CS11313 - Fall 2021

# Design \& Analysis of Algorithms 

NP Completeness
Ibrahim Albluwi

## Reductions

A reduction from problem $X$ to problem $Y$ :
An algorithm for solving problem $X$ that includes a solver of problem $Y$ as a subroutine.

## Reductions

A reduction from problem $X$ to problem $Y$ :
An algorithm for solving problem $X$ that includes a solver of problem $Y$ as a subroutine.


Total cost for solving $X=$ Cost of solving $Y+$ Cost of reduction

Y might be called multiple time
(typically 1 call)
$\square$ Typically less than the cost of solving Y

## Reductions

A reduction from problem $X$ to problem $Y$ :
An algorithm for solving problem $X$ that includes a solver of problem $Y$ as a subroutine.

Problem $X$ reduces to problem $Y$ (denoted as $X \leqslant Y$ ): An algorithm for solving $Y$ can be used to solve $X$.

Problem $X$ polytime-reduces to problem $Y\left(X \leqslant_{p} Y\right)$ : An algorithm for solving $Y$ can be used to solve $X$ in addition to a polynomial-time amount of work.


Total cost for solving $X=$ Cost of solving $Y+$ Cost of reduction

Y might be called multiple time (typically 1 call)

Typically less than the cost of solving Y

## Reductions (Examples)

## LINEAR

Given $b$ and $c$, solve $b x+c=0$

## QUADRATIC

Given $a, b$ and $c$, solve $a x^{2}+b x+c=0$

## Reductions (Examples)

## LINEAR

Given $b$ and $c$, solve $b x+c=0$

## QUADRATIC

Given $a, b$ and $c$, solve $a x^{2}+b x+c=0$

LINEAR reduces to QUADRATIC


## Reductions (Examples)

## LINEAR

Given $b$ and $c$, solve $b x+c=0$

LINEAR reduces to QUADRATIC


## SELECT

Given a list of elements, find the $k^{\text {th }}$ largest element.

## QUADRATIC

Given $a, b$ and $c$, solve $a x^{2}+b x+c=0$

$$
=0
$$



## Reductions (Examples)

## QUADRATIC

Given $a, b$ and $c$, solve $a x^{2}+b x+c=0$

## LINEAR

Given $b$ and $c$, solve $b x+c=0$

LINEAR reduces to QUADRATIC


## SELECT

Given a list of elements, find the $k^{\text {th }}$ largest element.

## SELECT reduces to SORT

Use SORT to sort the elements and then report the element of rank $k$.

## SORT

Given a list of elements, order the elements in non-decreasing order.

## SORT reduces to SELECT

Sort the elements by repeatedly using SELECT to find the next largest element.

## Reductions (Examples)

## LINEAR

Given $b$ and $c$, solve $b x+c=0$

LINEAR reduces to QUADRATIC


## SELECT

Given a list of elements, find the $k^{\text {th }}$ largest element.

SELECT reduces to SORT
Use SORT to sort the elements and then report the element of rank $k$.

Running Time. $O(N \log N)+O(1)$


## QUADRATIC

Given $a, b$ and $c$, solve $a x^{2}+b x+c=0$

## Reductions (Examples)

## SSSP (Single Source Shortest Paths)

Given a graph $G$ and a source vertex $s$, find the shortest path from $s$ to every vertex in $G$.


## SDSP (Single Destination Shortest Paths)

Given a graph $G$ and a destination vertex $d$, find the shortest path from every vertex in $G$ to $d$.


## Reductions (Examples)

SSSP (Single Source Shortest Paths)
Given a graph $G$ and a source vertex $s$, find the shortest path from $s$ to every vertex in G.


## SDSP (Single Destination Shortest Paths)

Given a graph $G$ and a destination vertex $d$, find the shortest path from every vertex in $G$ to $d$.


## SSSP reduces to SDSP

- Create $G^{T}$, a transpose of $G$.
- Set $s$ to $d$ and run SSSP on $G^{T}$.
- Transpose the shortest paths tree.


## Reductions (Examples)

SSSP (Single Source Shortest Paths)
Given a graph $G$ and a source vertex $s$, find the shortest path from $s$ to every vertex in G.


SSSP reduces to SDSP

- Create $G^{T}$, a transpose of $G$.
- Set $s$ to $d$ and run SSSP on $G^{T}$.
- Transpose the shortest paths tree.


## SDSP (Single Destination Shortest Paths)

Given a graph $G$ and a destination vertex $d$, find the shortest path from every vertex in $G$ to $d$.


Running Time. $O(E \log V)+O(E+V)$
reduction
(transposing)
SSSP
(using Dijkstra's algorithm, assuming the graph is cyclic and has non-negative weights)

## Quiz \# 1

Suppose there is a proof that no computer can solve problem $X$.
How can we prove that a problem $Y$ is also impossible to solve?
A. Show that $X$ reduces to $Y$.
B. Show that $Y$ reduces to $X$.
C. Computers can solve any problem. It is only that we might not be clever enough to come up with an algorithm!
D. It depends.

## Quiz \# 1

Suppose there is a proof that no computer can solve problem $X$.
How can we prove that a problem $Y$ is also impossible to solve?
A. Show that $X$ reduces to $Y$.
B. Show that $Y$ reduces to $X$.
C. Computers can solve any problem. It is only that we might not be clever enough to come up with an algorithm!
D. It depends.

## Quiz \# 1

Suppose there is a proof that no computer can solve problem $X$.
How can we prove that a problem $Y$ is also impossible to solve?
A. Show that $X$ reduces to $Y$.
B. Show that $Y$ reduces to $X$.
C. Computers can solve any problem. It is only that we might not be clever enough to come up with an algorithm!
D. It depends.
$X$ reduces to $Y$
We can use $Y$ to solve $X$.
If $Y$ is solvable:
$X$ is also solvable (contradiction!)
$Y$ reduces to $X$
We can use $X$ to solve $Y$.
While $X$ is unsolvable, there might be another way for solving $Y$ not using $X$.

