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SELECTION-SORT (array)

for i=n-1—1:
max = FIND-MAX(array, i, 0) scan this portion of
swap (array[i], array[max]) the array linearly.
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Selection Sort?

SELECTION-SORT (array)

for i=n-1—»1:
max = FIND-MAX(array, i, 0) scan this portion of
swap (array[i], array[max]) the array linearly.

HEAP-SORT (array)
/ rearrange the elements so

prepare(array) that finding the max is easy!

for 1=n-1 —»1:

max = FIND-MAX(array, i, 0) find the maximum
insert array[max] 1into array[i]) element quickly!
Roadmap.

1. Review Max-Priority Queues and Heaps.
2. Learn about Heapsort.



Max-Priority Queue (Abstract Data Type)

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

Remove the item

Stack
most-recently added PUSH, Pop

Remove the item

Queue
Hel least-recently added ENQUEUE, DEQUEUE
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Max-Priority Queue (Abstract Data Type)

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

Remove the item
Stack PusH, Por Singly-Linked List

most-recently added
Doubly-Linked List

Remove the item Array-List

Queue
vel least-recently added ENQUEUE, DEQUEUE

Binary Search Tree

Hash Table
Linked-List, Array-List

Search in a group of INSERT, DELETE,

Set . .
unique items CONTAINS

Remove the
Max-PQ Ve INSERT, MAX, DEL-MAX ?
largest item
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Max-Priority Queue (Abstract Data Type)

Unordered List:
insert: O(1)
max: O(n)
delMax: O(n)

1 & 9 e&—» 4 &—» 3 e&—» 8 o—»> 2 o—>»

Ordered Array:
insert: O(n)
max: O(1)
delMax: ©O(1)

1 2 3 3 3 4 5 6 6 ! 9

Binary Heap:
insert: O(logn)
max: O()
delMax: O(logn)
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Complete Binary Tree:
All levels are tull (except possibly the last level).
Last level is filled lett-to-right.
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not complete complete



Binary Tree: Empty or a node with links to left and right binary trees.
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Y ¥ a
Complete Binary Tree:
All levels are tull (except possibly the last level).
Last level is filled lett-to-right.
Properties: ,
e

Height if there are n nodes: 1 = |log, 1|

h=|log, 11| = [3.459] =3
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Binary Tree: Empty or a node with links to left and right binary trees.
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Complete Binary Tree:
All levels are tull (except possibly the last level).
Last level is filled lett-to-right.

Properties:
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All leaves are at level i or h — 1. ‘ ‘ ‘ ‘



Binary Tree: Empty or a node with links to left and right binary trees.

Y Y
Y N Y N Y Y
Y ¥

Complete Binary Tree:
All levels are tull (except possibly the last level).
Last level is filled lett-to-right.

Properties: 20
Height if there are n nodes: 1 = |log, 1| )l
There are {%J leaves. 22

All leaves are at level hor i — 1.

Number of nodes at internal level i = 2°



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)
Structure: Must be a complete binary tree.

Order: Every node is not less than its children.



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)
Structure: Must be a complete binary tree.

Order: Every node is not less than its children.
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Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)
Structure: Must be a complete binary tree.

Order: Every node is not less than its children.

Examples: 5 .
5 T 5 c 7 T c
¥ ¥ ¥ ¥
2 2 2 2 5 2 1 5
v
4
Non-Examples:
6 6
. T . c T c
¥ V % ¥ V %
1 S 4 1

SN oy /N

order structure



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)
Structure: Must be a complete binary tree.

Order: Every node is not less than its children.

Examples: max is always
//a\\m at the root
& | & \

Non-Examples:
6 6

7&// \‘35 5&/ \5
¥ v o\ ¥ v
1 S 4 1

SN N /N

order structure



Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

array has the tree
nodes in level-order

7
7 6 6 5 5 4 4 2 2 g
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Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

array has the tree
nodes in level-order

7
7 6 6 5 5 4 4 2 2 o
6 6
v Y
5 S 4 — 4
Y
2 —» 2

Three simple functions.

