
Design & Analysis
 Algorithms

P, NP, NP-Complete and NP-Hard Problems

CS11921 - Fall 2023

of

Ibrahim Albluwi

Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:
An algorithm for solving problem X that
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as) :
X can be solved using a solver for Y in
addition to polytime amount of work.

X ⩽p Y

Algorithm for
Y

Algorithm for X

Input for
X Post-

processing
Pre-

processing

Total cost for solving X = Cost of solving Y + Cost of reduction

Y might be called multiple time
(typically 1 call)

Typically less than the cost
of solving Y

Solution for
X

Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:
An algorithm for solving problem X that
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as) :
X can be solved using a solver for Y in
addition to polytime amount of work.

X ⩽p Y

A Turing Reduction from X to Y:
• Allows calling Y's solver multiple times.
• Allows post-processing the output of Y's

solver.

A Karp Reduction from X to Y:
• Allows calling Y's solver only once.
• Does not allow post-processing the

output of 's solver.Y

Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:
An algorithm for solving problem X that
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as) :
X can be solved using a solver for Y in
addition to polytime amount of work.

X ⩽p Y

A Turing Reduction from X to Y:
• Allows calling Y's solver multiple times.
• Allows post-processing the output of Y's

solver.

A Karp Reduction from X to Y:
• Allows calling Y's solver only once.
• Does not allow post-processing the

output of Y's solver.

SELECT Given a list of elements, find the
 largest element.kth

SORT Given a list of elements, order the
elements in non-decreasing order.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

Example.

Reductions (Recap + Finetuning!)

A reduction from problem X to problem Y:
An algorithm for solving problem X that
includes a solver of problem Y as a subroutine.

X polytime-reduces Y (denoted as) :
X can be solved using a solver for Y in
addition to polytime amount of work.

X ⩽p Y

A Turing Reduction from X to Y:
• Allows calling Y's solver multiple times.
• Allows post-processing the output of Y's

solver.

A Karp Reduction from X to Y:
• Allows calling Y's solver only once.
• Does not allow post-processing the

output of Y's solver.

Example.

SELECT Given a list of elements, find the
 largest element.kth

SORT Given a list of elements, order the
elements in non-decreasing order.

SORT reduces to SELECT

Sort the elements by repeatedly using
SELECT to find the next largest element.

Also called a many-to-one reduction:
Input to is preprocessed such that every
YES instance of maps to a YES answer in

 and every NO instance of maps to a NO
answer in .

X
X

Y X
Y

TOTALITY reduces to EQUIVALENCE

Example.

See the slides on Reductions discussed
before.

Quiz # 1 (déjà vu!)

Suppose there is a proof that problem X is difficult to solve.

How can we prove that a problem Y is also difficult to solve?

A. Show that X reduces easily to Y.

B. Show that Y reduces easily to X.

Quiz # 1 (déjà vu!)

Suppose there is a proof that problem X is difficult to solve.

How can we prove that a problem Y is also difficult to solve?

A. Show that X reduces easily to Y.

B. Show that Y reduces easily to X.

• If reduces easily to and then .X Y Y ∈ EASY X ∈ EASY

We know that and we want to use this information to show that
. I.e. we want to show that). We can achieve

this by showing that the the following contrapositive statement holds:

X ∉ EASY
Y ∉ EASY X ∉ EASY ⟹ Y ∉ EASY

Y ∈ EASY ⟹ X ∈ EASY

Quiz # 1 (déjà vu!)

A. Show that X reduces easily to Y.

B. Show that Y reduces easily to X.

Suppose there is a proof that problem X is difficult to solve.

How can we prove that a problem Y is also difficult to solve?

• Since it is known that , then must be false!
(otherwise, there will be a contradiction)

X ∉ EASY Y ∈ EASY

Explanation.

NEVER FORGET

 If A is hard to solve and
 A easily reduces to B ,
en B is also hard to solve!