## Reductions (Examples)

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

## Reductions (Examples)

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve.
see the theory
of computation course!

## Reductions (Examples)

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. $\qquad$ see the theory
of computation
How can we show that EQUIVALENCE is also impossible to solve?

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. $\qquad$ see the theory
of computation course!
How can we show that EQUIVALENCE is also impossible to solve? Answer. Show that TOTALITY reduces to EQUIVALENCE.

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. $\qquad$ see the theory of computation course!
How can we show that EQUIVALENCE is also impossible to solve?
Answer. Show that TOTALITY reduces to EQUIVALENCE.

TOTALITY reduces to EQUIVALENCE

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known to be impossible, EQUIVALENCE must also be impossible.

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. see the theory of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reduces to EQUIVALENCE.

## TOTALITY reduces to EQUIVALENCE

- Create $P_{1}$ as a copy of $P$, except that it outputs TRUE instead of its original output.

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known to be impossible, EQUIVALENCE must also be impossible.

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. see the theory of computation
How can we show that EQUIVALENCE is also impossible to solve? course!

Answer. Show that TOTALITY reduces to EQUIVALENCE.

## TOTALITY reduces to EQUIVALENCE

- Create $P_{1}$ as a copy of $P$, except that it outputs TRUE instead of its original output.
- Create a program $P_{2}$ that outputs TRUE and does nothing else.

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known to be impossible, EQUIVALENCE must also be impossible.

## Reductions (Examples)

## TOTALITY

Does a given program $P$ terminate on all possible inputs? (never enters an infinite loop!)

## EQUIVALENCE

Given two programs $P_{1}$ and $P_{2}$. Do these two programs produce the same output for every input? (i.e. are they equivalent?)

We know that TOTALITY is an impossible problem to solve. $\qquad$ of computation course!
How can we show that EQUIVALENCE is also impossible to solve?
Answer. Show that TOTALITY reduces to EQUIVALENCE.

## TOTALITY reduces to EQUIVALENCE

- Create $P_{1}$ as a copy of $P$, except that it outputs TRUE instead of its original output.
- Create a program $P_{2}$ that outputs TRUE and does nothing else.
- Use EQUIVALENCE to check if $P_{1}$ and $P_{2}$ are equivalent. If they are equivalent, $P$ terminates on all input. If they are not, the only possibility is that $P$ does not terminate on some input (since the output of $P_{1}$ and $P_{2}$ is always the same).

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known to be impossible, EQUIVALENCE must also be impossible.

## Reductions (Examples)

## PAIR

Given lists $L_{1}$ and $L_{2}$ of size $N$, pair the $\min$ in $L_{1}$ with the $\min$ in $L_{2}$, the next $\min$ in $L_{1}$ with the next $\min$ in $L_{2}$, etc.

## SORT

Given a list of elements, sort them in non-decreasing order.

Example. $L_{1}=[13,7,3,1,11,2]$

$$
L_{2}=[2,8,6,4,10,0]
$$

$$
\text { PAIR }=[1-0,2-2,3-4,7-6,11-8,13-10]
$$

## Reductions (Examples)

## PAIR

Given lists $L_{1}$ and $L_{2}$ of size $N$, pair the $\min$ in $L_{1}$ with the $\min$ in $L_{2}$, the next $\min$ in $L_{1}$ with the next $\min$ in $L_{2}$, etc.

## SORT

Given a list of elements, sort them in non-decreasing order.

Example. $L_{1}=[13,7,3,1,11,2]$

$$
L_{2}=[2,8,6,4,10,0]
$$

$$
\text { PAIR }=[1-0,2-2,3-4,7-6,11-8,13-10]
$$

## PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}[0]$ with $L_{2}[0]$,
$L_{1}[1]$ with $L_{2}[1]$, etc.


## Reductions (Examples)

## PAIR

Given lists $L_{1}$ and $L_{2}$ of size $N$, pair the $\min$ in $L_{1}$ with the $\min$ in $L_{2}$, the next min in $L_{1}$ with the next $\min$ in $L_{2}$, etc.

## SORT

Given a list of elements, sort them in non-decreasing order.

Example. $L_{1}=[13,7,3,1,11,2]$

$$
L_{2}=[2,8,6,4,10,0]
$$

$$
\text { PAIR }=[1-0,2-2,3-4,7-6,11-8,13-10]
$$

## PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}[0]$ with $L_{2}[0]$,
$L_{1}$ [1] with $L_{2}[1]$, etc.


## SORT reduces to PAIR

- Let $L_{1}$ be the list to be sorted.
- Create $L_{2}$ containing the numbers 1 to $N$.
- Extract the sorted version of $L_{1}$ from the result of applying PAIR on $L_{1}$ and $L_{2}$.


## Reductions (Examples)



## Implication.

## PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}$ [0] with $L_{2}$ [0], $L_{1}[1]$ with $L_{2}[1]$, etc.


## SORT reduces to PAIR

- Let $L_{1}$ be the list to be sorted.
- Create $L_{2}$ containing the numbers 1 to $N$.
- Extract the sorted version of $L_{1}$ from the result of applying PAIR on $L_{1}$ and $L_{2}$.


## Reductions (Examples)



## Implication.

- We already know that any comparison based algorithm for SORT performs $\Omega(N \log N)$ compares in the worst case.

PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}[0]$ with $L_{2}[0]$, $L_{1}$ [1] with $L_{2}[1]$, etc.


## SORT reduces to PAIR

- Let $L_{1}$ be the list to be sorted.
- Create $L_{2}$ containing the numbers 1 to $N$.
- Extract the sorted version of $L_{1}$ from the result of applying PAIR on $L_{1}$ and $L_{2}$.


## Reductions (Examples)



## Implication.

- We already know that any comparison based algorithm for SORT performs $\Omega(N \log N)$ compares in the worst case.
- The reduction from SORT to PAIR requires only $\Theta(N)$ amount of work (creating $L_{2}$ and extracting the result)

PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}$ [0] with $L_{2}$ [0], $L_{1}[1]$ with $L_{2}[1]$, etc.