LEFT (1) RIGHT (1) PARENT (1)

return 2*xi + 1 return 2*xi + 2 return (i-1)/2



Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

0] 1
7
7 6 6 \
7 ot ¢
6 6
Three simple functions.
LEFT (1) RIGHT (1) PARENT (1)
return 2*xi + 1 return 2*xi + 2 return (i-1)/2
left child is at index Right child is at index Parent of the node at ©

2%¥0 + 1 = 1 2%¥0 + 2 = 2 is negative (no parent)



Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

1 3 4
6 S S
6
6 5 5
S S
Three simple functions.
LEFT (1) RIGHT (1) PARENT (1)
return 2*xi + 1 return 2*xi + 2 return (i-1)/2
left child is at index Right child is at index Parent is at index

2*x1 + 1 = 3 2*x1 + 2 = 4 (1-1)/2 = 0



Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

N
(&)
(o))

6 4 4
6
6 4 4
4 4
Three simple functions.
LEFT (1) RIGHT (1) PARENT (1)

return 2*xi + 1 return 2*xi + 2 return (i-1)/2
left child is at index Right child is at index Parent is at index

2%2 + 1 = 5 2%2 + 2 = 6 (2-1)/2 =0



Binary Heaps (Array Representation)

Binary Heap: (max-ordered)

3 7 8
S 2 2
S
5 2 2
2 2
Three simple functions.
LEFT (1) RIGHT (1) PARENT (1)
return 2*xi + 1 return 2*xi + 2 return (i-1)/2
left child is at index Right child is at index Parent is at index

2%¥3 + 1 = 7 2%¥3 + 2 = 8 (3-1)/2 =1



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

6
4&// \AS
¥, \aB V
%

41 4 4
7

swap

g/3



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

6
swap 4&//\#5
¥ a V
7 3 4 4
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2 3



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

swap
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7
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Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

swap
C\
6
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SN T e G
2 3
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1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.
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Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

Ar/7\ﬁs5
6

¥ v
»/4¥ 2 4 4
2 3

SWIM(a[], 1, size)

also called SiftUp()
(not shiftup) on wikipedia



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

45/7\%5
6

¥ v
b/4¥ 2 4 4
2 3

SWIM(a[], 1, size)

while (i>0 and a[i] > a[PARENT(i)]):

the element the element is

is not the root greater than its
parent



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

AK///7\\\\ﬁ :
6
¥ v
514\¥ 2 4 4
2 3

SWIM(a[], 1, size)

while (i>0 and a[i] > a[PARENT(i)]):
swap(a[i], a[PARENT(i)])
i = PARENT(7)

swap values with the parent
and move to the parent for
the next iteration



Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

AK///7\\\\ﬁ :
6
¥ v
514\¥ 2 4 4
2 3

SWIM(a[], 1, size)

while (i>0 and a[i] > a[PARENT(i)]):
swap(a[i], a[PARENT(i)])
i = PARENT(7)

Running Time. O(log n)
1 swap and 1 compare per iteration.

The number of iterations is bounded
by the tree height.




Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

2
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Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

swap
2

o \\A can't swap with 5 because it

6 5 is less than the other child (6)
Y V %
4 4 4 4

YV



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

swap Zk/ \\AS
A
VX
2 3



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

+ S

4

W WA
& 4 4

2 4
% 41
2 3 W swap

can't swap with 2 because it
is less than the other child (3)



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.
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Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

e \AS
38/ \a4 v
w/ & 4 4

SINK(a[], 1, size)

also called:
+ SIFTDOWN on wikipedia
- MAX-HEAPIFY in our text-book
FIX-HEAP in the slides of the other sections!



