
Design & Analysis

 Algorithms

NP Completeness

CS11313 - Fall 2021

of

Ibrahim Albluwi

Reductions

A reduction from problem X to problem Y:  
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Reductions

A reduction from problem X to problem Y:  
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Algorithm for

Y

Algorithm for X

Solution for 
X

Input for 
X Post-

processing
Pre-

processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Y might be called multiple time 
(typically 1 call)

Typically less than the cost 
of solving Y

Figure adapted from a slide by Kevin Wayne

Reductions

Problem X reduces to problem Y
(denoted as): An algorithm
for solving Y can be used to solve X.

X ⩽ Y

A reduction from problem X to problem Y:  
An algorithm for solving problem X that includes a solver of problem Y as a subroutine.

Problem X polytime-reduces to problem Y ():
An algorithm for solving Y can be used to solve X
in addition to a polynomial-time amount of work.

X ⩽p Y

Algorithm for

Y

Algorithm for X

Input for 
X Post-

processing
Pre-

processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Y might be called multiple time 
(typically 1 call)

Typically less than the cost 
of solving Y

Solution for 
X

Reductions (Examples)

LINEAR

Given and , solve b c bx + c = 0

QUADRATIC

Given , and , solve a b c ax2 + bx + c = 0

Reductions (Examples)

LINEAR

Given and , solve b c bx + c = 0

QUADRATIC

Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC  
solver

LINEAR solver

b
c

0

Reductions (Examples)

LINEAR

Given and , solve b c bx + c = 0

QUADRATIC

Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC  
solver

LINEAR solver

b
c

0

SELECT  
Given a list of elements, find the largest
element.

kth
SORT

Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

LINEAR

Given and , solve b c bx + c = 0

QUADRATIC

Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC  
solver

LINEAR solver

b
c

0

SELECT reduces to SORT

Use SORT to sort the elements and then
report the element of rank k.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

SELECT  
Given a list of elements, find the largest
element.

kth
SORT

Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

LINEAR

Given and , solve b c bx + c = 0

QUADRATIC

Given , and , solve a b c ax2 + bx + c = 0

LINEAR reduces to QUADRATIC

QUADRATIC  
solver

LINEAR solver

b
c

0

SELECT reduces to SORT

Use SORT to sort the elements and then
report the element of rank k.

Running Time. O(N log N) + O(1)

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

Running Time. O(N) × O(N)
SELECT reductionSORT reduction

SELECT  
Given a list of elements, find the largest
element.

kth
SORT

Given a list of elements, order the elements
in non-decreasing order.

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

s

d

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

SSSP reduces to SDSP

• Create , a transpose of G.

• Set s to d and run SSSP on .

• Transpose the shortest paths tree.

GT

GT

s

d

Reductions (Examples)

SSSP (Single Source Shortest Paths)

Given a graph G and a source vertex s, find
the shortest path from s to every vertex in
G.

SDSP (Single Destination Shortest Paths)

Given a graph G and a destination vertex d,
find the shortest path from every vertex in
G to d.

SSSP reduces to SDSP

• Create , a transpose of G.

• Set s to d and run SSSP on .

• Transpose the shortest paths tree.

GT

GT

s

d

Running Time. O(E log V) + O(E + V)

SSSP 
(using Dijkstra's algorithm,  
assuming the graph is cyclic  

and has non-negative weights)

reduction

(transposing)

Quiz # 1

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not  
 be clever enough to come up with an algorithm!

D. It depends.

Quiz # 1

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not  
 be clever enough to come up with an algorithm!

D. It depends.

Quiz # 1

Suppose there is a proof that no computer can solve problem X.

How can we prove that a problem Y is also impossible to solve?

A. Show that X reduces to Y.

B. Show that Y reduces to X.

C. Computers can solve any problem. It is only that we might not  
 be clever enough to come up with an algorithm!

D. It depends.

We can use to solve .

If is solvable:  
 is also solvable (contradiction!)

Y X

Y
X

 reduces to X Y

We can use to solve .

While is unsolvable, there might be
another way for solving not using .