## SORT reduces to PAIR

- Let $L_{1}$ be the list to be sorted.
- Create $L_{2}$ containing the numbers 1 to $N$.
- Extract the sorted version of $L_{1}$ from the result of applying PAIR on $L_{1}$ and $L_{2}$.


## Reductions (Examples)



## Implication.

- We already know that any comparison based algorithm for SORT performs $\Omega(N \log N)$ compares in the worst case.
- The reduction from SORT to PAIR requires only $\Theta(N)$ amount of work (creating $L_{2}$ and extracting the result)
- PAIR must require $\Omega(N \log N)$ compares in the worst case. Otherwise, the $\Omega(N \log N)$ lower bound for SORT is not correct (contradiction!)

PAIR reduces to SORT

- Use SORT to sort $L_{1}$ and $L_{2}$.
- Pair $L_{1}$ [0] with $L_{2}$ [0], $L_{1}[1]$ with $L_{2}[1]$, etc.


## SORT reduces to PAIR

- Let $L_{1}$ be the list to be sorted.
- Create $L_{2}$ containing the numbers 1 to $N$.
- Extract the sorted version of $L_{1}$ from the result of applying PAIR on $L_{1}$ and $L_{2}$.


## NEVER FORGET

If $A$ is hard to solve and A easily reduces to $\mathrm{B}\left(A \leqslant_{p} B\right)$,
Then $B$ is also hard to solve!

## NEVER FORGET

If $A$ is hard to solve and A easily reduces to $\mathrm{B}\left(A \leqslant_{p} B\right)$,
Then $B$ is also hard to solve!

What does it mean for a problem to be hard anyway?

## A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

## A fine line Between Hard and Easy Problems

(3) Shortest Paths on unweighted graphs

## A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs $O(E+V)$ using BFS Shortest Paths on weighted DAGs
## A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs $O(E+V)$ using BFS(-) Shortest Paths on weighted DAGs $0(E+V)$ using Topological sort

## A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs O(E+V) using BFS(-) Shortest Paths on weighted DAGs O(E+V) using Topological sort

- Longest Paths on weighted DAGs O (E+V) using Topological Sort


## A fine line Between Hard and Easy Problems

(3)

Shortest Paths on unweighted graphs O(E+V) using BFS
(3) Shortest Paths on weighted DAGs $\qquad$ $O(E+V)$ using Topological sort

- Longest Paths on weighted DAGs O(E+V) using Topological Sort Shortest Paths on weighted graphs (no negative weights)


## A fine line Between Hard and Easy Problems

- Shortest Paths on unweighted graphs $O(E+V)$ using BFS
(-) Shortest Paths on weighted DAGs $\qquad$ O(E+V) using Topological sort
(3) Longest Paths on weighted DAGs O(E+V) using Topological Sort
- Shortest Paths on weighted graphs (no negative weights) (ELogV) using Dijkstra's


## A fine line Between Hard and Easy Problems

- Shortest Paths on unweighted graphs $O(E+V)$ using BFS
(3) Shortest Paths on weighted DAGs $\qquad$ O(E+V) using Topological sort
(3) Longest Paths on weighted DAGs O(E+V) using Topological Sort
(3) Shortest Paths on weighted graphs (no negative weights) O (ELogV) using Dijkstra's
xet Longest Paths on weighted graphs NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!


## A fine line Between Hard and Easy Problems

(3)
Shortest Paths on unweighted graphs $O(E+V)$ using BFS
(-) Shortest Paths on weighted DAGs $\qquad$ O(E+V) using Topological sort
(3) Longest Paths on weighted DAGs O(E+V) using Topological Sort
(3) Shortest Paths on weighted graphs (no negative weights) O (ELogV) using Dijkstra's
$x+$
Longest Paths on weighted graphs
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!
(3) Fractional Knapsack Problem $\qquad$ has an efficient greedy algorithm
0-1 Knapsack Problem
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

## A fine line Between Hard and Easy Problems

(-) Shortest Paths on unweighted graphs $O(E+V)$ using BFS
(-) Shortest Paths on weighted DAGs $\qquad$ O(E+V) using Topological sort
(3) Longest Paths on weighted DAGs O (E+V) using Topological Sort
(3) Shortest Paths on weighted graphs (no negative weights) O (ELogV) using Dijkstra's
xex Longest Paths on weighted graphs NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!
(3) Fractional Knapsack Problem $\qquad$ has an efficient greedy algorithm
0-1 Knapsack Problem
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!
(-) Change Making for canonical coin systems _ has an efficient greedy algorithm
Change Making for arbitrary coin systems
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

## A fine line Between Hard and Easy Problems

Does a graph $G$ contain an Eulerian Cycle? (a cycle that visits all the edges in $G$ exactly once)


## A fine line Between Hard and Easy Problems

- Does a graph $G$ contain an Eulerian Cycle? (a cycle that visits all the edges in $G$ exactly once) Direct solution: True if and only if each vertex has an even degree!



## A fine line Between Hard and Easy Problems

- Does a graph $G$ contain an Eulerian Cycle?
(a cycle that visits all the edges in $G$ exactly once)
Direct solution: True if and only if each vertex has an even degree!

Does a graph $G$ contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in $G$ exactly once)


## A fine line Between Hard and Easy Problems

- Does a graph $G$ contain an Eulerian Cycle?
(a cycle that visits all the edges in $G$ exactly once)
Direct solution: True if and only if each vertex
 has an even degree!
x $x$ Does a graph $G$ contain a Hamiltonian Cycle? (a cycle that visits all the vertices in $G$ exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!


## A fine line Between Hard and Easy Problems

- Does a graph $G$ contain an Eulerian Cycle?
(a cycle that visits all the edges in $G$ exactly once)
Direct solution: True if and only if each vertex
 has an even degree!
$x_{x}+$ Does a graph $G$ contain a Hamiltonian Cycle? (a cycle that visits all the vertices in $G$ exactly once)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

xty Traveling Salesman Problem (TSP)
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

## A fine line Between Hard and Easy Problems

$\Theta$ Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that no two adjacent vertices have the same color?)
Direct solution: True if there is no cycle of odd length (can be checked using BFT)

x $\times$ I Is a graph $k$-Colorable?
(can the vertices be colored using $k$ colors or less, such that no two adjacent vertices have the same color?)

NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!


## More Hard Problems

## Bin Packing

Given an unlimited number of bins (each with capacity $C$ ), and $n$ objects with sizes $s_{1}, \ldots, s_{n}$ where $0<s_{i} \leq C$, find the minimum number of bins needed to pack all objects.


## More Hard Problems

## Bin Packing

Given an unlimited number of bins (each with capacity $C$ ), and $n$ objects with sizes $s_{1}, \ldots, s_{n}$ where $0<s_{i} \leq C$, find the minimum number of bins needed to pack all objects.

## NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!



## More Hard Problems

## Subset Sum

Given a multiset $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Example. $S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\},\{1,1,6\},\{4,4\} \longleftarrow$ min subset

## More Hard Problems

## Subset Sum

Given a multiset $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Example. $S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\},\{1,1,6\},\{4,4\} \longleftarrow$ min subset
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

## More Hard Problems

## Subset Sum

Given a multiset $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Example. $S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\},\{1,1,6\},\{4,4\} \longleftarrow$ min subset
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

## Subset Partition

Given a multiset $S$ of integers, can $S$ be partitioned into 2 subsets of the same sum?

Example. $S=\{1,2,3,4\}$
YES: $\{1,4\}$ and $\{2,3\}$
$S=\{1,2,3,4,5\}$
No

## More Hard Problems

## Subset Sum

Given a multiset $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Example. $S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\},\{1,1,6\},\{4,4\} \longleftarrow$ min subset
NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Partition
Given a multiset $S$ of integers, can $S$ be partitioned into 2 subsets of the same sum?

Example. $S=\{1,2,3,4\}$
YES: $\{1,4\}$ and $\{2,3\}$
$S=\{1,2,3,4,5\}$
No

## A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? (+ many others ...)

## A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? (+ many others ...)
(1) No one until now found a polynomial time algorithm to solve any of them.

## A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? (+ many others ...)
(1) No one until now found a polynomial time algorithm to solve any of them.
(2) No one proved that no polynomial time algorithm can be found for any of them.

## A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)
(1) No one until now found a polynomial time algorithm to solve any of them.
(2) No one proved that no polynomial time algorithm can be found for any of them.
(3) Each of them poly-time reduces to all the other problems!
I.e. Finding a polynomial time solution to any of them means that all of them have polynomial time solutions!
(4) You will get $\$ 1,000,000$ from the Clay Mathematics Institute if you find a polynomial time solution for any of them or prove that any of them can't have a polynomial time solution!

## A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)
(1) No one until now found a polynomial time algorithm to solve any of them.
(2) No one proved that no polynomial time algorithm can be found for any of them.
(3) Each of them poly-time reduces to all the other problems!
I.e. Finding a polynomial time solution to any of them means that all of them have polynomial time solutions!
(4) You will get $\$ 1,000,000$ from the Clay Mathematics Institute if you find a polynomial time solution for any of them or prove that any of them can't have a polynomial time solution!

# Welcome to the $\mathbf{P}$ vo $\mathbf{N P}$ <br> Problem 

## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph $G$, find a simple circuit $C$ that visits each node in $G$ exactly once such that the total cost of the edges in $C$ is minimum.


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph $G$, find a simple circuit $C$ that visits each node in $G$ exactly once such that the total cost of the edges in $C$ is minimum.

Decision problem:
Given a complete weighted graph $G$, does $G$ contain a simple circuit $C$ that visits each node exactly once such that the total cost of the edges in $C$ is less than or equal to
 some threshold T?

## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Bin-Packing

Optimization problem:
Given an unlimited number of bins (each with capacity $C$ ), and $n$ objects with sizes $s_{1}, \ldots, s_{n}$ where $0<s_{i} \leq C$, find the minimum number of bins needed to pack all objects


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Bin-Packing

Optimization problem:
Given an unlimited number of bins (each with capacity $C$ ), and $n$ objects with sizes $s_{1}, \ldots, s_{n}$ where
 $0<s_{i} \leq C$, find the minimum number of bins needed to pack all objects

Decision problem:
Can the objects fit in less than $k$ bins?


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Graph Coloring

Optimization problem:
Find the minimum number of colors such that adjacent vertices are not assigned the same color.


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

## Examples Graph Coloring

Optimization problem:
Find the minimum number of colors such that adjacent vertices are not assigned the same color.

Decision problem:
Can the vertices be properly colored in K or fewer colors such that adjacent vertices are not assigned the same color?


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Subset Sum

Optimization problem:
Given a multi-set $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Example.
$S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\}$
$\{1,1,6\}$
$\{4,4\} \longleftarrow$ minimum

## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Subset Sum

Optimization problem:
Given a multi-set $S$ of integers and an integer $k$, find a minimum subset of $S$ whose elements sum up to exactly $k$.

Decision problem:
Does $S$ contain a subset whose elements sum up to exactly $k$ ?

Example.
$S=\{1,1,1,4,4,5,6\}, k=8$
Possible Subsets: $\{1,1,1,5\}$
$\{1,1,6\}$
$\{4,4\} \longleftarrow$ minimum

## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples Hamiltonian Cycle

Decision problem:
Is there a cycle that visits each vertex in the graph once?


## Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.
Decision problem:
Requires a yes/no answer.

## Examples <br> Hamiltonian Cycle

Decision problem:
Is there a cycle that visits each vertex in the graph once?


## Examples Subset Partition

Decision problem:
Given a set $S$ of integers, Can we partition $S$ into two subsets of exactly the same size?

Example. $S=\{1,2,3,4\}$
YES: $\{1,4\}$ and $\{2,3\}$
$S=\{1,2,3,4,5\}$
No

## Quiz \# 2

Given a solver for the optimization version of TSP, how can we solve the decision version?