(A ⩽p B)

NEVER FORGET

What does it mean for a problem to be hard anyway?

 If A is hard to solve and
 A easily reduces to B ,
en B is also hard to solve!

(A ⩽p B)

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

A fine line Between Hard and Easy Problems

Shortest Paths on unweighted graphs

Shortest Paths on weighted DAGs

Longest Paths on weighted DAGs

Shortest Paths on weighted graphs (no negative weights)

Longest Paths on weighted graphs

O(E+V) using BFS

O(E+V) using Topological sort

O(E+V) using Topological Sort

O(ELogV) using Dijkstra's

Fractional Knapsack Problem

0-1 Knapsack Problem

has an efficient greedy algorithm

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

vs.

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex
has an even degree!

vs.

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex
has an even degree!

Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex
has an even degree!

Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

A fine line Between Hard and Easy Problems

Does a graph G contain an Eulerian Cycle?
(a cycle that visits all the edges in G exactly once)

Direct solution: True if and only if each vertex
has an even degree!

Does a graph G contain a Hamiltonian Cycle?
(a cycle that visits all the vertices in G exactly once)

Traveling Salesman Problem (TSP)
Given a complete weighted graph, what is the shortest Hamiltonian Cycle?

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

A fine line Between Hard and Easy Problems

Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length
(can be checked using BFT)

A fine line Between Hard and Easy Problems

Is a graph 2-Colorable?
(can the vertices be colored using 2 colors, such that
no two adjacent vertices have the same color?)

Direct solution: True if there is no cycle of odd length
(can be checked using BFT)

Is a graph k-Colorable?
(can the vertices be colored using k colors or less, such
that no two adjacent vertices have the same color?)

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

More Hard Problems

Bin Packing
Given an unlimited number of bins (each with capacity C), and n objects with
sizes where , find the minimum number of bins needed to
pack all objects.

s1, … , sn 0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞ 9 9 9 9 9 9 9 9 9 9 9 99

More Hard Problems

Bin Packing
Given an unlimited number of bins (each with capacity C), and n objects with
sizes where , find the minimum number of bins needed to
pack all objects.

s1, … , sn 0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞ 9 9 9 9 9 9 9 9 9 9 9 9

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

More Hard Problems

min subset

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4}

More Hard Problems

min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4}

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

Subset Partition
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No

More Hard Problems

Subset Sum
Given a multiset S of integers and an integer k, find a minimum subset of S whose
elements sum up to exactly k.

Example. S = {1, 1, 1, 4, 4, 5, 6}, k = 8
Possible Subsets: {1, 1, 1, 5}, {1, 1, 6}, {4, 4} min subset

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

Subset Partition
Given a multiset S of integers, can S be partitioned into 2 subsets of the same sum?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No

 NO KNOWN POLYNOMIAL TIME ALGORITHM!

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

A Hard Problem?

🔥

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!
I.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

A Hard Problem?

What is common between finding longest paths in cyclic graphs, 0-1 Knapsack, Subset
Sum, Subset Partition, Bin-Packing, TSP and Checking if a Hamiltonian cycle exists?
(+ many others ...)

(1) No one until now found a polynomial time algorithm to solve any of them.

(2) No one proved that no polynomial time algorithm can be found for any of them.

(3) Each of them poly-time reduces to all the other problems!
I.e. Finding a polynomial time solution to any of them means that all of them have
polynomial time solutions!

(4) You will get $1,000,000 from the Clay Mathematics Institute if you find a polynomial
 time solution for any of them or prove that any of them can't have a polynomial
 time solution!

💵

Welcome to the

P vs NP
Problem

Definitions

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Examples

Definitions

Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a
simple circuit C that visits each node in G
exactly once such that the total cost of the
edges in C is minimum.

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Examples

Definitions

Traveling Salesman Problem

Optimization problem:
Given a complete weighted graph G, find a
simple circuit C that visits each node in G
exactly once such that the total cost of the
edges in C is minimum.