X Y

X
Y X

 reduces to Y X

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!How can we show that EQUIVALENCE is also impossible to solve?

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!How can we show that EQUIVALENCE is also impossible to solve?

Answer. Show that TOTALITY reduces to EQUIVALENCE.

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!

TOTALITY reduces to EQUIVALENCE

How can we show that EQUIVALENCE is also impossible to solve?

Answer. Show that TOTALITY reduces to EQUIVALENCE.

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible, EQUIVALENCE must also be impossible.

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!

TOTALITY reduces to EQUIVALENCE

How can we show that EQUIVALENCE is also impossible to solve?

Answer. Show that TOTALITY reduces to EQUIVALENCE.

• Create as a copy of P, except that it outputs TRUE instead of its original output.P1

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible, EQUIVALENCE must also be impossible.

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!

TOTALITY reduces to EQUIVALENCE

How can we show that EQUIVALENCE is also impossible to solve?

Answer. Show that TOTALITY reduces to EQUIVALENCE.

• Create as a copy of P, except that it outputs TRUE instead of its original output.

• Create a program that outputs TRUE and does nothing else.

P1

P2

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible, EQUIVALENCE must also be impossible.

optional

Reductions (Examples)

EQUIVALENCE

Given two programs and . Do these two
programs produce the same output for every input?
(i.e. are they equivalent?)

P1 P2

TOTALITY

Does a given program P terminate
on all possible inputs?  
(never enters an infinite loop!)

We know that TOTALITY is an impossible problem to solve. see the theory
of computation
course!

TOTALITY reduces to EQUIVALENCE

How can we show that EQUIVALENCE is also impossible to solve?

Answer. Show that TOTALITY reduces to EQUIVALENCE.

• Create as a copy of P, except that it outputs TRUE instead of its original output.

• Create a program that outputs TRUE and does nothing else.

• Use EQUIVALENCE to check if and are equivalent. 
If they are equivalent, P terminates on all input. If they are not, the only possibility is 
that P does not terminate on some input (since the output of and is always the same).

P1

P2

P1 P2

P1 P2

Since TOTALITY can be solved using EQUIVALENCE and TOTALITY is known  
to be impossible, EQUIVALENCE must also be impossible.

optional

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

optional

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
 [1] with [1], 
 etc.

L1 L2

L1 L2
L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

optional

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
 [1] with [1], 
 etc.

L1 L2

L1 L2
L1 L2

optional

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Reductions (Examples)

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
  

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.

optional

PAIR  
solver

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
  

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.

• We already know that any comparison based algorithm for SORT performs 

 compares in the worst case.Ω(N log N)

optional

SORT

Given a list of elements, sort
them in non-decreasing order.

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]PAIR  

solver

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
  

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.

• We already know that any comparison based algorithm for SORT performs 

 compares in the worst case.

• The reduction from SORT to PAIR requires only amount of work  
(creating and extracting the result)

Ω(N log N)

Θ(N)
L2

optional

SORT

Given a list of elements, sort
them in non-decreasing order.

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]PAIR  

solver

Reductions (Examples)

SORT

Given a list of elements, sort
them in non-decreasing order.

PAIR

Given lists and of size N, pair the min in with the
min in , the next min in with the next min in , etc.

L1 L2 L1
L2 L1 L2

Example. = [13, 7, 3, 1, 11, 2]

 = [2, 8, 6, 4, 10, 0]

PAIR = [1-0, 2-2, 3-4, 7-6, 11-8, 13-10]

L1

L2

PAIR reduces to SORT

• Use SORT to sort and .

• Pair [0] with [0],  
  

L1 L2

L1 L2
L1 L2

SORT reduces to PAIR

• Let be the list to be sorted.

• Create containing the numbers 1 to N.

• Extract the sorted version of from the
result of applying PAIR on and .

L1

L2

L1
L1 L2

Implication.

• We already know that any comparison based algorithm for SORT performs 

 compares in the worst case.