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

e \5
3»/ \44 v
g/ & 4 4

SINK(a[], 1, size)

while (LEFT(i) < size):

while there is

a left child



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

e \5
3»/ \44 v
g/ & 4 4

SINK(a[], 1, size)
while (LEFT(i) < size):
k = LEFT(1)

if (RIGHT(i) < size):
if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

pick between the left and
right child depending on
which one is the largest.



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

T .
3{&4 v
g’& 4 4

SINK(a[], 1, size)

while (LEFT(i) < size):
k = LEFT(1)
if (RIGHT(1) < size):
if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

if (al[i] < alk]):

swap (a[1 alk
; :pé by &ltd) the larger child or stop

swap with and move to

else: break if no swap is necessary



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

6

e \AS
38/ \a4 v
w/ & 4 4

SINK(a[], 1, size)

while (LEFT(i) < size):
k = LEFT(1)

if (RIGHT(i) < size):
if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

if (a[i] < a[k]): “ Running Time. O(log n)
. At most 1 swap and 2
s.wapl((a 11, alkl) comparisons per iteration
1 =

The number of iterations is

else: break bounded by the tree height.



Max-PQ Operations

Max: Always at index 0. max is e

at the root




Max-PQ Operations

Max: Always at index 0. v

Insert: Insert at the end of the
array and then swim. 3 2 4 1

INSERT(a[], k, size)

alsize] = k
size = size + 1
SWIM(a, size-1, size)



Max-PQ Operations

a complete tree

Max: AlW&YS at index 0. must be filled 7
left to right
6 5
Insert: Insert at the end of the
array and then swim. 3 2 4 1

INSERT(a[], k, size) | e

alsize] = k .

size = size + 1 8

SWIM(a, size-1, size)

adding to the last index is
equivalent to filling the last
level left-to-right



Max-PQ Operations

Max: Always at index 0. v
6 5
Insert: Insert at the end of the
array and then swim. 3 2 4 1
INSERT (a[], k, size) e
alsize] = k .
size = size + 1 8

SWIM(a, size-1, size)

fix the heap after
inserting the new
element
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S1ze = size + 1
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Max-PQ Operations
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Insert: Insert at the end of the
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aEs1ze] f k 5 1 3 .
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Max-PQ Operations

Max: Always at index 0.
I 5
Insert: Insert at the end of the
array and then swim. 6 2 4 1

INSERT (a[], k, size) >

aEs1ze] f k 5 1 3 .

S1ze = size + 1

8 7 6 3

SWIM(a, size-1, size)



Max-PQ Operations

the element

Max: Always at index 0. thot must be
removed
I 5
Insert: Insert at the end of the
array and then swim. 6 2 4 1

INSERT(a[], k, size)

alsize] = k
size = size + 1
SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Max-PQ Operations

Max: Always at index 0.

Insert: Insert at the end of the
array and then swim.

INSERT(a[], k, size)

alsize] = k
size = size + 1
SWIM(a, size-1, size)

Del-Max: Swap the last element with

the element at index © and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)

the element
that must be
removed

the element we
are allowed to
remove



Max-PQ Operations

Max: Always at index 0.

3
5
Insert: Insert at the end of the
array and then swim. 4 1
INSERT (a[], k, size)
alsi =
Es1ze] .I< 5 .
s1ze = s1ze + 1
3 8

SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Max-PQ Operations
Max: Always at index 0. swap (" 3

7 5
Insert: Insert at the end of the
array and then swim. 6 2 4 1
INSERT (a[], k, size) e
alsi =
Es1ze] .I< o .
s1ze = s1ze + 1
3 8

SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Max-PQ Operations
Max: Always at index 0. swap (ﬁ .

3 5
Insert: Insert atthe end of the
array and then swim. 6 2 4 1
INSERT (a[], k, size) e
aEs1ze] f k o | .
S1ze = s1ze + 1
7 3 8

SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Max-PQ Operations

Max: Always at index 0. v
swap (/b 6 5
Insert: Insert at the end of the 4
array and then swim. 3 2 4 1
INSERT (a[], k, size) e
alsize] = k o | 3 .

size = size + 1
SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Max-PQ Operations

Max: Always at index 0. v

Insert: Insert at the end of the
array and then swim. 3 2 4 1

INSERT(a[], k, size)

alsize] = k
size = size + 1
SWIM(a, size-1, size)

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)
swap (a[size-1], a[0])

size = size - 1
SINK(a, 0, size)



Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.



Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example
DEL-RANDOM(a[], size)

. . . random
K = random index 1n [0, size-1] -é

: 7
swap (a[k alsi1ze-1
S1ze = si1ze-1 2 6
SINK(a, k, size) ¥ a VAR
2 2 6 6

SWIM(a, k, size) ¥/‘¥



Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example

DEL-RANDOM (a[], size)

random

K = random index 1n [0, size-1]

swap(a[k], a[size-1])
size = size-1

SINK(a, k, size)
SWIM(a, k, size)




Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example

DEL-RANDOM (a[], size)

K = random index 1n [0, size-1]

swap(a[k], a[size-1])

size = size-1 2 T 2

SINK(a, k, size) ¥ a R

SWIM(a, k, size) 2 2 6 $ 6
%/ sink



Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example

DEL-RANDOM (a[], size)

K = random index 1n [0, size-1]

swap(a[k], a[size-1]) T
size = size-1 6 X ® 2
SINK(a, k, size) ¥ a Y O\
SWIM(a, k, size) 6\ ° ? .
v
6 6 ?



Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example

DEL-RANDOM (a[], size)

K = random index 1n [0, size-1]

swap(a[k], a[size-1]) T
size = size-1 6 X ® 2
SINK(a, k, size) ¥ a Y O\
SWIM(a, k, size) ° ° ? ¢
/ .
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Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer. Example

DEL-RANDOM (a[], size)

K = random index 1n [0, size-1]
7

sv\.,ap(a[k]., a[size-1]) o \%
S1ze = si1ze-1 6 . ? 2
SINK(a, k, size) ¥ a SWIM /N
SWIM(a, k, size) gfé ° ¥ @

6 2
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Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap

©O - n-1:
heap.INSERT(a[1])

for 1

for 1 = n-1 —> 0O:
a[i1] = heap.MAX()
heap .DELETE-MAX ()



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap

G insert all the array elements
into a max-heap

©O - n-1:
heap.INSERT(a[1])

for 1

for 1 = n-1 —> 0O:
a[i1] = heap.MAX()
heap .DELETE-MAX ()



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ® - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0O:
9 copy all the elements back

i1 = h . MAX
ali] €ap 0) from the heap to the array
heap .DELETE-MAX () (in order)



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ®© - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
' from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)

Step 1. log,(1) +10g,(2) +1og,(3) + ... +log,(n—1) < log,(n!)



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ®© - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
o from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)

Step 1. log,(1) +10g,(2) +1og,(3) + ... +log,(n—1) < log,(n!)

insert the second insert the last
element into a element into a
heap of size 1 heap of size n-1



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ®© - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
' from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)
Step 1. log,(1) +10g,(2) +1log,(3) + ... +log,(n—1) <log,(n!) = O(nlogn)

Step 2. 2 X (logy(n — 1) +1og,(n —2) +log,(n — 3) + ... +1og,(1))
< 2 X logy(n!)



Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ®© - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
' from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)
Step 1. log,(1) +10g,(2) +1log,(3) + ... +log,(n—1) <log,(n!) = O(nlogn)

Step 2. 2 X (logy(n — 1) +1og,(n —2) +log,(n — 3) + ... +1og,(1))
<2 Xlog,(n!) = O(nlogn)

check the analysis
of the SINK operation!
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HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ® - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
' from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)
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Heapsort: Naive Implementation

HEAP-SORT (a[], size)

heap < An empty max heap
G insert all the array elements
into a max-heap

for 1 ®© - n-1:

heap.INSERT(a[1])

for 1 = n-1 —» 0:
a[i] = heap.MAX() 9 copy all the elements back
' from the heap to the array
heap .DELETE-MAX () (in order)

Running Time. (number of compares in the worst case)
Step 1. log,(1) +10g,(2) +1log,(3) + ... +log,(n—1) <log,(n!) = O(nlogn)

Step 2. 2 X (logy(n — 1) +1og,(n —2) +log,(n — 3) + ... +1og,(1))

<2 Xlog,(n!) = O(nlogn)
é;’ Can we do better?

