

min subset

Subset Sum  
Given a multiset S of integers and an integer k, find a minimum subset of S whose 
elements sum up to exactly k. 

Example.  S = {1, 1, 1, 4, 4, 5, 6}, k = 8 
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4}
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S = {1, 2, 3, 4, 5} 
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Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum? 

Example.  S = {1, 2, 3, 4} 
YES: {1, 4} and {2, 3} 

S = {1, 2, 3, 4, 5} 
No 

 NO KNOWN POLYNOMIAL TIME ALGORITHM!
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A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset 
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...) 

 
(1)  No one until now found a polynomial time algorithm to solve any of them. 

(2)  No one proved that no polynomial time algorithm can be found for any of them. 

(3)  Each of them poly-time reduces to all the other problems! 
I.e. Finding a polynomial time solution to any of them means that all of them have 
polynomial time solutions! 

(4)  You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial  
       time solution for any of them or prove that any of them can't have a polynomial  
       time solution!

💵



Welcome to the

P vs NP
Problem



Definitions

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 
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Optimization problem:  
Given a complete weighted graph G, find a 
simple circuit C that visits each node in G 
exactly once such that the total cost of the 
edges in C is minimum. 

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 



Examples

Definitions

Traveling Salesman Problem

Optimization problem:  
Given a complete weighted graph G, find a 
simple circuit C that visits each node in G 
exactly once such that the total cost of the 
edges in C is minimum.  

Decision problem:  
Given a complete weighted graph G, does 
G contain a simple circuit C that visits each 
node exactly once such that the total cost 
of the edges in C is less than or equal to 
some threshold T ? 

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 



Examples

Definitions

Bin-Packing

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Given an unlimited number of 
bins (each with capacity C ), and n 
objects with sizes  where 

, find the minimum 
number of bins needed to pack all 
objects 
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Examples

Definitions

Bin-Packing

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Given an unlimited number of 
bins (each with capacity C ), and n 
objects with sizes  where 

, find the minimum 
number of bins needed to pack all 
objects 

Decision problem:  
Can the objects fit in less than k 
bins ?

s1, … , sn
0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞



Examples

Definitions

Graph Coloring

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Find the minimum number of colors 
such that adjacent vertices are not 
assigned the same color.



Examples

Definitions

Graph Coloring

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Find the minimum number of colors 
such that adjacent vertices are not 
assigned the same color. 

Decision problem:  
Can the vertices be properly colored 
in K or fewer colors such that 
adjacent vertices are not assigned 
the same color? 



Examples

Definitions

Subset Sum

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Given a multi-set S of integers and an 
integer k, find a minimum subset of S 
whose elements sum up to exactly k.

Example.   
S = {1, 1, 1, 4, 4, 5, 6},  k = 8 

Possible Subsets: {1, 1, 1, 5} 
             {1, 1, 6} 
             {4, 4} ⟵ minimum



Examples

Definitions

Subset Sum

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Optimization problem:  
Given a multi-set S of integers and an 
integer k, find a minimum subset of S 
whose elements sum up to exactly k. 

Decision problem:  
Does S contain a subset whose 
elements sum up to exactly k?

Example.   
S = {1, 1, 1, 4, 4, 5, 6},  k = 8 

Possible Subsets: {1, 1, 1, 5} 
             {1, 1, 6} 
             {4, 4} ⟵ minimum



Examples

Definitions

Hamiltonian Cycle

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Decision problem:  
Is there a cycle that visits each 
vertex in the graph once? 



Examples

Definitions

Hamiltonian Cycle

Optimization problem:  
Find the best solution among a set of feasible solutions. 

Decision problem:  
Requires a yes/no answer. 

Decision problem:  
Is there a cycle that visits each 
vertex in the graph once? 

Examples Subset Partition

Decision problem:  
Given a set S of integers, Can we partition 
S into two subsets of exactly the same 
size?

Example.  S = {1, 2, 3, 4} 
YES: {1, 4} and {2, 3} 

S = {1, 2, 3, 4, 5} 
No 
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Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the  
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer  
the question Is there a tour of length less than T  as follows: 

If   : ere is no tour of length less than T. 
If   : ere is a tour of length less than T. 

L ≥ T
L < T

TSPdec ≤p TSPopt



Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization 
version is also hard?



Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization 
version is also hard?

Answer. Yes.  

e decision version is no harder (as hard or easier) than the optimization version.

To discuss and prove hardness,  
we will consider only decision problems!

TSPdec ≤p TSPopt
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Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c



Definitions (Complexity Classes)

Class P. 
A decision problem is in P if it is solvable in polynomial time.