• The reduction from SORT to PAIR requires only amount of work  
(creating and extracting the result)

• PAIR must require compares in the worst case.  
Otherwise, the lower bound for SORT is not correct (contradiction!)

Ω(N log N)

Θ(N)
L2

Ω(N log N)
Ω(N log N)

optional

SORT

Given a list of elements, sort
them in non-decreasing order.

=[1,7,3,2]L1

=[1,2,3,4]L2
[1-1,2-2,3-3,7-4] [1,2,3,7]PAIR  

solver

NEVER FORGET

 If A is hard to solve and  
 A easily reduces to B ,

Then B is also hard to solve!

(A ⩽p B)

NEVER FORGET

What does it mean for a problem to be hard anyway?

 If A is hard to solve and  
 A easily reduces to B ,

Then B is also hard to solve!

(A ⩽p B)

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs O(E+V) using BFS

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

O(E+V) using BFS

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

O(E+V) using BFS

O(E+V) using Topological sort

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

Fractional Knapsack Problem

0-1 Knapsack Problem

has an efficient greedy algorithm

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

Fractional Knapsack Problem

0-1 Knapsack Problem

has an efficient greedy algorithm

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Change Making for canonical coin systems

Change Making for arbitrary coin systems

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

has an efficient greedy algorithm

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex  
has an even degree!

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex  
has an even degree!

Does a graph G contain a Hamiltonian Cycle?  
(a cycle that visits all the vertices in G exactly once)

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex  
has an even degree!

Does a graph G contain a Hamiltonian Cycle?  
(a cycle that visits all the vertices in G exactly once)

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle? 
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex  
has an even degree!

Does a graph G contain a Hamiltonian Cycle?  
(a cycle that visits all the vertices in G exactly once)

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Traveling Salesman Problem (TSP) 
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A fine line Between Hard and Easy Problems

Is a graph 2-Colorable? 
(can the vertices be colored using 2 colors, such that 
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length 
(can be checked using BFT)

Is a graph k-Colorable?  
(can the vertices be colored using k colors or less, such  
that no two adjacent vertices have the same color?)

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

More Hard Problems

Bin Packing  
Given an unlimited number of bins (each with capacity C), and n objects with
sizes where , find the minimum number of bins needed to
pack all objects.

s1, … , sn 0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞ 9 9 9 9 9 9 9 9 9 9 9 99

More Hard Problems

Bin Packing  
Given an unlimited number of bins (each with capacity C), and n objects with
sizes where , find the minimum number of bins needed to
pack all objects.

s1, … , sn 0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞ 9 9 9 9 9 9 9 9 9 9 9 9

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

More Hard Problems

min subset

Subset Sum  
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4}

More Hard Problems

min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Sum  
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4}

More Hard Problems

Subset Sum  
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Partition  
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}

YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}

No

More Hard Problems

Subset Sum  
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

Subset Partition  
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}

YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}

No

 NO KNOWN POLYNOMIAL TIME ALGORITHM EXISTS!

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...)

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...) 

 
(1) No one until now found a polynomial time algorithm to solve any of them.

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...) 

 
(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

A Hard Problem?

🔥

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...) 

 
(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!

I.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial  
 time solution for any of them or prove that any of them can't have a polynomial  
 time solution!

A Hard Problem?

�

�

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists? 
(+ many others ...) 

 
(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!

I.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial  
 time solution for any of them or prove that any of them can't have a polynomial  
 time solution!

💵

Welcome to the

P vs NP
Problem

Definitions

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Examples

Definitions

Traveling Salesman Problem

Optimization problem:  
Given a complete weighted graph G, find a
simple circuit C that visits each node in G
exactly once such that the total cost of the
edges in C is minimum.

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Examples

Definitions

Traveling Salesman Problem

Optimization problem:  
Given a complete weighted graph G, find a
simple circuit C that visits each node in G
exactly once such that the total cost of the
edges in C is minimum.

Decision problem:  
Given a complete weighted graph G, does
G contain a simple circuit C that visits each
node exactly once such that the total cost
of the edges in C is less than or equal to
some threshold T ?