Total. O(nlogn) Not asymptotically, but we can still
improve the actual running time!



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP (a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, 0, size)

random array size-1



Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) G construct a max-heap in-place
(convert the array to become a heap)
while (size > 1): How ? stay tuned!

swap(a[0], a[size-1])
size = size-1
SINK(a, 0, size)

6 7 6 2 4 4 S 2 S

random array

CONSTRUCT-HEAP () ; T .
¥ a Y N
5 5 4 4
© 1 2 3 4 5 6 71 8 /N
7 6 6 5 5 4 4 2 2 2 2

max-heap size-1



Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP(a, size) 9 construct a max-heap in-place
(change the array to become a heap)

while (size > 1):
swap(a[0], a[size-1]) e repeatedly place the next

size = size-1 maximum in its right position
SINK(a, O, size)

7
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max-heap size-1
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], al[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
7
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CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
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swap(a[0], al[size-1]) 9 repeatedly place the next
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L SINK(a, O, size) )
2
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
2
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
6
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max-heap size-1



Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
6
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): R
swap(a[0], al[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): R
swap(a[0], al[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
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HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
rwh'i'Le (size > 1): h
swap(a[0], a[size-1]) 9 repeatedly place the next
size = size-1 maximum in its right position
L SINK(a, O, size) )
6
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max-heap size-1



Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions
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Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP (a, size) 0 construct a max-heap in-place
(change the array to become a heap)
while (size > 1):
swap(a[0], a[size-1]) e
size = size-1
SINK(a, O, size)

repeatedly place the next
maximum in its right position

repeat until all the elements
are in their correct positions



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, 0, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 - 0O:
SINK(a, 1, size)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)

CONSTRUCT-HEAP(a, size) sink all the

. . non-leaf nodes
while (size > 1):

swap(a[0], a[size-1]) at indices @ tosize/2 - 1
size = size-1
SINK(a, 0, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 —> 0O:
SINK(a, 1, size)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 - 0O:
SINK(a, 1, size) v

Heap Construction Analysis:

Maximum number of swaps: 1 « & number of swaps = tree height

number of nodes



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:
SINK(a, 1, size) v v

Heap Construction Analysis:

Maximum number of swaps: (1 e h) +2(h — 1)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O: l l l l
SINK(a, 1, size)

Heap Construction Analysis:

Maximum number of swaps: (1 e h) +2(h — 1) + 4(h — 2)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:

SINK(a, 1, size) i i i ¢ i ¢ i i

Heap Construction Analysis:

Maximum number of swaps: (1eh)+2(h— 1) +4h-2)+ ... + (% e 1)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:

SINK(a, 1, size) i i i ¢ i ¢ i i

Heap Construction Analysis:

Maximum number of swaps: (1eh)+2(h—1)+4h-2)+ ... + %(1) = 0(n)

tricky sum
(math skipped)



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:

SINK(a, 1, size) i i i ¢ i ¢ i i

Heap Construction Analysis:

Maximum number of swaps: (1eh)+2(h—1)+4h—-2)+ ... + %(1) = O(n)

number of
swaps is linear!



Heapsort: A Better Implementation

HEAP-SORT (a[], size)
CONSTRUCT-HEAP(a, size)

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:

SINK(a, 1, size) i i i ¢ i ¢ i i

Heap Construction Analysis:

Maximum number of swaps: (1eh)+2(h—1)+4h—-2)+ ... + %(1) = O(n)
Maximum number of compares: 2 X number of swaps

check the analysis
of the SINK operation!