• Given a list of integers L and an integer K:  
• is K in L?  
• Is there an integer in L that is greater than K ? 
• Do any two numbers in L sum to K ? 

• Given a permutation of elements P:  
• is P sorted in ascending order? 
• is P a palindrome? 

• Given a graph G: 
• Is there a spanning tree whose sum of edge weights is less than T ? 
• Is there a path between v and w in a graph G less than T ? 
• Is there a cycle in the graph? 
• Is the graph connected? 

   etc.

Examples



Quiz # 4

Which of the following decision problems are not in P ?

A.   Traveling Salesman Problem. 

B.   0-1 Knapsack. 

C.   Bin-Packing.  

D.   All of the above. 

D.   I don't know.



Quiz # 4

A.   Traveling Salesman Problem. 

B.   0-1 Knapsack. 

C.   Bin-Packing.  

D.   All of the above. 

D.   We don't know.
A problem is in P if it has a polynomial time 
solution. 

A problem is not in P if there is a proof that it does 
not have a polynomial time solution. 

While we don't have polynomial time solutions for 
these problems, no one proved that these problems 
do not have polynomial time solutions!

Which of the following decision problems are not in P ?



Definitions (Complexity Classes)

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I for a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c



Definitions (Complexity Classes)

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I  for a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Example Is there A HAMILTONIAN Cycle?

Given a graph G, and a path C (a witness), can we verify in 
polynomial time if C is a hamiltonian cycle? 

Yes! 
1. Check that the first and last vertices are the same. 
2. Check that no other vertices repeat. 
3. Check that the path has exactly V edges and that 

they are all in G.



Definitions (Complexity Classes)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Example TSP is in NP

Given a graph G, a length L, and a path C  
(a witness), can we verify in polynomial time if C 
is a hamiltonian cycle of length less than L?

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I  for a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)



Definitions (Complexity Classes)

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Example TSP is in NP

Given a graph G, a length L, and a path C  
(a witness), can we verify in polynomial time if C 
is a hamiltonian cycle of length less than L? 

Yes! 
1. Check that C is a Hamiltonian cycle. 
2. Check that the sum of the edge weights is 

less than L.



Definitions (Complexity Classes)

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Example SUBSET-SUM is in NP

Given a multi-set S, two integers K and 
L, and a subset H of S (a witness), can 
we verify in polynomial time if  

 and that its elements sum to 
L? 

Yes!

|H | ≤ K



Definitions (Complexity Classes)

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Example SUBSET-SUM Example SUBSET-PARTITION

Given a multi-set S, two subsets  and 
 of S (a witness), can we verify in 

polynomial time if  
and that the sum of the elements in  
= the sum of the elements in ? 

Yes!

H1
H2

|H1 | + |H2 | = |S |
H1

H2

Given a multi-set S, two integers K and 
L, and a subset H of S (a witness), can 
we verify in polynomial time if  

 and that its elements sum to 
L? 

Yes!

|H | ≤ K



Quiz # 5

Every problem that is in P is also in NP.

A.   True. 

B.   False. 

D.   We don't know.



A.   True. 

B.   False. 

D.   We don't know.

Quiz # 5

Every problem that is in P is also in NP.

If a problem is solvable in polynomial 
time, it is also verifiable in polynomial 
time. 

We can always solve the problem to 
verify a given witness!



A.   True. 

B.   False. 

D.   We don't know.

Quiz # 6

Every problem that is in NP is also in P.



A.   True. 

B.   False. 

D.   We don't know.

Quiz # 6

Every problem that is in NP is also in P.

Does easy verification imply that finding a solution is also easy? 

• No one knows! 

• No one yet found a problem that  
is in NP but is not in P ! 

• This is a $1,000,000 question! 💵 💵 💵



Two Possible World Views

No one knows which is true!

P = NP
NP

vs

P



Quiz # 7

What are examples of problems that we do not know how to verify in polynomial  
time (hence, we are unable to place in NP)?
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Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verify in  
polynomial time if the move will guarantee black to win! (we can do exponential amount  
of work to check all possible black and white moves to see if black will win!)

What are examples of problems that we do not know how to verify in polynomial  
time (hence, we are unable to place in NP)?



Quiz # 7

Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verify in  
polynomial time if the move will guarantee black to win! (we can do exponential amount  
of work to check all possible black and white moves to see if black will win!)

What are examples of problems that we do not know how to verify in polynomial  
time (hence, we are unable to place in NP)?

Another Example. Does graph G have a unique Hamiltonian cycle?



What is in a name?

What does NP stand for?

A.   Not Polynomial. 

B.   No Pakeup Exam. 

C.   No Problem. 

D.   None of the aPove.



What is in a name?