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Examples

Definitions

Bin-Packing

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Given an unlimited number of
bins (each with capacity C), and n
objects with sizes where

, find the minimum
number of bins needed to pack all
objects

s1, … , sn
0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞

Examples

Definitions

Bin-Packing

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Given an unlimited number of
bins (each with capacity C), and n
objects with sizes where

, find the minimum
number of bins needed to pack all
objects

Decision problem:  
Can the objects fit in less than k
bins ?

s1, … , sn
0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞

Examples

Definitions

Graph Coloring

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Examples

Definitions

Graph Coloring

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Decision problem:  
Can the vertices be properly colored
in K or fewer colors such that
adjacent vertices are not assigned
the same color?

Examples

Definitions

Subset Sum

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Given a multi-set S of integers and an
integer k, find a minimum subset of S
whose elements sum up to exactly k.

Example.

S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}

 {1, 1, 6}

 {4, 4} ⟵ minimum

Examples

Definitions

Subset Sum

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Optimization problem:  
Given a multi-set S of integers and an
integer k, find a minimum subset of S
whose elements sum up to exactly k.

Decision problem:  
Does S contain a subset whose
elements sum up to exactly k?

Example.

S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}

 {1, 1, 6}

 {4, 4} ⟵ minimum

Examples

Definitions

Hamiltonian Cycle

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Decision problem:  
Is there a cycle that visits each
vertex in the graph once?

Examples

Definitions

Hamiltonian Cycle

Optimization problem:  
Find the best solution among a set of feasible solutions.

Decision problem:  
Requires a yes/no answer.

Decision problem:  
Is there a cycle that visits each
vertex in the graph once?

Examples Subset Partition

Decision problem:  
Given a set S of integers, Can we partition
S into two subsets of exactly the same
size?

Example. S = {1, 2, 3, 4}

YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}

No

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the  
decision version?

Given a solver for the decision version of TSP, how can we solve the  
optimization version?

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the  
decision version?

Given a solver for the decision version of TSP, how can we solve the  
optimization version?

Answer. If we know the length of the shortest tour L, we can very easily answer  
the question Is there a tour of length less than T as follows:

If : There is no tour of length less than T. 
If : There is a tour of length less than T.

L ≥ T
L < T

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the  
decision version?

Given a solver for the decision version of TSP, how can we solve the  
optimization version?

Answer. If we know the length of the shortest tour L, we can very easily answer  
the question Is there a tour of length less than T as follows:

If : There is no tour of length less than T. 
If : There is a tour of length less than T.

L ≥ T
L < T

Answer.

• Compute a bound B for the length of the shortest tour (e.g. the sum of the edge 
weights int he graph, or the largest weight)

• Use binary search to find the length of the shortest tour:

Use the solver of the decision problem to answer the question:  
Is there a tour of length less than ?

Eliminate the left or right half based on the answer and repeat.

V ×

B/2

Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization 
version is also hard?

Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization 
version is also hard?

Answer. Yes.

The decision version is no harder (as hard or easier) than the optimization version.

To discuss and prove hardness,  
we will consider only decision problems!

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time.

• Given a list of integers L and an integer K:

• is K in L?

• Is there an integer in L that is greater than K ?

• Do any two numbers in L sum to K ?

• Given a permutation of elements P:

• is P sorted in ascending order?

• is P a palindrome?

• Given a graph G:

• Is there a spanning tree whose sum of edge weights is less than T ?

• Is there a path between v and w in a graph G less than T ?

• Is there a cycle in the graph?

• Is the graph connected?

• Given a set of activities, can we schedule X activities without overlap?

 etc.

Examples

Quiz # 4

Which of the following problems are not in P ?

A. Traveling Salesman Problem.

B. 0-1 Knapsack.

C. Bin-Packing.

D. All of the above.

D. I don't know.

Quiz # 4

Which of the following problems are not in P ?

A. Traveling Salesman Problem.

B. 0-1 Knapsack.

C. Bin-Packing.

D. All of the above.

D. We don't know. A problem is in P if it has a polynomial time
solution.

A problem is not in P if there is a proof that it does 
not have a polynomial time solution.

