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Selection Sort?

scan this portion of  
the array linearly.

  for i=n-1    1: 
      max = FIND-MAX(array, i, 0) 
      swap(array[i], array[max]) 

SELECTION-SORT(array)



Selection Sort?

scan this portion of  
the array linearly.

  for i=n-1    1: 
      max = FIND-MAX(array, i, 0) 
      swap(array[i], array[max]) 

SELECTION-SORT(array)

  prepare(array) 

  for i=n-1    1: 
      max = FIND-MAX(array, i, 0) 
      insert array[max] into array[i]) 

HEAP-SORT(array)

find the maximum 
element quickly!

rearrange the elements so 
that finding the max is easy!



Selection Sort?

scan this portion of  
the array linearly.

  for i=n-1    1: 
      max = FIND-MAX(array, i, 0) 
      swap(array[i], array[max]) 

SELECTION-SORT(array)

  prepare(array) 

  for i=n-1    1: 
      max = FIND-MAX(array, i, 0) 
      insert array[max] into array[i]) 

HEAP-SORT(array)

find the maximum 
element quickly!

rearrange the elements so 
that finding the max is easy!

Roadmap. 
1. Review Max-Priority !eues and Heaps. 
2. Learn about Heapsort.



Abstract Data Type (ADT): A specification of the possible operations on a set of values 
(independent of the implementation). 

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item  
most-recently added

Remove the item  
least-recently added

Goal

Max-Priority Queue (Abstract Data Type)
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Abstract Data Type (ADT): A specification of the possible operations on a set of values 
(independent of the implementation). 

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item  
most-recently added

Remove the item  
least-recently added

Goal possible implementations

Singly-Linked List 
Doubly-Linked List 

Array-List

Set INSERT, DELETE, 
CONTAINS

Binary Search Tree 
Hash Table 

Linked-List, Array-List

Search in a group of 
unique items
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Abstract Data Type (ADT): A specification of the possible operations on a set of values 
(independent of the implementation). 

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item  
most-recently added

Remove the item  
least-recently added

Goal possible implementations

Singly-Linked List 
Doubly-Linked List 

Array-List

Set INSERT, DELETE, 
CONTAINS

Binary Search Tree 
Hash Table 

Linked-List, Array-List

Search in a group of 
unique items

Max-PQ INSERT, MAX, DEL-MAX ?Remove the  
largest item

Max-Priority Queue (Abstract Data Type)



Unordered List: 

1 9 4 3 8 2

Max-Priority Queue (Abstract Data Type)



Unordered List:  

• insert:    (insert to the end of the list; order does not ma!er) 

• max:       (linearly search for the max) 

• delMax:    (linearly search for the max and delete it) 

Θ(1)
Θ(n)
Θ(n)

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)
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Unordered List:  

• insert:    (insert to the end of the list; order does not ma!er) 

• max:       (linearly search for the max) 

• delMax:    (linearly search for the max and delete it) 

Ordered Array: 

Θ(1)
Θ(n)
Θ(n)

1   2    3    3    3    4    5    6    6    7    9

1 9 4 3 8 2
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Unordered List:  

• insert:    (insert to the end of the list; order does not ma!er) 

• max:       (linearly search for the max) 

• delMax:    (linearly search for the max and delete it) 

Ordered Array:  

• insert:    (items need to be shi"ed based on where the) 

• max:       (max is always the last item in the array) 

• delMax:    (just decrement the size) 

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1   2    3    3    3    4    5    6    6    7    9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)
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Unordered List:  

• insert:    (insert to the end of the list; order does not ma!er) 

• max:       (linearly search for the max) 

• delMax:    (linearly search for the max and delete it) 

Ordered Array:  

• insert:    (items need to be shi"ed based on where the) 

• max:       (max is always the last item in the array) 

• delMax:    (just decrement the size) 

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1   2    3    3    3    4    5    6    6    7    9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

Binary Heap:  

• insert:     (how?) 

• max:             (how?) 

• delMax:    (how?)