What does NP stand for?

NP stands for: Non-deterministically Polynomial. 
I.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions  
all at the same time (call TM a non-deterministic machine). 

If a problem is verifiable in polynomial time, TM can solve the problem by guessing  
all the possible solutions and verifying them at once (in polynomial time!)

A.   Not Polynomial. 

B.   No Pakeup Exam. 

C.   No Problem. 

D.   None of the aPove.
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Class NP-Complete. 
A decision problem is NP-Complete if: 

• It is in NP. 
• All problems in NP reduce to it in polynomial time.

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)



Definitions (Complexity Classes)

Class NP-Complete. 
A decision problem is NP-Complete if: 

• It is in NP. 
• All problems in NP reduce to it in polynomial time.

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

How do we show that all problems in NP  
reduce to a certain problem???



Cook-Levin Theorem (1971)

What is SAT?

slide by Kevin Wayne
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Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Example What values for  ,  ,    and    satisfy the following formula?x1 x2 x3 x4

Answer.     = TRUE,    = TRUE,    = FALSE,    = FALSEx1 x2 x3 x4
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Key Facts. 

• SAT is in NP. 
Given a formula and boolean values for the variables, it is easy to verify if these 
values satisfy the formula! 

• It is not clear if SAT is also in P. 
• We can try all possible  boolean assignments.  
• We don't know if a polynomial time solution exists.
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Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts. 

• SAT is in NP. 
Given a formula and boolean values for the variables, it is easy to verify if these 
values satisfy the formula! 

• It is not clear if SAT is also in P. 
• We can try all possible  boolean assignments.  
• We don't know if a polynomial time solution exists. 

• All problems in NP reduce to SAT in polynomial time. 

• is is the Cook-Levin eorem.  

• e details of the proof are beyond the scope of this course. 

• In a nutshell, Cook and Levin showed how any decision problem that is in  
NP can be converted (in polynomial time) to the problem of satisfying a  
boolean formula of a polynomial size). 
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)

2N



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   , Ared Ablue Bred Bblue Cred Cblue



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   ,  

2. Enforce that each vertex has one color:

Ared Ablue Bred Bblue Cred Cblue



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   ,  

2. Enforce that each vertex has one color: 
(     )     (     )  = TRUE 
(     )      (     )  = TRUE 
(     )    (     )  = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C
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B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   ,  

2. Enforce that each vertex has one color: 
(     )     (     )  = TRUE 
(     )      (     )  = TRUE 
(     )    (     )  = TRUE 

3. Enforce that no adjacent vertices have the same color:

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   ,  

2. Enforce that each vertex has one color: 
(     )     (     )  = TRUE 
(     )      (     )  = TRUE 
(     )    (     )  = TRUE 

3. Enforce that no adjacent vertices have the same color: 
(     )    (     )  = TRUE 
(     )    (     )  = TRUE 
(     )    (     )  = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue



Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 ,   ,   ,   ,   ,  

2. Enforce that each vertex has one color: 
(     )     (     )  = TRUE 
(     )      (     )  = TRUE 
(     )    (     )  = TRUE 

3. Enforce that no adjacent vertices have the same color: 
(     )    (     )  = TRUE 
(     )    (     )  = TRUE 
(     )    (     )  = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue

e graph is 2-colorable if the above boolean expressions are satisfiable!

Can be converted to  
a CNF with   
clauses

Θ(E + V )



How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

A.   Be as clever as Cook and Levin and show how all problems  
          in NP reduce to this new problem. 

B.   No need! SAT is the only NP-Complete Problem! 

C.   None of the above.
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How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

To show that a problem is NP-Complete: 

1. Show that it is in NP. 

2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to A and A poly-time reduces to B,  
then all problems in NP poly-time reduce to B !

A.   Be as clever as Cook and Levin and show how all problems  
          in NP reduce to this new problem. 

B.   No need! SAT is the only NP-Complete Problem! 

C.   None of the above.



SAT is not The Only NP-Complete Problem!

slide by Kevin Wayne

Key Finding. SAT poly-time reduces to many problems! 

Implication. All of these problems are NP-Complete!



SAT is not The Only NP-Complete Problem!
adapted from a slide by Kevin Wayne



World View if P != NP

IS THERE A PATH SHORTER THAN L?

IS N ODD? IS THERE A CYCLE?

IS THERE A SPANNING TREE SHORTER THAN L?

IS THERE AN EULERIAN CYCLE? IS THERE A NUMBER < K?

NP-Complete

P

IS L A PALINDROM?