No one proved that these problems do not have 
polynomial time solutions!

Definitions (Complexity Classes)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Definitions (Complexity Classes)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Example Is there A HAMILTONIAN Cycle?

Given a graph G, and a path C (a witness), can we verify in
polynomial time if C is a hamiltonian cycle?

Yes!

1. Check that the first and last vertices are the same.

2. Check that no vertex repeats.

3. Check that the path has exactly V edges.

Definitions (Complexity Classes)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Example TSP is in NP

Given a graph G, a length L, and a path C  
(a witness), can we verify in polynomial time if C
is a hamiltonian cycle of length less than L?

Yes!

1. Check that C is a Hamiltonian cycle.

2. Check that the sum of the edge weights is

less than L.

Definitions (Complexity Classes)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Example SUBSET-SUM is in NP

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verify in polynomial time if  

 and that its elements sum to
L?

Yes!

|H | ≤ K

Definitions (Complexity Classes)

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Example SUBSET-SUM Example SUBSET-PARTITION

Given a multi-set S, two subsets and
 of S (a witness), can we verify in

polynomial time if
and that the sum of the elements in
= the sum of the elements in ?

Yes!

H1
H2

|H1 | + |H2 | = |S |
H1

H2

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verify in polynomial time if  

 and that its elements sum to
L?

Yes!

|H | ≤ K

Quiz # 5

Every problem that is in P is also in NP.

A. True.

B. False.

D. We don't know.

A. True.

B. False.

D. We don't know.

Quiz # 5

Every problem that is in P is also in NP.

If a problem is solvable in polynomial
time, it is also verifiable in polynomial
time.

We can always solve the problem to
verify a given witness!

A. True.

B. False.

D. We don't know.

Quiz # 6

Every problem that is in NP is also in P.

A. True.

B. False.

D. We don't know.

Quiz # 6

Every problem that is in NP is also in P.

Does easy verification imply that finding a solution is also easy?

• No one knows!

• No one yet found a problem that  
is in NP but is not in P !

• This is a $1,000,000 question! 💵 💵 💵

Two Possible World Views

No one knows which is true!

P = NP
NP

vs

P

Quiz # 7

What are examples of problems that are not in NP?

Quiz # 7

What are examples of problems that are not in NP?

Example 1. Given a program P is there an input I that makes P terminate  
in less than s steps?

Example 2. Given a chessboard, is there a move that guarantees black to win?

What is in a name?

What does NP stand for?

A. Not Polynomial.

B. No Pakeup Exam.

C. No Problem.

D. None of the aPove.

What is in a name?

What does NP stand for?

NP stands for: Non-deterministically Polynomial.

I.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions  
all at the same time (call TM a non-deterministic machine).

If a problem is verifiable in polynomial time, TM can solve the problem by guessing  
all the possible solutions and verifying them at once (in polynomial time!)

A. Not Polynomial.

B. No Pakeup Exam.

C. No Problem.

D. None of the aPove.

Definitions (Complexity Classes)

Class NP-Complete.

A decision problem is NP-Complete if:

• It is in NP.

• All problems in NP reduce to it in polynomial time.

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class NP-Complete.

A decision problem is NP-Complete if:

• It is in NP.

• All problems in NP reduce to it in polynomial time.

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

How do we show that all problems in NP  
reduce to a certain problem???

Cook-Levin Theorem (1971)

What is SAT?

slide by Kevin Wayne

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Example What values for , , and satisfy the following formula?x1 x2 x3 x4

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Example What values for , , and satisfy the following formula?x1 x2 x3 x4

Answer. = TRUE, = TRUE, = FALSE, = FALSEx1 x2 x3 x4

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP.

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP. 
Given a formula and boolean values for the variables, it is easy to verify if these 
values satisfy the formula!

• It is not clear if SAT is also in P.

• We can try all possible boolean assignments.

• We don't know if a polynomial time solution exists.

2N

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP. 
Given a formula and boolean values for the variables, it is easy to verify if these 
values satisfy the formula!