Heapsort: A Better Implementation

HEAP-SORT (a[], size) » Think. Why does this heap construction

. & code run in O(n) while inserting all the
CONSTRUCT-HEAP (a, size) elements into a heap takes O(nlog n) time?

while (size > 1):
swap(a[0], a[size-1])
size = size-1
SINK(a, O, size)

CONSTRUCT-HEAP (a, size)

for 1 = size/2 - 1 — 0O:

SINK(a, 1, size) i i i ¢ i ¢ i i

Heap Construction Analysis:

Maximum number of swaps: (1eh)+2(h—1)+4h—-2)+ ... + %(1) = O(n)
Maximum number of compares: 2 X number of swaps

check the analysis
of the SINK operation!
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Heapsort Analysis

Worst Case: O(n) to construct the heap and O(n logn) to heapsort.
Average Case: O(nlogn)
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Best Case: O(n) if all the elements are the same.



Heapsort Analysis

Worst Case: O(n) to construct the heap and O(n logn) to heapsort.
Average Case: O(nlogn)

Best Case: O(n) if all the elements are the same.

[‘5’—?" Why? Trace on a piece of paper to see why!



Heapsort Analysis

Worst Case: O(n) to construct the heap and ®(nlogn) to heapsort.
Average Case: O(nlogn)

Best Case: O(n) if all the elements are the same.

Running Time:

Number of compares: At most ~ 2nlog, n.

~ nlog, n for merge sort and
~ 1.39nlog, n for quicksort (on random data)



Heapsort Analysis

Worst Case: O(n) to construct the heap and ®(nlogn) to heapsort.
Average Case: O(nlogn)

Best Case: O(n) if all the elements are the same.

Running Time:
Number of compares: At most ~ 2nlog, n.

Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

optimizations are possible
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Running Time:
Number of compares: At most ~ 2nlog, n.

Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

Memory. Heapsort is an in-place sorting algorithm.



Heapsort Analysis

Worst Case: O(n) to construct the heap and ®(nlogn) to heapsort.
Average Case: O(nlogn)

Best Case: O(n) if all the elements are the same.

Running Time:
Number of compares: At most ~ 2nlog, n.

Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

Memory. Heapsort is an in-place sorting algorithm.

Bottom line.

O(nlogn) in the worst case and also sorts in-place at the same time.

Practically, not frequently used because it is slower than merge sort and quicksort.
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Introsort

From Wikipedia, the free encyclopedia

Introsort or introspective sort is a

Introsort
hybrid sorting algorithm that provides | _
both fast average performance and Class Sorting algorithm
Data structure Array

(asymptotically) optimal worst-case

performance. It begins with quicksort, it | ' orst-case performance O(nlog n)

switches to heapsort when the

Average performance O(nlog n)

recursion depth exceeds a level based

on (the logarithm of) the number of elements being sorted and it switches to insertion

sort when the number of elements is below some threshold. This combines the good

parts of the three algorithms, with practical performance comparable to quicksort on
typical data sets and worst-case O(n log n) runtime due to the heap sort. Since the
three algorithms it uses are comparison sorts, it is also a comparison sort.

@ Used for the C++ STL sort() function



Sorting algorithms: summary

inplace?
B -
B -
B
s
N -
B -
e
[

Y2nlog,n

nlog, n

3n

average

1 n?

Y n?

nlog,n

nlog,n

2nlnn

2nlnn

2nlog,n

nlog,n

nlog,n

nlog,n

15 n?

15 n?

2nlog,n

nlog,n

n exchanges

use for small n
or partially ordered

®(n log n) guarantee,
stable

improves mergesort
when pre-existing order

O(n log n) probabilistic guarantee;
fastest in practice

improves quicksort
when duplicate keys

®O(n log n) guarantee,
in-place

holy sorting grail

number of compares to sort an array of n elements

By Kevin Wayne