Decision problem:
Given a complete weighted graph G, does
G contain a simple circuit C that visits each
node exactly once such that the total cost
of the edges in C is less than or equal to
some threshold T ?

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Examples

Definitions

Bin-Packing

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Given an unlimited number of
bins (each with capacity C), and n
objects with sizes where

, find the minimum
number of bins needed to pack all
objects

s1, … , sn
0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞

Examples

Definitions

Bin-Packing

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Given an unlimited number of
bins (each with capacity C), and n
objects with sizes where

, find the minimum
number of bins needed to pack all
objects

Decision problem:
Can the objects fit in less than k
bins ?

s1, … , sn
0 < si ≤ C

2 1
5 7 8 9

4 3
6

2
5

1
3

6 67
9

5 5

9 9 99 99 9 999 9 9∞

Examples

Definitions

Graph Coloring

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Examples

Definitions

Graph Coloring

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Find the minimum number of colors
such that adjacent vertices are not
assigned the same color.

Decision problem:
Can the vertices be properly colored
in K or fewer colors such that
adjacent vertices are not assigned
the same color?

Examples

Definitions

Subset Sum

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Given a multi-set S of integers and an
integer k, find a minimum subset of S
whose elements sum up to exactly k.

Example.
S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}
 {1, 1, 6}
 {4, 4} ⟵ minimum

Examples

Definitions

Subset Sum

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Optimization problem:
Given a multi-set S of integers and an
integer k, find a minimum subset of S
whose elements sum up to exactly k.

Decision problem:
Does S contain a subset whose
elements sum up to exactly k?

Example.
S = {1, 1, 1, 4, 4, 5, 6}, k = 8

Possible Subsets: {1, 1, 1, 5}
 {1, 1, 6}
 {4, 4} ⟵ minimum

Examples

Definitions

Hamiltonian Cycle

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Decision problem:
Is there a cycle that visits each
vertex in the graph once?

Examples

Definitions

Hamiltonian Cycle

Optimization problem:
Find the best solution among a set of feasible solutions.

Decision problem:
Requires a yes/no answer.

Decision problem:
Is there a cycle that visits each
vertex in the graph once?

Examples Subset Partition

Decision problem:
Given a set S of integers, Can we partition
S into two subsets of exactly the same
size?

Example. S = {1, 2, 3, 4}
YES: {1, 4} and {2, 3}

S = {1, 2, 3, 4, 5}
No

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

If : ere is no tour of length less than T.
If : ere is a tour of length less than T.

L ≥ T
L < T

Quiz # 2

Given a solver for the optimization version of TSP, how can we solve the
decision version?

Answer. If we know the length of the shortest tour L, we can very easily answer
the question Is there a tour of length less than T as follows:

If : ere is no tour of length less than T.
If : ere is a tour of length less than T.

L ≥ T
L < T

TSPdec ≤p TSPopt

Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization
version is also hard?

Quiz # 3

If the decision version of a problem is hard, does this imply that the optimization
version is also hard?

Answer. Yes.

e decision version is no harder (as hard or easier) than the optimization version.

To discuss and prove hardness,
we will consider only decision problems!

TSPdec ≤p TSPopt

Definitions (Complexity Classes)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Definitions (Complexity Classes)

Class P.
A decision problem is in P if it is solvable in polynomial time.

• Given a list of integers L and an integer K:
• is K in L?
• Is there an integer in L that is greater than K ?
• Do any two numbers in L sum to K ?

• Given a permutation of elements P:
• is P sorted in ascending order?
• is P a palindrome?

• Given a graph G:
• Is there a spanning tree whose sum of edge weights is less than T ?
• Is there a path between v and w in a graph G less than T ?
• Is there a cycle in the graph?
• Is the graph connected?

 etc.

Examples

Quiz # 4

Which of the following decision problems are not in P ?