Given a solver for the decision version of TSP, how can we solve the optimization version?

Given a solver for the optimization version of TSP, how can we solve the decision version?

Answer. If we know the length of the shortest tour $L$, we can very easily answer the question Is there a tour of length less than $T$ as follows:

If $L \geq T$ : There is no tour of length less than $T$. If $L<T$ : There is a tour of length less than $T$.

Given a solver for the decision version of TSP, how can we solve the optimization version?

Given a solver for the optimization version of TSP, how can we solve the decision version?

Answer. If we know the length of the shortest tour $L$, we can very easily answer the question Is there a tour of length less than $T$ as follows:

$$
\begin{aligned}
& \text { If } L \geq T \text { : There is no tour of length less than } T \text {. } \\
& \text { If } L<T \text { : There is a tour of length less than } T \text {. }
\end{aligned}
$$

Given a solver for the decision version of TSP, how can we solve the optimization version?

## Answer.

- Compute a bound $B$ for the length of the shortest tour (e.g. the sum of the edge weights int he graph, or $V \times$ the largest weight)
- Use binary search to find the length of the shortest tour:

Use the solver of the decision problem to answer the question:
Is there a tour of length less than $B / 2$ ?
Eliminate the left or right half based on the answer and repeat.

## Quiz \# 3

If the decision version of a problem is hard, does this imply that the optimization version is also hard?

## Quiz \# 3

If the decision version of a problem is hard, does this imply that the optimization version is also hard?

Answer. Yes.
The decision version is no harder (as hard or easier) than the optimization version.

## To discuss and prove hardness, we will consider only decision problems!

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in $P$ if it is solvable in polynomial time.

## Examples

- Given a list of integers $L$ and an integer $K$ :
- is $K$ in $L$ ?
- Is there an integer in $L$ that is greater than $K$ ?
- Do any two numbers in $L$ sum to $K$ ?
- Given a permutation of elements $P$ :
- is $P$ sorted in ascending order?
- is $P$ a palindrome?
- Given a graph $G$ :
- Is there a spanning tree whose sum of edge weights is less than $T$ ?
- Is there a path between $v$ and $w$ in a graph $G$ less than $T$ ?
- Is there a cycle in the graph?
- Is the graph connected?
- Given a set of activities, can we schedule $X$ activities without overlap? etc.


## Quiz \# 4

Which of the following problems are not in P ?
A. Traveling Salesman Problem.
B. 0-1 Knapsack.
C. Bin-Packing.
D. All of the above.
(10) I don't know.

## Quiz \# 4

Which of the following problems are not in P ?
A. Traveling Salesman Problem.
B. 0-1 Knapsack.
C. Bin-Packing.
D. All of the above.

We don't know.
A problem is in $\mathbf{P}$ if it has a polynomial time solution.

A problem is not in $\mathbf{P}$ if there is a proof that it does not have a polynomial time solution.

No one proved that these problems do not have polynomial time solutions!

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Class NP.

A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

## Example

Is there A HAMILTONIAN Cycle?

Given a graph $G$, and a path $C$ (a witness), can we verify in polynomial time if $C$ is a hamiltonian cycle?

## Yes!

1. Check that the first and last vertices are the same.
2. Check that no vertex repeats.
3. Check that the path has exactly $V$ edges.


## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

## Example

TSP is in NP

Given a graph $G$, a length $L$, and a path $C$ (a witness), can we verify in polynomial time if $C$ is a hamiltonian cycle of length less than $L$ ?

Yes!

1. Check that $C$ is a Hamiltonian cycle.
2. Check that the sum of the edge weights is less than $L$.


## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Class NP.

A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

## Example

SUBSET-SUM is in NP

Given a multi-set $S$, two integers $K$ and $L$, and a subset $H$ of $S$ (a witness), can we verify in polynomial time if $|H| \leq K$ and that its elements sum to $L$ ?

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

SUBSET-SUM

Given a multi-set $S$, two integers $K$ and $L$, and a subset $H$ of $S$ (a witness), can we verify in polynomial time if $|H| \leq K$ and that its elements sum to $L$ ?

Yes!

Example
SUBSET-PARTITION

Given a multi-set $S$, two subsets $H_{1}$ and $H_{2}$ of $S$ (a witness), can we verify in polynomial time if $\left|H_{1}\right|+\left|H_{2}\right|=|S|$ and that the sum of the elements in $H_{1}$ $=$ the sum of the elements in $H_{2}$ ?

## Quiz \# 5

Every problem that is in $\mathbf{P}$ is also in NP.
A. True.
B. False.
(10®) We don't know.

## Quiz \# 5

Every problem that is in $\mathbf{P}$ is also in NP.

## A. True.

B. False.

We don't know.

If a problem is solvable in polynomial time, it is also verifiable in polynomial time.

We can always solve the problem to verify a given witness!

## Quiz \# 6

Every problem that is in NP is also in $\mathbf{P}$.
A. True.
B. False.
(10®) We don't know.

## Quiz \# 6

Every problem that is in NP is also in $\mathbf{P}$.
A. True.
B. False.

We don't know.
Does easy verification imply that finding a solution is also easy?

- No one knows!
- No one yet found a problem that is in NP but is not in P!
- This is a $\$ 1,000,000$ question!


## Two Possible World Views



No one knows which is true!

## Quiz \# 7

What are examples of problems that are not in NP?

## Quiz \# 7

What are examples of problems that are not in NP?

Example 1. Given a program $P$ is there an input $I$ that makes $P$ terminate in less than $s$ steps?

Example 2. Given a chessboard, is there a move that guarantees black to win?


## What is in a name?

What does NP stand for?
A. Not Polynomial.
B. No Pakeup Exam.
C. No Problem.
D. None of the aPove.

## What is in a name?

What does NP stand for?
A. Not Polynomial.
B. No Pakeup Exam.
C. No Problem.
D. None of the aPove.

NP stands for: Non-deterministically Polynomial.
I.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions all at the same time (call TM a non-deterministic machine).