NP



Again ... Two Possible World Views

P = NP =  
NP-Complete

NP vs

If  P = NPIf  P  NP≠

NP-Complete

P



Are there problems that are in NP but are not in P and are not NP-Complete.

A.   Yes. 

B.   No. 

C.   None of the above.

Quiz # 10
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Are there problems that are in NP but are not in P and are not NP-Complete.

A.   Yes. 

B.   No. 

C.   None of the above.

Quiz # 10

Maybe if   P  NP. 

No if          P = NP.

≠

ere are, however, problems in NP that we could not yet prove to be in P and 
could not also prove to be NP-Complete! 

Examples. Integer Factoring and Graph Isomorphism.



NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)

Given a set of inequalities, is there a 0-1 solution?

Example. A solution for the above is: 
                 x0 = 1, x1 = 1, x2 = 0

Task. Show that ILP is NP-Complete.

Examples by Kevin Wayne
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NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Example. A solution for the above is: 
                 x0 = 1, x1 = 1, x2 = 0

1. ILP is in NP.

2. SAT poly-time reduces to ILP.

Given values for the variables, we can verify in  
polynomial time if the inequalities are true.

x̄1 ∨ x2 ∨ x3 = TRUE
x1 ∨ x̄2 ∨ x3 = TRUE
x̄1 ∨ x̄2 ∨ x̄3 = TRUE
x̄1 ∨ x̄2 ∨ x4 = TRUE

x̄2 ∨ x3 ∨ x4 = TRUE

(1 − x1) + x2 + x3 ≥ 1
x1 + (1 − x2) + x3 ≥ 1

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1
(1 − x1) + (1 − x2) + x4 ≥ 1

(1 − x2) + x3 + x4 ≥ 1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

Given a set of inequalities, is there a 0-1 solution?



NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Example. A solution for the above is: 
                 x0 = 1, x1 = 1, x2 = 0

2. SAT poly-time reduces to ILP.

x̄1 ∨ x2 ∨ x3 = TRUE
x1 ∨ x̄2 ∨ x3 = TRUE
x̄1 ∨ x̄2 ∨ x̄3 = TRUE
x̄1 ∨ x̄2 ∨ x4 = TRUE

x̄2 ∨ x3 ∨ x4 = TRUE

(1 − x1) + x2 + x3 ≥ 1
x1 + (1 − x2) + x3 ≥ 1

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1
(1 − x1) + (1 − x2) + x4 ≥ 1

(1 − x2) + x3 + x4 ≥ 1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

A clause is true iff any variable is true 
and is not negated or is false and is  
negated. 

An inequality  1 iff any variable is 1 and is not  
negated or is  and is negated.

≥
0

Creating these inequalities is linear in the number 
of boolean clauses (i.e. this is a polytime reduction)

Given a set of inequalities, is there a 0-1 solution?



NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k

We can pick any NP-Complete problem
for the reduction, not necessarily SAT!

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.
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                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k
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2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.
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CLIQUE Given a graph G, and 
an integer m, is there a complete  
subgraph of size m vertices?

Examples by Kevin Wayne

original  
graph

not a 
clique

a clique of 
size m=3

a clique of 
size m=4

Task. Show that CLIQUE  
is NP-Complete.



CLIQUE Given a graph G, and 
an integer m, is there a complete  
subgraph of size m vertices?

original  
graph

not a 
clique

a clique of 
size m=3

a clique of 
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

Given a graph G and a subgraph of vertices , we can check in polynomial time if 
the size of the set is m and every vertex in  is connected to every other vertex in . 

S
S S

Task. Show that CLIQUE  
is NP-Complete.
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NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example

Task. Show that CLIQUE  
is NP-Complete.
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CLIQUE Given a graph G, and 
an integer m, is there a complete  
subgraph of size m vertices?

original  
graph

not a 
clique

a clique of 
size m=3

a clique of 
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
    (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Create a group of vertices for every 
clause (m groups)

• Connect every vertex to all the other 
vertices in the other groups unless the 
variable is its negation.

• A clique of size m corresponds to m 
literals being true (formula is satisfiable).

The clique contains exactly 1 vertex from each group 
(vertices in the same group are not connected) and a 
variable and its negation can't be in the clique.

Task. Show that CLIQUE  
is NP-Complete.



CLIQUE Given a graph G, and 
an integer m, is there a complete  
subgraph of size m vertices?

original  
graph

not a 
clique

a clique of 
size m=3

a clique of 
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
    (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Create a group of vertices for every 
clause (m groups)

• Connect every vertex to all the other 
vertices in the other groups unless the 
variable is its negation.

• A clique of size m corresponds to m 
literals being true (formula is satisfiable).