O(log n)
Θ(1)
O(log n)
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Unordered List:  

• insert:    (insert to the end of the list; order does not ma!er) 

• max:       (linearly search for the max) 

• delMax:    (linearly search for the max and delete it) 

Ordered Array:  

• insert:    (items need to be shi"ed based on where the) 

• max:       (max is always the last item in the array) 

• delMax:    (just decrement the size) 

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1   2    3    3    3    4    5    6    6    7    9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

Binary Heap:  

• insert:     (how?) 

• max:             (how?) 

• delMax:    (how?)

O(log n)
Θ(1)
O(log n)

Review!
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Binary Tree: Empty or a node with links to left and right binary trees.

Binary Trees



Binary Tree: Empty or a node with links to left and right binary trees. 

Complete Binary Tree:  

• All levels are full (except possibly the last level). 

• Last level is filled left-to-right.

not complete complete

Binary Trees



Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees. 

Complete Binary Tree:  

• All levels are full (except possibly the last level). 

• Last level is filled left-to-right. 

Properties: 

• Height if there are n nodes:   h = ⌊log2 n⌋

  h = ⌊log2 11⌋ = ⌊3.459⌋ = 3



Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees. 

Complete Binary Tree:  

• All levels are full (except possibly the last level). 

• Last level is filled left-to-right. 

Properties: 

• Height if there are n nodes:   

• #ere are  leaves. 

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋

⌊ 11 + 1
2 ⌋ = 6



Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees. 

Complete Binary Tree:  

• All levels are full (except possibly the last level). 

• Last level is filled left-to-right. 

Properties: 

• Height if there are n nodes:   

• #ere are  leaves. 

• All leaves are at level  or . 

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋
h h − 1

L0

L1

L2

L3



Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees. 

Complete Binary Tree:  

• All levels are full (except possibly the last level). 

• Last level is filled left-to-right. 

Properties: 

• Height if there are n nodes:   

• #ere are  leaves. 

• All leaves are at level  or . 

• Number of nodes at internal level   

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋
h h − 1

i = 2i

20

21

22



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered) 

• Structure: Must be a complete binary tree. 

• Order:  Every node is not less than its children.



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered) 

• Structure: Must be a complete binary tree. 

• Order:  Every node is not less than its children.
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2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5
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4 1 4 1
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5

5
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4 1

54 1



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered) 

• Structure: Must be a complete binary tree. 

• Order:  Every node is not less than its children. 

Examples: 

Non-Examples:

2

2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5

6

7

5

4 1 4 1

5

5

5

5

4 1

54 1

order property violated structure property violated



Binary Heaps (Tree Representation)

Binary Heap: (max-ordered) 

• Structure: Must be a complete binary tree. 

• Order:  Every node is not less than its children. 

Examples: 

Non-Examples:

2

2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5

6

7

5

4 1 4 1

5

5

5

5

4 1

54 1

order property violated structure property violated

max is always  
at the root



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7      6       6       5       5       4       4       2      2 7

6

5

2 2

4 4

6

5

array has the tree 
nodes in level-order

0   1    2    3    4     5    6     7    8 



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7      6       6       5       5       4       4       2      2 7

6

5

2 2

4 4

6

5

array has the tree 
nodes in level-order

0   1    2    3    4     5    6     7    8 

!ree simple functions.

  return 2*i + 2

RIGHT(i)

  return 2*i + 1

LEFT(i)

  return (i-1)/2

PARENT(i)



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7      6       6       5       5       4       4       2      2 
7

6 6

0   1    2    3    4     5    6     7    8 

!ree simple functions.

le" child is at index 
2*0 + 1 = 1

Right child is at index 
2*0 + 2 = 2

Parent of the node at 0 
is negative (no parent)

  return 2*i + 2

RIGHT(i)

  return 2*i + 1

LEFT(i)

  return (i-1)/2

PARENT(i)



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7      6       6       5       5       4       4       2      2 
0   1    2    3    4     5    6     7    8 

7
6 6

5 5

!ree simple functions.

le" child is at index 
2*1 + 1 = 3

Right child is at index 
2*1 + 2 = 4

Parent is at index 
(1-1)/2 = 0

  return 2*i + 2

RIGHT(i)

  return 2*i + 1

LEFT(i)

  return (i-1)/2

PARENT(i)



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7      6       6       5       5       4       4       2      2 
7