A. Traveling Salesman Problem.

B. 0-1 Knapsack.

C. Bin-Packing.

D. All of the above.

D. I don't know.

Quiz # 4

A. Traveling Salesman Problem.

B. 0-1 Knapsack.

C. Bin-Packing.

D. All of the above.

D. We don't know.
A problem is in P if it has a polynomial time
solution.

A problem is not in P if there is a proof that it does
not have a polynomial time solution.

While we don't have polynomial time solutions for
these problems, no one proved that these problems
do not have polynomial time solutions!

Which of the following decision problems are not in P ?

Definitions (Complexity Classes)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Definitions (Complexity Classes)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Example Is there A HAMILTONIAN Cycle?

Given a graph G, and a path C (a witness), can we verify in
polynomial time if C is a hamiltonian cycle?

Yes!
1. Check that the first and last vertices are the same.
2. Check that no other vertices repeat.
3. Check that the path has exactly V edges and that

they are all in G.

Definitions (Complexity Classes)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Example TSP is in NP

Given a graph G, a length L, and a path C
(a witness), can we verify in polynomial time if C
is a hamiltonian cycle of length less than L?

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I for a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Example TSP is in NP

Given a graph G, a length L, and a path C
(a witness), can we verify in polynomial time if C
is a hamiltonian cycle of length less than L?

Yes!
1. Check that C is a Hamiltonian cycle.
2. Check that the sum of the edge weights is

less than L.

Definitions (Complexity Classes)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Example SUBSET-SUM is in NP

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verify in polynomial time if

 and that its elements sum to
L?

Yes!

|H | ≤ K

Definitions (Complexity Classes)

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Example SUBSET-SUM Example SUBSET-PARTITION

Given a multi-set S, two subsets and
 of S (a witness), can we verify in

polynomial time if
and that the sum of the elements in
= the sum of the elements in ?

Yes!

H1
H2

|H1 | + |H2 | = |S |
H1

H2

Given a multi-set S, two integers K and
L, and a subset H of S (a witness), can
we verify in polynomial time if

 and that its elements sum to
L?

Yes!

|H | ≤ K

Quiz # 5

Every problem that is in P is also in NP.

A. True.

B. False.

D. We don't know.

A. True.

B. False.

D. We don't know.

Quiz # 5

Every problem that is in P is also in NP.

If a problem is solvable in polynomial
time, it is also verifiable in polynomial
time.

We can always solve the problem to
verify a given witness!

A. True.

B. False.

D. We don't know.

Quiz # 6

Every problem that is in NP is also in P.

A. True.

B. False.

D. We don't know.

Quiz # 6

Every problem that is in NP is also in P.

Does easy verification imply that finding a solution is also easy?

• No one knows!

• No one yet found a problem that
is in NP but is not in P !

• This is a $1,000,000 question! 💵 💵 💵

Two Possible World Views

No one knows which is true!

P = NP
NP

vs

P

Quiz # 7

What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Quiz # 7

Example. Given a chessboard, is there a move that guarantees black to win?

What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Quiz # 7

Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verify in
polynomial time if the move will guarantee black to win! (we can do exponential amount
of work to check all possible black and white moves to see if black will win!)

What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Quiz # 7

Example. Given a chessboard, is there a move that guarantees black to win?

Given a chessboard and a certain move (a solution), we don't know how to verify in
polynomial time if the move will guarantee black to win! (we can do exponential amount
of work to check all possible black and white moves to see if black will win!)

What are examples of problems that we do not know how to verify in polynomial
time (hence, we are unable to place in NP)?

Another Example. Does graph G have a unique Hamiltonian cycle?

What is in a name?

What does NP stand for?

A. Not Polynomial.

B. No Pakeup Exam.

C. No Problem.

D. None of the aPove.

What is in a name?

What does NP stand for?

NP stands for: Non-deterministically Polynomial.
I.e. Can be solved using a non-deterministic machine in polynomial time.

Assume that TM is a machine that can guess and verify an infinite number of solutions
all at the same time (call TM a non-deterministic machine).