If a problem is verifiable in polynomial time, TM can solve the problem by guessing all the possible solutions and verifying them at once (in polynomial time!)

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Class NP.

A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

- It is in NP.
- All problems in NP reduce to it in polynomial time.


## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Class NP.

A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

- It is in NP.
- All problems in NP reduce to it in polynomial time.

How do we show that all problems in NP reduce to a certain problem???

## Cook-Levin Theorem (1971)



What is SAT?

## Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation.

$$
x_{i} \text { or } \overline{x_{i}}
$$

Clause. A disjunction of literals.

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form (CNF). A propositional

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$ formula $\Phi$ that is a conjunction of clauses.

SAT. Given a CNF formula $\Phi$, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

## Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form (CNF). A propositional formula $\Phi$ that is a conjunction of clauses.

$$
x_{i} \text { or } \overline{x_{i}}
$$

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

SAT. Given a CNF formula $\Phi$, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

Example What values for $x_{1}, x_{2}, x_{3}$ and $x_{4}$ satisfy the following formula?

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

## Boolean Satisfiability (SAT)

Literal. A Boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form (CNF). A propositional formula $\Phi$ that is a conjunction of clauses.

$$
x_{i} \text { or } \overline{x_{i}}
$$

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

$$
\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

SAT. Given a CNF formula $\Phi$, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

Example What values for $x_{1}, x_{2}, x_{3}$ and $x_{4}$ satisfy the following formula?
$\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{llll}\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)\end{array}\right.$

Answer. $x_{1}=$ TRUE, $x_{2}=$ TRUE, $x_{3}=$ FALSE, $x_{4}=$ FALSE

## Boolean Satisfiability (SAT)

Key Facts.

- SAT is in NP.


## Boolean Satisfiability (SAT)

Key Facts.

- SAT is in NP.

Given a formula and boolean values for the variables, it is easy to verify if these values satisfy the formula!

- It is not clear if SAT is also in $P$.
- We can try all possible $2^{N}$ boolean assignments.
- We don't know if a polynomial time solution exists.


## Boolean Satisfiability (SAT)

Key Facts.

- SAT is in NP.

Given a formula and boolean values for the variables, it is easy to verify if these values satisfy the formula!

- It is not clear if SAT is also in P .
- We can try all possible $2^{N}$ boolean assignments.
- We don't know if a polynomial time solution exists.
- All problems in in NP reduce to SAT in polynomial time.
- This is the Cook-Levin Theorem.
- The details of the proof are beyond the scope of this course.
- In a nutshell, Cook and Levin showed how any decision problem that is in NP can be converted (in polynomial time) to the problem of satisfying a boolean formula.
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)


## Reduction Example

Graph Coloring reduces to SAT in polynomial time.
Assume that the problem is to check if the graph is 2-colorable.


## Reduction Example

Graph Coloring reduces to SAT in polynomial time.
Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:


$$
A_{\text {red }}, A_{\text {blue }}, B_{\text {red }}, B_{\text {blue }}, C_{\text {red }}, C_{\text {blue }}
$$

## Reduction Example

Graph Coloring reduces to SAT in polynomial time.
Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:


$$
A_{\text {red }}, A_{\text {blue }}, B_{\text {red }}, B_{\text {blue }}, C_{\text {red }}, C_{\text {blue }}
$$

2. Enforce that each vertex has one color:

## Reduction Example

## Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:


$$
A_{\text {red }}, A_{\text {blue }}, B_{\text {red }}, B_{\text {blue }}, C_{\text {red }}, C_{\text {blue }}
$$

2. Enforce that each vertex has one color:
$\left(A_{\text {red }} \vee A_{\text {blue }}\right) \wedge \neg\left(A_{\text {red }} \wedge A_{\text {blue }}\right)=$ TRUE
$\left(B_{\text {red }} \vee B_{\text {blue }}\right) \wedge \neg\left(B_{\text {red }} \wedge B_{\text {blue }}\right)=$ TRUE
$\left(C_{\text {red }} \vee C_{\text {blue }}\right) \wedge \neg\left(C_{\text {red }} \wedge C_{\text {blue }}\right)=$ TRUE
3. Enforce that no adjacent vertices have the same color:

## Reduction Example

## Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:


$$
A_{\text {red }}, A_{\text {blue }}, B_{\text {red }}, B_{\text {blue }}, C_{\text {red }}, C_{\text {blue }}
$$

2. Enforce that each vertex has one color:
$\left(A_{\text {red }} \vee A_{\text {blue }}\right) \wedge \neg\left(A_{\text {red }} \wedge A_{\text {blue }}\right)=$ TRUE
$\left(B_{\text {red }} \vee B_{\text {blue }}\right) \wedge \neg\left(B_{\text {red }} \wedge B_{\text {blue }}\right)=$ TRUE
$\left(C_{\text {red }} \vee C_{\text {blue }}\right) \wedge \neg\left(C_{\text {red }} \wedge C_{\text {blue }}\right)=$ TRUE
3. Enforce that no adjacent vertices have the same color:

$$
\begin{aligned}
& \neg\left(A_{\text {red }} \wedge B_{\text {red }}\right) \wedge \neg\left(A_{\text {blue }} \wedge B_{\text {blue }}\right)=\text { TRUE } \\
& \neg\left(A_{\text {red }} \wedge C_{\text {red }}\right) \wedge \neg\left(A_{\text {blue }} \wedge C_{\text {blue }}\right)=\text { TRUE } \\
& \neg\left(B_{\text {red }} \wedge C_{\text {red }}\right) \wedge \neg\left(B_{\text {blue }} \wedge C_{\text {blue }}\right)=\text { TRUE }
\end{aligned}
$$

The graph is 2-colorable if the above boolean expressions are satisfiable!