If the number of literals = , the construction takes 
 time (i.e. this is a polytime reduction)

N
O(N2)

Task. Show that CLIQUE  
is NP-Complete.
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a subset of k vertices such that no two  
vertices are adjacent?
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NP-Completeness (Proof Examples)

1. IS is in NP.

2. SAT poly-time reduces to IS.

Example. Black vertices form an  
                 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k
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1. IS is in NP.

• Create a node for each literal in each clause. 
• Connect each node to the literals in the same clause. 
• Connect each literal to its negation. 
• e expression is satisfiable iff there is an independent  

set of size  the number of clauses.=

Example. Black vertices form an  
                 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k



NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause. 
• Connect each node to the literals in the same clause. 
• Connect each literal to its negation. 
• e expression is satisfiable iff there is an independent  

set of size  the number of clauses.=

Example. Black vertices form an  
                 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

The independent set contains  only 1 vertex from each group. Two vertices in the 
same group can't be in the set and a variable and its negation can't be in the 
set (because these are connected with edges in the constructed graph)



NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause. 
• Connect each node to the literals in the same clause. 
• Connect each literal to its negation. 
• e expression is satisfiable iff there is an independent  

set of size  the number of clauses.=

Example. Black vertices form an  
                 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

If the number of literals = , the construction takes 
 time (i.e. this is a polytime reduction)

N
O(N2)



NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?



NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k
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Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.
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VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.



NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
                 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the 
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

S is an independent set of size k iff  is a vertex cover of size .V − S |V | − k

Vertex Cover of size 4 Independent Set of size 5
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NP-Completeness (Proof Examples)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

1. Show that TSP is in NP. straight-forward

TSP Given a complete weighted graph G, 
does G contain a simple circuit of length  
T  that visits each node exactly once? 

≤
HAMILTONIAN Given a graph G, does 
G contain a simple circuit that visits 
each node only once.



NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G, 
does G contain a simple circuit of length  
T  that visits each node exactly once? 

≤

1. Show that TSP is in NP.

2. HAMILTONIAN poly-time reduces to TSP.

straight-forward

2
2

2
2

1

1

1

1
1

1

Input to HAMILTONIAN Input to TSP
G G'

(If length > V then an edge that is not 
part of the original graph was used)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

G has a hamiltonian cycle  
iff G' has a tour of length V

Add edge  with weight 1 if  is in G. 
Add edge  with weight 2 if  is not in G.

(u, v) (u, v)
(u, v) (u, v)

HAMILTONIAN Given a graph G, does 
G contain a simple circuit that visits 
each node only once.



NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G, 
does G contain a simple circuit of length  
T  that visits each node exactly once? 

≤

1. Show that TSP is in NP.

2. HAMILTONIAN poly-time reduces to TSP.

straight-forward

2
2

2
2

1

1

1

1
1

1

Input to HAMILTONIAN Input to TSP
G G'

(If length > V then an edge that is not 
part of the original graph was used)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

This construction runs in 
 = polytime reduction!Θ(V2)

G has a hamiltonian cycle  
iff G' has a tour of length V

Add edge  with weight 1 if  is in G. 
Add edge  with weight 2 if  is not in G.

(u, v) (u, v)
(u, v) (u, v)

HAMILTONIAN Given a graph G, does 
G contain a simple circuit that visits 
each node only once.



Definitions (Complexity Classes)

Class NP-Complete. 
A decision problem is NP-Complete if: 

• It is in NP. 
• All problems in NP reduce to it in polynomial time.

Class NP-Hard. 
A problem is NP-Hard if all problems in NP reduce to it in polynomial time. 
(at least as hard as the hardest problems in NP)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)



Definitions (Complexity Classes)

Class P. 
A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where  is the input size and  is a constant)O(nc) n c

Class NP. 
A decision problem is in NP if it is verifiable in polynomial time. 
(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete. 
A decision problem is NP-Complete if: 

• It is in NP. 
• All problems in NP reduce to it in polynomial time.

Class NP-Hard. 
A problem is NP-Hard if all problems in NP reduce to it in polynomial time. 
(at least as hard as the hardest problems in NP)

Examples. 
• All NP-Complete Problems. 
• TSP Optimization. 
• Finding the Longest Simple Path.



P = NP =  
NP-CompleteNP

vs

If  P = NPIf  P  NP≠

NP-Complete

P

Two Possible World Views

NP-Hard NP-Hard



Living with Intractability
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does not have an algorithm that 
solve all instances in polynomial 
time.



Living with Intractability: Don't Try To Solve It!
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Living with Intractability: Solve Real-World Instances
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