• It is not clear if SAT is also in P.

• We can try all possible boolean assignments.

• We don't know if a polynomial time solution exists.

• All problems in in NP reduce to SAT in polynomial time.

• This is the Cook-Levin Theorem.

• The details of the proof are beyond the scope of this course.

• In a nutshell, Cook and Levin showed how any decision problem that is in  
NP can be converted (in polynomial time) to the problem of satisfying a  
boolean formula. 
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)

2N

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

optional

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 , , , , , Ared Ablue Bred Bblue Cred Cblue

optional

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 , , , , ,

2. Enforce that each vertex has one color:

Ared Ablue Bred Bblue Cred Cblue

optional

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 , , , , ,

2. Enforce that each vertex has one color: 
() () = TRUE 
() () = TRUE 
() () = TRUE

3. Enforce that no adjacent vertices have the same color:

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

optional

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 , , , , ,

2. Enforce that each vertex has one color: 
() () = TRUE 
() () = TRUE 
() () = TRUE

3. Enforce that no adjacent vertices have the same color: 
() () = TRUE 
() () = TRUE 
() () = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue

The graph is 2-colorable if the above boolean expressions are satisfiable!

optional

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:  
 , , , , ,

2. Enforce that each vertex has one color: 
() () = TRUE 
() () = TRUE 
() () = TRUE

3. Enforce that no adjacent vertices have the same color: 
() () = TRUE 
() () = TRUE 
() () = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue

The graph is 2-colorable if the above boolean expressions are satisfiable!

Can be easily
converted to CNF.

optional

How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

A. Be as clever as Cook and Levin and show how all problems  
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

How do we show that a problem other than SAT is NP-Complete?

A. Be as clever as Cook and Levin and show how all problems  
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

Quiz # 9

How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

To show that a problem is NP-Complete:

1. Show that it is in NP.

2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to A and A poly-time reduces to B,  
then all problems in NP poly-time reduce to B !

A. Be as clever as Cook and Levin and show how all problems  
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

SAT is not The Only NP-Complete Problem!

slide by Kevin Wayne

Key Finding. SAT poly-time reduces to many problems!

Implication. All of these problems are NP-Complete!

SAT is not The Only NP-Complete Problem!
adapted from a slide by Kevin Wayne

World View if P != NP

IS THERE A PATH SHORTER THAN L?

IS N ODD? IS THERE A CYCLE?

IS THERE A SPANNING TREE SHORTER THAN L?

IS THERE AN EULERIAN CYCLE? IS THERE A NUMBER < K?

NP-Complete

P

IS L A PALINDROM?

NP

Again ... Two Possible World Views

P = NP =  
NP-Complete

NP vs

If P = NPIf P NP≠

NP-Complete

P

NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)

Given a system of inequalities, find a 0-1 solution.

Example. A solution for the above is: 
 x0 = 1, x1 = 1, x2 = 0

Task. Show that ILP is NP-Complete.

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Given a system of inequalities, find a 0-1 solution.

Example. A solution for the above is: 
 x0 = 1, x1 = 1, x2 = 0

1. ILP is in NP.

Given values for the variables, we can verify in  
polynomial time if the inequalities are true.

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Given a system of inequalities, find a 0-1 solution.

Example. A solution for the above is: 
 x0 = 1, x1 = 1, x2 = 0

1. ILP is in NP.

2. SAT poly-time reduces to ILP.

Given values for the variables, we can verify in  
polynomial time if the inequalities are true.

x̄1 ∨ x2 ∨ x3 = TRUE
x1 ∨ x̄2 ∨ x3 = TRUE
x̄1 ∨ x̄2 ∨ x̄3 = TRUE
x̄1 ∨ x̄2 ∨ x4 = TRUE

x̄2 ∨ x3 ∨ x4 = TRUE

(1 − x1) + x2 + x3 ≥ 1
x1 + (1 − x2) + x3 ≥ 1

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1
(1 − x1) + (1 − x2) + x4 ≥ 1

(1 − x2) + x3 + x4 ≥ 1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

Task. Show that IS is NP-Complete.