## Reduction Example

## Graph Coloring reduces to SAT in polynomial time.

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:


$$
A_{\text {red }}, A_{\text {blue }}, B_{\text {red }}, B_{\text {blue }}, C_{\text {red }}, C_{\text {blue }}
$$

2. Enforce that each vertex has one color:

$$
\begin{aligned}
& \left(A_{\text {red }} \vee A_{\text {blue }}\right) \wedge \neg\left(A_{\text {red }} \wedge A_{\text {blue }}\right)=\text { TRUE } \\
& \left(B_{\text {red }} \vee B_{\text {blue }}\right) \wedge \neg\left(B_{\text {red }} \wedge B_{\text {blue }}\right)=\text { TRUE } \\
& \left(C_{\text {red }} \vee C_{\text {blue }}\right) \wedge \neg\left(C_{\text {red }} \wedge C_{\text {blue }}\right)=\text { TRUE }
\end{aligned}
$$

3. Enforce that no adjacent vertices have the same color:

Can be easily
converted to CNF.

$$
\begin{aligned}
& \neg\left(A_{\text {red }} \wedge B_{\text {red }}\right) \wedge \neg\left(A_{\text {blue }} \wedge B_{\text {blue }}\right)=\text { TRUE } \\
& \neg\left(A_{\text {red }} \wedge C_{\text {red }}\right) \wedge \neg\left(A_{\text {blue }} \wedge C_{\text {blue }}\right)=\text { TRUE } \\
& \neg\left(B_{\text {red }} \wedge C_{\text {red }}\right) \wedge \neg\left(B_{\text {blue }} \wedge C_{\text {blue }}\right)=\text { TRUE }
\end{aligned}
$$

The graph is 2-colorable if the above boolean expressions are satisfiable!

## Quiz \# 9

How do we show that a problem other than SAT is NP-Complete?
A. Be as clever as Cook and Levin and show how all problems in NP reduce to this new problem.
B. No need! SAT is the only NP-Complete Problem!
C. None of the above.

## Quiz \# 9

How do we show that a problem other than SAT is NP-Complete?
A. Be as clever as Cook and Levin and show how all problems in NP reduce to this new problem.
B. No need! SAT is the only NP-Complete Problem!
C. None of the above.

## Quiz \# 9

How do we show that a problem other than SAT is NP-Complete?
A. Be as clever as Cook and Levin and show how all problems in NP reduce to this new problem.
B. No need! SAT is the only NP-Complete Problem!
C. None of the above.

To show that a problem is NP-Complete:

1. Show that it is in NP.
2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to $A$ and $A$ poly-time reduces to $B$, then all problems in NP poly-time reduce to $B$ !

## SAT is not The Only NP-Complete Problem!



Key Finding. SAT poly-time reduces to many problems! Implication. All of these problems are NP-Complete!

## SAT is not The Only NP-Complete Problem!



## World View if $P!=N P$



## Again ... Two Possible World Views



$$
\text { If } P \neq N P
$$

## NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)
Given a system of inequalities, find a $0-1$ solution.

Task. Show that ILP is NP-Complete.

$$
\begin{array}{lrll} 
& \mathrm{x}_{1}+\mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0} & + & \mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0}+ & \mathrm{x}_{1}+ & \mathrm{x}_{2} \leq & 2
\end{array}
$$

Example. A solution for the above is:

$$
x_{0}=1, \quad x_{1}=1, \quad x_{2}=0
$$

## NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)
Given a system of inequalities, find a $0-1$ solution.

Task. Show that ILP is NP-Complete.

1. ILP is in NP.

Given values for the variables, we can verify in polynomial time if the inequalities are true.

$$
\begin{array}{llll} 
& \mathrm{x}_{1}+\mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0} & + & \mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0}+ & \mathrm{x}_{1}+ & \mathrm{x}_{2} \leq & 2
\end{array}
$$

Example. A solution for the above is:

$$
x_{0}=1, \quad x_{1}=1, \quad x_{2}=0
$$

## NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)
Given a system of inequalities, find a $0-1$ solution.

Task. Show that ILP is NP-Complete.

$$
\begin{array}{llll} 
& \mathrm{x}_{1}+\mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0} & + & \mathrm{x}_{2} \geq & 1 \\
\mathrm{x}_{0}+ & \mathrm{x}_{1}+ & \mathrm{x}_{2} \leq & 2
\end{array}
$$

Example. A solution for the above is:

$$
x_{0}=1, \quad x_{1}=1, \quad x_{2}=0
$$

1. ILP is in NP.

Given values for the variables, we can verify in polynomial time if the inequalities are true.
2. SAT poly-time reduces to ILP.

$$
\begin{array}{rrrrrrrrrr}
\overline{x_{1}} & \vee & x_{2} & \vee & x_{3} & & =\text { TRUE } & \left(1-x_{1}\right)+r x_{2}+ & x_{3} & \geq 1 \\
x_{1} & \vee & \overline{x_{2}} & \vee & x_{3} & & =\text { TRUE } & x_{1}+\left(1-x_{2}\right) & + & x_{3} \\
\overline{x_{1}} & \vee & \overline{x_{2}} & \vee & \overline{x_{3}} & & =\text { TRUE } & \left(1-x_{1}\right)+\left(1-x_{2}\right) & +\left(1-x_{3}\right) & \geq 1 \\
\overline{x_{1}} & \vee & \overline{x_{2}} & & & \vee & x_{4} & =\text { TRUE } & \left(1-x_{1}\right)+\left(1-x_{2}\right) & \\
& & \overline{x_{2}} & \vee & x_{3} & \vee & x_{4} & =\text { TRUE } & \left(1-x_{2}\right) & + \\
x_{3} & +x_{4} \geq 1
\end{array}
$$

Example SAT instance
Equivalent ILP instance.

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?

Task. Show that IS is NP-Complete.


Example. Black vertices form an independent set of size 5

## NP-Completeness (Proof Examples)

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?


Task. Show that IS is NP-Complete.

Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?


Task. Show that IS is NP-Complete.

Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.
2. SAT poly-time reduces to IS.

Example. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?

Task. Show that IS is NP-Complete.


Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.

2. SAT poly-time reduces to IS.

- Create a node for each literal in each clause.


Example. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?

Task. Show that IS is NP-Complete.


Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.

2. SAT poly-time reduces to IS.

- Create a node for each literal in each clause.
- Connect each node to the literals in the same clause.