6 6

5 5
4 4

0   1    2    3    4     5    6     7    8 

!ree simple functions.

le" child is at index 
2*2 + 1 = 5

Right child is at index 
2*2 + 2 = 6

Parent is at index 
(2-1)/2 = 0

  return 2*i + 2

RIGHT(i)

  return 2*i + 1

LEFT(i)

  return (i-1)/2

PARENT(i)



Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7      6       6       5       5       4       4       2      2 
0   1    2    3    4    5    6    7   8 

2 2

7
6 6

5 5
4 4

!ree simple functions.

le" child is at index 
2*3 + 1 = 7

Right child is at index 
2*3 + 2 = 8

Parent is at index 
(3-1)/2 = 1

  return 2*i + 2

RIGHT(i)

  return 2*i + 1

LEFT(i)

  return (i-1)/2

PARENT(i)
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4

2 7

4 4

5

3

swap

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.

3

Fixing a Locally Broken Heap
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4 4
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Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.
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2 3

4 4

5

4 3

Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.
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Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.



7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.
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6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

also called SiftUp()  
(not shiftup) on wikipedia

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.
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2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

the element 
is not the root

the element is 
greater than its 

parent

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.

 while (i>0  and  a[i] > a[PARENT(i)]): 



7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

swap values with the parent 
and move to the parent for 
the next iteration

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.

 while (i>0  and  a[i] > a[PARENT(i)]): 

     swap(a[i], a[PARENT(i)]) 

     i = PARENT(i)



7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

 while (i>0  and  a[i] > a[PARENT(i)]): 

     swap(a[i], a[PARENT(i)]) 

     i = PARENT(i)

SWIM(a[], i, size)

1. If an item becomes larger than its parent, push 
it up the tree to maintain the heap order property.

Running Time.  
1 swap and 1 compare per iteration. 
The number of iterations is bounded  
by the tree height.

O(log n)



Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.

2

6

4

2 3

4 4

5

4



Fixing a Locally Broken Heap

2

6

4

2 3

4 4

5

4

swap

can't swap with 5 because it 
is less than the other child (6)

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

6

2

4

2 3

4 4

5

4

swap

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

6

4

4

2 3

4 4

5

2

swap

can't swap with 2 because it 
is less than the other child (3)

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



SINK(a[], i, size)

Fixing a Locally Broken Heap

also called:  
• SIFTDOWN      on wikipedia 
• MAX-HEAPIFY   in our text-book 
• FIX-HEAP      in the slides of the other sections!

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

  while (LEFT(i) < size):

SINK(a[], i, size)

while there is  
a le" child

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

  while (LEFT(i) < size):

SINK(a[], i, size)

pick between the left and 
right child depending on 
which one is the largest.

6

4

4

2 2

4 4

5

3

k = LEFT(i) 

if (RIGHT(i) < size):  
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

  while (LEFT(i) < size):

SINK(a[], i, size)

swap with and move to 
the larger child or stop 
if no swap is necessary

6

4

4

2 2

4 4

5

3

     if (a[i] < a[k]): 
        swap(a[i], a[k]) 
        i = k 
     else: break

k = LEFT(i) 

if (RIGHT(i) < size):  
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.



Fixing a Locally Broken Heap

  while (LEFT(i) < size):

SINK(a[], i, size)

6

4

4

2 2

4 4

5

3

     if (a[i] < a[k]): 
        swap(a[i], a[k]) 
        i = k 
     else: break

k = LEFT(i) 

if (RIGHT(i) < size):  
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push 
it down the tree to maintain the heap order property.

Running Time.  
At most 1 swap and 2 
comparisons per iteration 
The number of iterations is 
bounded by the tree height.