INDEPENDENT-SET (IS)

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

optional

NP-Completeness (Proof Examples)

Task. Show that IS is NP-Complete.

1. IS is in NP.

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

INDEPENDENT-SET (IS)

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

NP-Completeness (Proof Examples)

1. IS is in NP.

2. SAT poly-time reduces to IS.

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

x1 x̄3x̄2

x3x2x̄1

x̄3x̄2x1

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.

• Connect each node to the literals in the same clause.

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.

• Connect each node to the literals in the same clause.

• Connect each literal to its negation.

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.

• Connect each node to the literals in the same clause.

• Connect each literal to its negation.

• The expression is satisfiable iff there is an independent  

set of size the number of clauses.=

Example. Black vertices form an  
 independent set of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that no two  
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in  
polynomial time if any two are adjacent and if .|S | = k

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

We can pick any NP-Complete problem
for the reduction, not necessarily SAT!

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

We can pick any NP-Complete problem
for the reduction, not necessarily SAT!

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

optional

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a  
 vertex cover of size 5

Given a graph and an integer k, is there  
a subset of k vertices such that each edge  
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

S is an independent set of size k iff is a vertex cover of size .V − S n − k

Vertex Cover of size 4 Independent Set of size 5

optional

NP-Completeness (Proof Examples)

Task. Show that TSP is NP-Complete.

TRAVELING SALESMAN PROBLEM (TSP)
Given a complete weighted graph G, does G contain a simple
circuit C that visits each node exactly once of length T ? ≤

1. Show that TSP is in NP. straight-forward

NP-Completeness (Proof Examples)

Task. Show that TSP is NP-Complete.

TRAVELING SALESMAN PROBLEM (TSP)

1. Show that TSP is in NP.

2. HAMILTONIAN poly-time reduces to TSP.

Given a complete weighted graph G, does G contain a simple
circuit C that visits each node exactly once of length T ? ≤

straight-forward

2
2

2
2

1

1

1

1
1

1

Input to the HAMILTONIAN Input to TSP

Add edge with weight 1 if is in G. 
Add edge with weight 2 if is not in G.

(u, v) (u, v)
(u, v) (u, v)

G G'

G has a hamiltonian cycle  
iff G' has a tour of length V

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Yes if P NP.

No if P = NP.

≠

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Yes if P NP.

No if P = NP.

≠

There are, however, problems in NP that we could not yet prove to be in P and 
could not also prove to be NP-Complete!

Examples. Integer Factoring and Graph Isomorphism.

Definitions (Complexity Classes)

Class NP-Complete.

A decision problem is NP-Complete if:

• It is in NP.

• All problems in NP reduce to it in polynomial time.

Class NP-Hard.

A problem is NP-Hard if all problems in NP reduce to it in polynomial time. 
(at least as hard as the hardest problems in NP)

Class P.

A decision problem is in P if it is solvable in polynomial time  
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class P.

A decision problem is in P if it is solvable in polynomial time  
 O(nc) n c

Class NP.

A decision problem is in NP if it is verifiable in polynomial time.

(Given an instance I or a problem P and a witness W for the solution, can we verify 

Class NP-Complete.

A decision problem is NP-Complete if:

• It is in NP.

• All problems in NP reduce to it in polynomial time.

Class NP-Hard.

A problem is NP-Hard if all problems in NP reduce to it in polynomial time. 
(at least as hard as the hardest problems in NP)

Examples.

• All NP-Complete Problems.

• TSP Optimization.

• Finding the Longest Simple Path.

P = NP =  
NP-CompleteNP

vs

If P = NPIf P NP≠

NP-Complete

P

Two Possible World Views

NP-Hard NP-Hard

Living with Intractability

slide by Kevin Wayne

does not have an algorithm that 
solve all instances in polynomial 
time.

Living with Intractability: Don't Try To Solve It!

slide by Kevin Wayne

Living with Intractability: Solve Real-World Instances

slide by Kevin Wayne