If a problem is verifiable in polynomial time, TM can solve the problem by guessing
all the possible solutions and verifying them at once (in polynomial time!)

A. Not Polynomial.

B. No Pakeup Exam.

C. No Problem.

D. None of the aPove.

Definitions (Complexity Classes)

Class NP-Complete.
A decision problem is NP-Complete if:

• It is in NP.
• All problems in NP reduce to it in polynomial time.

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class NP-Complete.
A decision problem is NP-Complete if:

• It is in NP.
• All problems in NP reduce to it in polynomial time.

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

How do we show that all problems in NP
reduce to a certain problem???

Cook-Levin Theorem (1971)

What is SAT?

slide by Kevin Wayne

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Example What values for , , and satisfy the following formula?x1 x2 x3 x4

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Example What values for , , and satisfy the following formula?x1 x2 x3 x4

Answer. = TRUE, = TRUE, = FALSE, = FALSEx1 x2 x3 x4

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP.

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP.
Given a formula and boolean values for the variables, it is easy to verify if these
values satisfy the formula!

• It is not clear if SAT is also in P.
• We can try all possible boolean assignments.
• We don't know if a polynomial time solution exists.

2N

Boolean Satisfiability (SAT)

adapted from a slide by Kevin Wayne

Key Facts.

• SAT is in NP.
Given a formula and boolean values for the variables, it is easy to verify if these
values satisfy the formula!

• It is not clear if SAT is also in P.
• We can try all possible boolean assignments.
• We don't know if a polynomial time solution exists.

• All problems in NP reduce to SAT in polynomial time.

• is is the Cook-Levin eorem.

• e details of the proof are beyond the scope of this course.

• In a nutshell, Cook and Levin showed how any decision problem that is in
NP can be converted (in polynomial time) to the problem of satisfying a
boolean formula of a polynomial size).
(i.e. a digital circuit can be designed for it that has a polynomial number of gates)

2N

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , , Ared Ablue Bred Bblue Cred Cblue

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , ,

2. Enforce that each vertex has one color:

Ared Ablue Bred Bblue Cred Cblue

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , ,

2. Enforce that each vertex has one color:
() () = TRUE
() () = TRUE
() () = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , ,

2. Enforce that each vertex has one color:
() () = TRUE
() () = TRUE
() () = TRUE

3. Enforce that no adjacent vertices have the same color:

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , ,

2. Enforce that each vertex has one color:
() () = TRUE
() () = TRUE
() () = TRUE

3. Enforce that no adjacent vertices have the same color:
() () = TRUE
() () = TRUE
() () = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue

Reduction Example

Graph Coloring reduces to SAT in polynomial time.

C

A

B

Assume that the problem is to check if the graph is 2-colorable.

1. Create the boolean variables:
 , , , , ,

2. Enforce that each vertex has one color:
() () = TRUE
() () = TRUE
() () = TRUE

3. Enforce that no adjacent vertices have the same color:
() () = TRUE
() () = TRUE
() () = TRUE

Ared Ablue Bred Bblue Cred Cblue

Ared ∨ Ablue ∧ ¬ Ared ∧ Ablue
Bred ∨ Bblue ∧ ¬ Bred ∧ Bblue
Cred ∨ Cblue ∧ ¬ Cred ∧ Cblue

¬ Ared ∧ Bred ∧ ¬ Ablue ∧ Bblue
¬ Ared ∧ Cred ∧ ¬ Ablue ∧ Cblue
¬ Bred ∧ Cred ∧ ¬ Bblue ∧ Cblue

e graph is 2-colorable if the above boolean expressions are satisfiable!

Can be converted to
a CNF with
clauses

Θ(E + V)

How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

A. Be as clever as Cook and Levin and show how all problems
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

A. Be as clever as Cook and Levin and show how all problems
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

How do we show that a problem other than SAT is NP-Complete?