O(log n)



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

7

6

4 1

5

7      6       5       3       2       4       1 
0   1    2    3    4    5    6  

3 2

max is 
at the root



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

0   1    2    3    4    5    6   7  

7

6

4 1

5

3 2

7      6       5       3       2       4       1     

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

0   1    2    3    4    5    6   7  

8

7

6

4 1

5

3 2

7      6       5       3       2       4       1     8 

a complete tree  
must be filled  
le" to right

adding to the last index is 
equivalent to filling the last 

level le"-to-right

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

0   1    2    3    4    5    6   7  

8

7

6

4 1

5

3 2

7      6       5       3       2       4       1     8 

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

fix the heap a"er  
inserting the new  
element

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

3

7

6

4 1

5

8 2

0   1    2    3    4    5    6   7  
7      6       5       8       2       4       1     3 

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

fix the heap a"er  
inserting the new  
element

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)



Max-PQ Operations

3

7

8

4 1

5

6 2

0   1    2    3    4    5    6   7  
7      8       5       6       2       4       1     3 

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

fix the heap a"er  
inserting the new  
element

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

3

8

7

4 1

5

2

0   1    2    3    4    5    6   7  
8      7       5       6       2       4       1     3 

6

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

fix the heap a"er  
inserting the new  
element

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

Max:         Always at index 0. 
                 Θ(1)

3

8

7

4 1

5

2

0   1    2    3    4    5    6   7  
8      7       5       6       2       4       1     3 

6

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

INSERT(a[], k, size)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

3INSERT(a[], k, size)

8

7

4 1

5

2

0   1    2    3    4    5    6   7  
8      7       5       6       2       4       1     3 

6

Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

: Sink at most to the last level.O(log n)

Max:         Always at index 0. 
                 Θ(1)

the element 
that must be 

removed



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

3INSERT(a[], k, size)

8

7

4 1

5

2

0   1    2    3    4    5    6   7  
8      7       5       6       2       4       1     3 

6

Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

: Sink at most to the last level.O(log n)

the element 
that must be 

removed
the element we 
are allowed to 

remove

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

8INSERT(a[], k, size)

3

7

4 1

5

2

0   1    2    3    4    5    6   7  
3      7       5       6       2       4       1     8 

6

Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

: Sink at most to the last level.O(log n)

swap

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

8INSERT(a[], k, size)

3

7

4 1

5

2

0   1    2    3    4    5    6   7  
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Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

8INSERT(a[], k, size)
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Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

8INSERT(a[], k, size)

7

6

4 1

5

2

0   1    2    3    4    5    6   7  
7      6       5       3       2       4       1     8 

3

Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

Max:         Always at index 0. 
                 Θ(1)



Max-PQ Operations

  a[size] = k 
  size = size + 1  
  SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert:   Insert at the end of the  
                 array and then swim.

8INSERT(a[], k, size)
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3

Del-Max: Swap the last element with  
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

  swap(a[size-1], a[0]) 
  size = size - 1  
  SINK(a, 0, size)

Max:         Always at index 0. 
                 Θ(1)



Quiz # 1

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue.



Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 
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Example 1.

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)
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Example 1.

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)
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Example 1.

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)
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Example 2.

random

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)
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Example 2.

swap

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)
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Example 2.

Implement a max-PQ that supports the following operation:  

del-Random: Removes a random element from the priority queue. 

Answer. 

Quiz # 1

DEL-RANDOM(a[], size)

  k = random index in [0, size-1] 
  swap(a[k], a[size-1]) 
  size = size-1 
  SINK(a, k, size) 
  SWIM(a, k, size)



Heapsort



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

insert all the array elements 
into a max-heap

1
  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1
  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.  log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!)

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.  log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!)

insert the second 
element into a 
heap of size 1

insert the last 
element into a 

heap of size n -1

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.   

• Step 2.   

           

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!)

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.   

• Step 2.   

           

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

check the analysis  
of the SINK operation!

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.   

• Step 2.   

            

• Total.  

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

O(n log n)

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back 
from the heap to the array 
(in order)

insert all the array elements 
into a max-heap

2

1

Running Time. (number of compares in the worst case) 

• Step 1.   

• Step 2.   

            

• Total.  

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

O(n log n)
Can we do be!er?  

Not asymptotically, but we can still 
improve the actual running time!

  heap  An empty max heap 

  for i = 0  n-1: 
     heap.INSERT(a[i]) 

  for i = n-1  0: 
     a[i] = heap.MAX() 
     heap.DELETE-MAX()

←
→

→



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

6      7       6       2       4       4       5       2       5 
0   1    2    3    4    5    6    7    8 

size-1random array



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

construct a max-heap in-place 
(convert the array to become a heap)

How ? stay tuned!