Example. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$

## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?

Task. Show that IS is NP-Complete.


Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.
2. SAT poly-time reduces to IS.

- Create a node for each literal in each clause.
- Connect each node to the literals in the same clause.
- Connect each literal to its negation.

Example. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$


## INDEPENDENT-SET (IS)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that no two vertices are adjacent?

Task. Show that IS is NP-Complete.


Example. Black vertices form an independent set of size 5

1. IS is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if any two are adjacent and if $|S|=k$.
2. SAT poly-time reduces to IS.

- Create a node for each literal in each clause.
- Connect each node to the literals in the same clause.
- Connect each literal to its negation.
- The expression is satisfiable iff there is an independent set of size $=$ the number of clauses.

Example. $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)$


## VERTEX-COVER (VC)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that each edge is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.


Example. Black vertices form a vertex cover of size 5

## VERTEX-COVER (VC)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that each edge is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.


Example. Black vertices form a vertex cover of size 5

1. VC is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if each edge in the graph is incident to a vertex in $S$ and if $|S|=k$.

## VERTEX-COVER (VC)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that each edge is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.


Example. Black vertices form a vertex cover of size 5

1. VC is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if each edge in the graph is incident to a vertex in $S$ and if $|S|=k$.
2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

We can pick any NP-Complete problem for the reduction, not necessarily SAT!

## NP-Completeness (Proof Examples)



VERTEX-COVER (VC)
Given a graph and an integer $k$, is there a subset of $k$ vertices such that each edge is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.


Example. Black vertices form a vertex cover of size 5

1. $V C$ is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if each edge in the graph is incident to a vertex in $S$ and if $|S|=k$.
2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.


## VERTEX-COVER (VC)

Given a graph and an integer $k$, is there a subset of $k$ vertices such that each edge is incident to at least one vertex in the subset?

Task. Show that VC is NP-Complete.


Example. Black vertices form a vertex cover of size 5

1. VC is in NP.

Given a set $S$ of vertices in $G$, we can verify in polynomial time if each edge in the graph is incident to a vertex in $S$ and if $|S|=k$.
2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.
$S$ is an independent set of size $k$ iff $V-S$ is a vertex cover of size $n-k$.


Vertex Cover of size 4


Independent Set of size 5

## NP-Completeness (Proof Examples)

TRAVELING SALESMAN PROBLEM (TSP)
Given a complete weighted graph $G$, does $G$ contain a simple circuit $C$ that visits each node exactly once of length $\leq T$ ?

Task. Show that TSP is NP-Complete.

1. Show that TSP is in NP. « straight-forward

## NP-Completeness (Proof Examples)

TRAVELING SALESMAN PROBLEM (TSP)
Given a complete weighted graph $G$, does $G$ contain a simple circuit $C$ that visits each node exactly once of length $\leq T$ ?

Task. Show that TSP is NP-Complete.

1. Show that TSP is in NP. « straight-forward
2. HAMILTONIAN poly-time reduces to TSP.


G
Input to the HAMILTONIAN

$G^{\prime}$
Input to TSP
Add edge $(u, v)$ with weight 1 if $(u, v)$ is in $G$.
Add edge $(u, v)$ with weight 2 if $(u, v)$ is not in $G$.

## Quiz \# 10

Are there problems that are in NP but are not in P and are not NP-Complete.
A. Yes.
B. No.
C. None of the above.

## Quiz \# 10

Are there problems that are in NP but are not in $\mathbf{P}$ and are not NP-Complete.
A. Yes.
B. No.
C. None of the above.

Yes if $\mathbf{P} \neq \mathbf{N P}$.
No if $\mathbf{P}=\mathbf{N P}$.

## Quiz \# 10

Are there problems that are in NP but are not in P and are not NP-Complete.
A. Yes.
B. No.
C. None of the above.

Yes if $\mathbf{P} \neq \mathbf{N P}$.
No if $\mathbf{P}=\mathbf{N P}$.

There are, however, problems in NP that we could not yet prove to be in $P$ and could not also prove to be NP-Complete!
Examples. Integer Factoring and Graph Isomorphism.

## Definitions (Complexity Classes)

## Class $\mathbf{P}$.

A decision problem is in P if it is solvable in polynomial time (i.e. in $O\left(n^{c}\right)$, where $n$ is the input size and $c$ is a constant)

## Class NP.

A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify in polynomial time if $W$ proves that the answer for $I$ is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

- It is in NP.
- All problems in NP reduce to it in polynomial time.


## Class NP-Hard.

A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)

## Definitions (Complexity Classes)

```
Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in O( (nc), where }n\mathrm{ is the input size and c is a constant)
```

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance $I$ or a problem $P$ and a witness $W$ for the solution, can we verify
in polynomial time if $W$ proves that the answer for $I$ is yes?)
Examples.

- All NP-Complete Problems.
- TSP Optimization.
- Finding the Longest Simple Path.
- It is in NP.
- All problems in NP reduce to it in polynomial time.

Class NP-Hard.
A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)

## Two Possible World Views



If $P \neq N P$

## Living with Intractability

When you encounter an NP-complete problem

- It is safe to assume that it is intractable.
- What to do?
does not have an algorithm that solve all instances in polynomial time.

Four successful approaches

- Don't try to solve intractable problems.
- Try to solve real-world problem instances.
- Look for approximate solutions (not discussed in this lecture).
- Exploit intractability.


## Living with Intractability: Don't Try To Solve It!

## Knows no theory



I can't find an efficient algorithm. I guess I'm just to dumb.

## Knows computability



I can't find an efficient algorithm, because no such algorithm is possible!


Knows intractability


## Living with Intractability: Solve Real-World Instances

## Observations

- Worst-case inputs may not occur for practical problems.
- Instances that do occur in practice may be easier to solve.

Reasonable approach: relax the condition of guaranteed poly-time algorithms.

SAT

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000.

TSP

- Concorde routinely solves large real-world instances.
- 85.900-citv instance solved in 2006.

ILP

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