Quiz # 9

To show that a problem is NP-Complete:

1. Show that it is in NP.

2. Show that an NP-Complete problem reduces to it in polynomial time!

If all problems in NP poly-time reduce to A and A poly-time reduces to B,
then all problems in NP poly-time reduce to B !

A. Be as clever as Cook and Levin and show how all problems
 in NP reduce to this new problem.

B. No need! SAT is the only NP-Complete Problem!

C. None of the above.

SAT is not The Only NP-Complete Problem!

slide by Kevin Wayne

Key Finding. SAT poly-time reduces to many problems!

Implication. All of these problems are NP-Complete!

SAT is not The Only NP-Complete Problem!
adapted from a slide by Kevin Wayne

World View if P != NP

IS THERE A PATH SHORTER THAN L?

IS N ODD? IS THERE A CYCLE?

IS THERE A SPANNING TREE SHORTER THAN L?

IS THERE AN EULERIAN CYCLE? IS THERE A NUMBER < K?

NP-Complete

P

IS L A PALINDROM?

NP

Again ... Two Possible World Views

P = NP =
NP-Complete

NP vs

If P = NPIf P NP≠

NP-Complete

P

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Maybe if P NP.

No if P = NP.

≠

Are there problems that are in NP but are not in P and are not NP-Complete.

A. Yes.

B. No.

C. None of the above.

Quiz # 10

Maybe if P NP.

No if P = NP.

≠

ere are, however, problems in NP that we could not yet prove to be in P and
could not also prove to be NP-Complete!

Examples. Integer Factoring and Graph Isomorphism.

NP-Completeness (Proof Examples)

ILP (binary Integer Linear Programming)

Given a set of inequalities, is there a 0-1 solution?

Example. A solution for the above is:
 x0 = 1, x1 = 1, x2 = 0

Task. Show that ILP is NP-Complete.

Examples by Kevin Wayne

NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Example. A solution for the above is:
 x0 = 1, x1 = 1, x2 = 0

1. ILP is in NP.

Given values for the variables, we can verify in
polynomial time if the inequalities are true.

Examples by Kevin Wayne

Given a set of inequalities, is there a 0-1 solution?

NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Example. A solution for the above is:
 x0 = 1, x1 = 1, x2 = 0

1. ILP is in NP.

2. SAT poly-time reduces to ILP.

Given values for the variables, we can verify in
polynomial time if the inequalities are true.

x̄1 ∨ x2 ∨ x3 = TRUE
x1 ∨ x̄2 ∨ x3 = TRUE
x̄1 ∨ x̄2 ∨ x̄3 = TRUE
x̄1 ∨ x̄2 ∨ x4 = TRUE

x̄2 ∨ x3 ∨ x4 = TRUE

(1 − x1) + x2 + x3 ≥ 1
x1 + (1 − x2) + x3 ≥ 1

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1
(1 − x1) + (1 − x2) + x4 ≥ 1

(1 − x2) + x3 + x4 ≥ 1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

Given a set of inequalities, is there a 0-1 solution?

NP-Completeness (Proof Examples)

Task. Show that ILP is NP-Complete.

ILP (binary Integer Linear Programming)

Example. A solution for the above is:
 x0 = 1, x1 = 1, x2 = 0

2. SAT poly-time reduces to ILP.

x̄1 ∨ x2 ∨ x3 = TRUE
x1 ∨ x̄2 ∨ x3 = TRUE
x̄1 ∨ x̄2 ∨ x̄3 = TRUE
x̄1 ∨ x̄2 ∨ x4 = TRUE

x̄2 ∨ x3 ∨ x4 = TRUE

(1 − x1) + x2 + x3 ≥ 1
x1 + (1 − x2) + x3 ≥ 1

(1 − x1) + (1 − x2) + (1 − x3) ≥ 1
(1 − x1) + (1 − x2) + x4 ≥ 1

(1 − x2) + x3 + x4 ≥ 1

Example SAT instance Equivalent ILP instance.

