
Design & Analysis
 Algorithms

Heapsort

CS11313 - Spring 2022

of

Ibrahim Albluwi

Selection Sort?

scan this portion of
the array linearly.

 for i=n-1 1:
 max = FIND-MAX(array, i, 0)
 swap(array[i], array[max])

SELECTION-SORT(array)

Selection Sort?

scan this portion of
the array linearly.

 for i=n-1 1:
 max = FIND-MAX(array, i, 0)
 swap(array[i], array[max])

SELECTION-SORT(array)

 prepare(array)

 for i=n-1 1:
 max = FIND-MAX(array, i, 0)
 insert array[max] into array[i])

HEAP-SORT(array)

find the maximum
element quickly!

rearrange the elements so
that finding the max is easy!

Selection Sort?

scan this portion of
the array linearly.

 for i=n-1 1:
 max = FIND-MAX(array, i, 0)
 swap(array[i], array[max])

SELECTION-SORT(array)

 prepare(array)

 for i=n-1 1:
 max = FIND-MAX(array, i, 0)
 insert array[max] into array[i])

HEAP-SORT(array)

find the maximum
element quickly!

rearrange the elements so
that finding the max is easy!

Roadmap.
1. Review Max-Priority !eues and Heaps.
2. Learn about Heapsort.

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item
most-recently added

Remove the item
least-recently added

Goal

Max-Priority Queue (Abstract Data Type)

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item
most-recently added

Remove the item
least-recently added

Goal possible implementations

Singly-Linked List
Doubly-Linked List

Array-List

Max-Priority Queue (Abstract Data Type)

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item
most-recently added

Remove the item
least-recently added

Goal possible implementations

Singly-Linked List
Doubly-Linked List

Array-List

Set INSERT, DELETE,
CONTAINS

Binary Search Tree
Hash Table

Linked-List, Array-List

Search in a group of
unique items

Max-Priority Queue (Abstract Data Type)

Abstract Data Type (ADT): A specification of the possible operations on a set of values
(independent of the implementation).

Examples.

ADT operations

Stack PUSH, POP

Queue ENQUEUE, DEQUEUE

Remove the item
most-recently added

Remove the item
least-recently added

Goal possible implementations

Singly-Linked List
Doubly-Linked List

Array-List

Set INSERT, DELETE,
CONTAINS

Binary Search Tree
Hash Table

Linked-List, Array-List

Search in a group of
unique items

Max-PQ INSERT, MAX, DEL-MAX ?Remove the
largest item

Max-Priority Queue (Abstract Data Type)

Unordered List:

1 9 4 3 8 2

Max-Priority Queue (Abstract Data Type)

Unordered List:

• insert: (insert to the end of the list; order does not ma!er)

• max: (linearly search for the max)

• delMax: (linearly search for the max and delete it)

Θ(1)
Θ(n)
Θ(n)

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

8

Unordered List:

• insert: (insert to the end of the list; order does not ma!er)

• max: (linearly search for the max)

• delMax: (linearly search for the max and delete it)

Ordered Array:

Θ(1)
Θ(n)
Θ(n)

1 2 3 3 3 4 5 6 6 7 9

1 9 4 3 8 2

Max-Priority Queue (Abstract Data Type)

Unordered List:

• insert: (insert to the end of the list; order does not ma!er)

• max: (linearly search for the max)

• delMax: (linearly search for the max and delete it)

Ordered Array:

• insert: (items need to be shi"ed based on where the)

• max: (max is always the last item in the array)

• delMax: (just decrement the size)

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1 2 3 3 3 4 5 6 6 7 9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

8

Unordered List:

• insert: (insert to the end of the list; order does not ma!er)

• max: (linearly search for the max)

• delMax: (linearly search for the max and delete it)

Ordered Array:

• insert: (items need to be shi"ed based on where the)

• max: (max is always the last item in the array)

• delMax: (just decrement the size)

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1 2 3 3 3 4 5 6 6 7 9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

Binary Heap:

• insert: (how?)

• max: (how?)

• delMax: (how?)

O(log n)
Θ(1)
O(log n)

8

Unordered List:

• insert: (insert to the end of the list; order does not ma!er)

• max: (linearly search for the max)

• delMax: (linearly search for the max and delete it)

Ordered Array:

• insert: (items need to be shi"ed based on where the)

• max: (max is always the last item in the array)

• delMax: (just decrement the size)

Θ(1)
Θ(n)
Θ(n)

O(n)
Θ(1)
Θ(1)

1 2 3 3 3 4 5 6 6 7 9

1 9 4 3 2

Max-Priority Queue (Abstract Data Type)

Binary Heap:

• insert: (how?)