6      7       6       2       4       4       5       2       5 
0   1    2    3    4    5    6    7    8 

size-1
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size-1

random array

max-heap

 CONSTRUCT-HEAP()
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

6      5       6       2       5       4       4       2       7 
size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

6      5       2       2       5       4       4       6       7 
size-1max-heap
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions

0   1    2    3    4    5    6    7    8 



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions

size-1
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next 
maximum in its right position

construct a max-heap in-place 
(change the array to become a heap)

2

1  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)
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repeat until all the elements 
are in their correct positions
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

at indices 0 to size/2 - 1

sink all the  
non-leaf nodes



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps: 1 ∙ h number of swaps = tree height

number of nodes
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Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)
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  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps: (1 ∙ h) + 2(h − 1)
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for i = size/2 - 1  0: 
   SINK(a, i, size)

→
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  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
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HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + ( n
4 ∙ 1)



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1) = O(n)

tricky sum 
(math skipped)



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

number of  
swaps is linear!

= O(n)



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps:  

• Maximum number of compares: number of swaps

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

2 ×
= O(n)

check the analysis  
of the SINK operation!



HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1  0: 
   SINK(a, i, size)

→

  CONSTRUCT-HEAP(a, size) 

  while (size > 1):  
     swap(a[0], a[size-1]) 
     size = size-1  
     SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis: 

• Maximum number of swaps:  

• Maximum number of compares: number of swaps

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

2 ×
= O(n)

check the analysis  
of the SINK operation!

Think. Why does this heap construction 
code run in  while inserting all the 
elements into a heap takes  time?

O(n)
O(n log n)



Optional

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

= 20(1 ∙ h) + 21(h − 1) + 22(h − 2) + … + 2h−1

n

∑
i=0

i × 2i = (n − 1)2n+1 + 2

=
h−1

∑
i=0

2i(h − i) = (
h−1

∑
i=0

2ih) − (
h−1

∑
i=0

i2i) = h(2h − 1) − (
h−1

∑
i=0

i2i)

= h(2h − 1) − ((h − 2)2h + 2)

= h(2h − 1) − (h2h − 2h+1 + 2)

= h2h − h − h2h + 2h+1 − 2

= 2h+1 − 2

= O(n)

⟵ h ∼ log2 n



Heapsort Analysis

Worst Case:        to construct the heap and  to heapsort. 
Average Case:    

Θ(n) Θ(n log n)
Θ(n log n)
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Best Case:           if all the elements are the same.
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Heapsort Analysis

Worst Case:        to construct the heap and  to heapsort. 
Average Case:     

Best Case:           if all the elements are the same.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

Why? Trace on a piece of paper to see why!



Heapsort Analysis

 for merge sort and  
 for quicksort (on random data)

∼ n log2 n
∼ 1.39n log2 n

Worst Case:        to construct the heap and  to heapsort. 
Average Case:     

Best Case:           if all the elements are the same. 

Running Time: 

• Number of compares:  At most . 

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n



Heapsort Analysis

Worst Case:        to construct the heap and  to heapsort. 
Average Case:     

Best Case:           if all the elements are the same. 

Running Time: 

• Number of compares:  At most . 

• Actual running time:   Slower than merge sort and quicksort because  
of the higher number of comparisons and the the poor use of cache. 

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

optimizations are possible
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Running Time: 

• Number of compares:  At most . 
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Memory. Heapsort is an in-place sorting algorithm.
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Heapsort Analysis

Worst Case:        to construct the heap and  to heapsort. 
Average Case:     

Best Case:           if all the elements are the same. 

Running Time: 

• Number of compares:  At most . 

• Actual running time:   Slower than merge sort and quicksort because  
of the higher number of comparisons and the the poor use of cache. 

Memory. Heapsort is an in-place sorting algorithm. 

Bo"om line.  

•  in the worst case and also sorts in-place at the same time. 
(Merge Sort is not in-place and !icksort has a theoretical worst case of ) 

• Practically, not frequently used because it is slower than merge sort and quicksort.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

Θ(n log n)
Θ(n2)



Used for the C++ STL sort() function



By Kevin Wayne