Examples by Kevin Wayne

A clause is true iff any variable is true
and is not negated or is false and is
negated.

An inequality 1 iff any variable is 1 and is not
negated or is and is negated.

≥
0

Creating these inequalities is linear in the number
of boolean clauses (i.e. this is a polytime reduction)

Given a set of inequalities, is there a 0-1 solution?

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

We can pick any NP-Complete problem
for the reduction, not necessarily SAT!

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

We can pick any NP-Complete problem
for the reduction, not necessarily SAT!

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

NP-Completeness (Proof Examples)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

Examples by Kevin Wayne

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

Given a graph G and a subgraph of vertices , we can check in polynomial time if
the size of the set is m and every vertex in is connected to every other vertex in .

S
S S

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example

Task. Show that CLIQUE
is NP-Complete.

 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• Create a group of vertices for every
clause (m groups)

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Create a group of vertices for every
clause (m groups)

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• A clique of size m corresponds to m
literals being true (formula is satisfiable).

The clique contains exactly 1 vertex from each group
(vertices in the same group are not connected) and a
variable and its negation can't be in the clique.

Task. Show that CLIQUE
is NP-Complete.

CLIQUE Given a graph G, and
an integer m, is there a complete
subgraph of size m vertices?

original
graph

not a
clique

a clique of
size m=3

a clique of
size m=4

NP-Completeness (Proof Examples)

Examples by Kevin Wayne

1. CLIQUE is in NP.

2. SAT poly-time reduces to CLIQUE. Example
 (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3)

x1

x̄2

x3

x̄2
x3

x̄1

x2

• Create a group of vertices for every
clause (m groups)

• Connect every vertex to all the other
vertices in the other groups unless the
variable is its negation.

• A clique of size m corresponds to m
literals being true (formula is satisfiable).

If the number of literals = , the construction takes
 time (i.e. this is a polytime reduction)

N
O(N2)

Task. Show that CLIQUE
is NP-Complete.

NP-Completeness (Proof Examples)

Task. Show that IS is NP-Complete.

INDEPENDENT-SET (IS)

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

NP-Completeness (Proof Examples)

Task. Show that IS is NP-Complete.

1. IS is in NP.

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

INDEPENDENT-SET (IS)

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

NP-Completeness (Proof Examples)

1. IS is in NP.

2. SAT poly-time reduces to IS.

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

x1 x̄3x̄2

x3x2x̄1

x̄3x̄2x1

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.
• Connect each node to the literals in the same clause.

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.
• Connect each node to the literals in the same clause.
• Connect each literal to its negation.

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.
• Connect each node to the literals in the same clause.
• Connect each literal to its negation.
• e expression is satisfiable iff there is an independent

set of size the number of clauses.=

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

Given a set S of vertices in G, we can verify in
polynomial time if any two are adjacent and if .|S | = k

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.
• Connect each node to the literals in the same clause.
• Connect each literal to its negation.
• e expression is satisfiable iff there is an independent

set of size the number of clauses.=

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

The independent set contains only 1 vertex from each group. Two vertices in the
same group can't be in the set and a variable and its negation can't be in the
set (because these are connected with edges in the constructed graph)

NP-Completeness (Proof Examples)

1. IS is in NP.

• Create a node for each literal in each clause.
• Connect each node to the literals in the same clause.
• Connect each literal to its negation.
• e expression is satisfiable iff there is an independent

set of size the number of clauses.=

Example. Black vertices form an
 independent set of size 5

Given a graph and an integer k, is there
a subset of k vertices such that no two
vertices are adjacent?

Example. (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x3)

x1 x̄3x̄2

x3x2
x̄1

x̄3x̄2x1

INDEPENDENT-SET (IS)

Task. Show that IS is NP-Complete.

2. SAT poly-time reduces to IS.

If the number of literals = , the construction takes
 time (i.e. this is a polytime reduction)

N
O(N2)

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

NP-Completeness (Proof Examples)

Task. Show that VC is NP-Complete.