• max: (how?)

• delMax: (how?)

O(log n)
Θ(1)
O(log n)

Review!

8

Binary Tree: Empty or a node with links to left and right binary trees.

Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees.

Complete Binary Tree:

• All levels are full (except possibly the last level).

• Last level is filled left-to-right.

not complete complete

Binary Trees

Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees.

Complete Binary Tree:

• All levels are full (except possibly the last level).

• Last level is filled left-to-right.

Properties:

• Height if there are n nodes: h = ⌊log2 n⌋

 h = ⌊log2 11⌋ = ⌊3.459⌋ = 3

Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees.

Complete Binary Tree:

• All levels are full (except possibly the last level).

• Last level is filled left-to-right.

Properties:

• Height if there are n nodes:

• #ere are leaves.

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋

⌊ 11 + 1
2 ⌋ = 6

Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees.

Complete Binary Tree:

• All levels are full (except possibly the last level).

• Last level is filled left-to-right.

Properties:

• Height if there are n nodes:

• #ere are leaves.

• All leaves are at level or .

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋
h h − 1

L0

L1

L2

L3

Binary Trees

Binary Tree: Empty or a node with links to left and right binary trees.

Complete Binary Tree:

• All levels are full (except possibly the last level).

• Last level is filled left-to-right.

Properties:

• Height if there are n nodes:

• #ere are leaves.

• All leaves are at level or .

• Number of nodes at internal level

h = ⌊log2 n⌋
⌊ n + 1

2 ⌋
h h − 1

i = 2i

20

21

22

Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)

• Structure: Must be a complete binary tree.

• Order: Every node is not less than its children.

Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)

• Structure: Must be a complete binary tree.

• Order: Every node is not less than its children.

2

2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5

6

7

5

4 1 4 1

5

5

5

5

4 1

54 1

Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)

• Structure: Must be a complete binary tree.

• Order: Every node is not less than its children.

Examples:

Non-Examples:

2

2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5

6

7

5

4 1 4 1

5

5

5

5

4 1

54 1

order property violated structure property violated

Binary Heaps (Tree Representation)

Binary Heap: (max-ordered)

• Structure: Must be a complete binary tree.

• Order: Every node is not less than its children.

Examples:

Non-Examples:

2

2 2

2 2 2 2

7

6 6

5 2 1 5

4

6

4 1

5

6

7

5

4 1 4 1

5

5

5

5

4 1

54 1

order property violated structure property violated

max is always
at the root

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7 6 6 5 5 4 4 2 2 7

6

5

2 2

4 4

6

5

array has the tree
nodes in level-order

0 1 2 3 4 5 6 7 8

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7 6 6 5 5 4 4 2 2 7

6

5

2 2

4 4

6

5

array has the tree
nodes in level-order

0 1 2 3 4 5 6 7 8

!ree simple functions.

 return 2*i + 2

RIGHT(i)

 return 2*i + 1

LEFT(i)

 return (i-1)/2

PARENT(i)

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7 6 6 5 5 4 4 2 2
7

6 6

0 1 2 3 4 5 6 7 8

!ree simple functions.

le" child is at index
2*0 + 1 = 1

Right child is at index
2*0 + 2 = 2

Parent of the node at 0
is negative (no parent)

 return 2*i + 2

RIGHT(i)

 return 2*i + 1

LEFT(i)

 return (i-1)/2

PARENT(i)

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7 6 6 5 5 4 4 2 2
0 1 2 3 4 5 6 7 8

7
6 6

5 5

!ree simple functions.

le" child is at index
2*1 + 1 = 3

Right child is at index
2*1 + 2 = 4

Parent is at index
(1-1)/2 = 0

 return 2*i + 2

RIGHT(i)

 return 2*i + 1

LEFT(i)

 return (i-1)/2

PARENT(i)

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7 6 6 5 5 4 4 2 2
7

6 6

5 5
4 4

0 1 2 3 4 5 6 7 8

!ree simple functions.

le" child is at index
2*2 + 1 = 5

Right child is at index
2*2 + 2 = 6

Parent is at index
(2-1)/2 = 0

 return 2*i + 2

RIGHT(i)

 return 2*i + 1

LEFT(i)

 return (i-1)/2

PARENT(i)

Binary Heap: (max-ordered)