VERTEX-COVER (VC)

Example. Black vertices form a
 vertex cover of size 5

Given a graph and an integer k, is there
a subset of k vertices such that each edge
is incident to at least one vertex in the subset?

1. VC is in NP.

Given a set S of vertices in G, we can verify in polynomial time if each edge in the
graph is incident to a vertex in S and if .|S | = k

2. INDEPENDENT-SET poly-time reduces to VERTEX-COVER.

S is an independent set of size k iff is a vertex cover of size .V − S |V | − k

Vertex Cover of size 4 Independent Set of size 5

Slide by Kevin Wayne

NP-Completeness (Proof Examples)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

1. Show that TSP is in NP. straight-forward

TSP Given a complete weighted graph G,
does G contain a simple circuit of length
T that visits each node exactly once?

≤
HAMILTONIAN Given a graph G, does
G contain a simple circuit that visits
each node only once.

NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G,
does G contain a simple circuit of length
T that visits each node exactly once?

≤

1. Show that TSP is in NP.

2. HAMILTONIAN poly-time reduces to TSP.

straight-forward

2
2

2
2

1

1

1

1
1

1

Input to HAMILTONIAN Input to TSP
G G'

(If length > V then an edge that is not
part of the original graph was used)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

G has a hamiltonian cycle
iff G' has a tour of length V

Add edge with weight 1 if is in G.
Add edge with weight 2 if is not in G.

(u, v) (u, v)
(u, v) (u, v)

HAMILTONIAN Given a graph G, does
G contain a simple circuit that visits
each node only once.

NP-Completeness (Proof Examples)

TSP Given a complete weighted graph G,
does G contain a simple circuit of length
T that visits each node exactly once?

≤

1. Show that TSP is in NP.

2. HAMILTONIAN poly-time reduces to TSP.

straight-forward

2
2

2
2

1

1

1

1
1

1

Input to HAMILTONIAN Input to TSP
G G'

(If length > V then an edge that is not
part of the original graph was used)

Task. Show that TSP is NP-Complete knowing that HAMILTONIAN is NP-Complete.

This construction runs in
 = polytime reduction!Θ(V2)

G has a hamiltonian cycle
iff G' has a tour of length V

Add edge with weight 1 if is in G.
Add edge with weight 2 if is not in G.

(u, v) (u, v)
(u, v) (u, v)

HAMILTONIAN Given a graph G, does
G contain a simple circuit that visits
each node only once.

Definitions (Complexity Classes)

Class NP-Complete.
A decision problem is NP-Complete if:

• It is in NP.
• All problems in NP reduce to it in polynomial time.

Class NP-Hard.
A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Definitions (Complexity Classes)

Class P.
A decision problem is in P if it is solvable in polynomial time
(i.e. in , where is the input size and is a constant)O(nc) n c

Class NP.
A decision problem is in NP if it is verifiable in polynomial time.
(Given an instance I or a problem P and a witness W for the solution, can we verify
in polynomial time if W proves that the answer for I is yes?)

Class NP-Complete.
A decision problem is NP-Complete if:

• It is in NP.
• All problems in NP reduce to it in polynomial time.

Class NP-Hard.
A problem is NP-Hard if all problems in NP reduce to it in polynomial time.
(at least as hard as the hardest problems in NP)

Examples.
• All NP-Complete Problems.
• TSP Optimization.
• Finding the Longest Simple Path.

P = NP =
NP-CompleteNP

vs

If P = NPIf P NP≠

NP-Complete

P

Two Possible World Views

NP-Hard NP-Hard

Living with Intractability

slide by Kevin Wayne

does not have an algorithm that
solve all instances in polynomial
time.

Living with Intractability: Don't Try To Solve It!

slide by Kevin Wayne

Living with Intractability: Solve Real-World Instances

slide by Kevin Wayne