Binary Heaps (Array Representation)

7

6

5

2 2

4 4

6

5

7 6 6 5 5 4 4 2 2
0 1 2 3 4 5 6 7 8

2 2

7
6 6

5 5
4 4

!ree simple functions.

le" child is at index
2*3 + 1 = 7

Right child is at index
2*3 + 2 = 8

Parent is at index
(3-1)/2 = 1

 return 2*i + 2

RIGHT(i)

 return 2*i + 1

LEFT(i)

 return (i-1)/2

PARENT(i)

6

4

2 7

4 4

5

3

swap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

3

Fixing a Locally Broken Heap

6

4

2 3

4 4

5

7 3

Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

6

7

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

swap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

also called SiftUp()
(not shiftup) on wikipedia

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

the element
is not the root

the element is
greater than its

parent

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

 while (i>0 and a[i] > a[PARENT(i)]):

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

SWIM(a[], i, size)

swap values with the parent
and move to the parent for
the next iteration

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

 while (i>0 and a[i] > a[PARENT(i)]):

 swap(a[i], a[PARENT(i)])

 i = PARENT(i)

7

6

2 3

4 4

5

4 3

Fixing a Locally Broken Heap

 while (i>0 and a[i] > a[PARENT(i)]):

 swap(a[i], a[PARENT(i)])

 i = PARENT(i)

SWIM(a[], i, size)

1. If an item becomes larger than its parent, push
it up the tree to maintain the heap order property.

Running Time.
1 swap and 1 compare per iteration.
The number of iterations is bounded
by the tree height.

O(log n)

Fixing a Locally Broken Heap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

2

6

4

2 3

4 4

5

4

Fixing a Locally Broken Heap

2

6

4

2 3

4 4

5

4

swap

can't swap with 5 because it
is less than the other child (6)

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

6

2

4

2 3

4 4

5

4

swap

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

6

4

4

2 3

4 4

5

2

swap

can't swap with 2 because it
is less than the other child (3)

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

SINK(a[], i, size)

Fixing a Locally Broken Heap

also called:
• SIFTDOWN on wikipedia
• MAX-HEAPIFY in our text-book
• FIX-HEAP in the slides of the other sections!

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

 while (LEFT(i) < size):

SINK(a[], i, size)

while there is
a le" child

6

4

4

2 2

4 4

5

3

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

 while (LEFT(i) < size):

SINK(a[], i, size)

pick between the left and
right child depending on
which one is the largest.

6

4

4

2 2

4 4

5

3

k = LEFT(i)

if (RIGHT(i) < size):
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

 while (LEFT(i) < size):

SINK(a[], i, size)

swap with and move to
the larger child or stop
if no swap is necessary

6

4

4

2 2

4 4

5

3

 if (a[i] < a[k]):
 swap(a[i], a[k])
 i = k
 else: break

k = LEFT(i)

if (RIGHT(i) < size):
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Fixing a Locally Broken Heap

 while (LEFT(i) < size):

SINK(a[], i, size)

6

4

4

2 2

4 4

5

3

 if (a[i] < a[k]):
 swap(a[i], a[k])
 i = k
 else: break

k = LEFT(i)

if (RIGHT(i) < size):
 if (a[k] < a[RIGHT(i)]): k = RIGHT(i)

2. If an item becomes less than one of its children, push
it down the tree to maintain the heap order property.

Running Time.
At most 1 swap and 2
comparisons per iteration
The number of iterations is
bounded by the tree height.

O(log n)

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

7

6

4 1

5

7 6 5 3 2 4 1
0 1 2 3 4 5 6

3 2

max is
at the root

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

0 1 2 3 4 5 6 7

7

6

4 1

5

3 2

7 6 5 3 2 4 1

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

0 1 2 3 4 5 6 7

8

7

6

4 1

5

3 2

7 6 5 3 2 4 1 8

a complete tree
must be filled
le" to right

adding to the last index is
equivalent to filling the last

level le"-to-right

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

0 1 2 3 4 5 6 7

8

7

6

4 1

5

3 2

7 6 5 3 2 4 1 8

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

fix the heap a"er
inserting the new
element

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

3

7

6

4 1

5

8 2

0 1 2 3 4 5 6 7
7 6 5 8 2 4 1 3

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

fix the heap a"er
inserting the new
element

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max-PQ Operations

3

7

8

4 1

5

6 2

0 1 2 3 4 5 6 7
7 8 5 6 2 4 1 3

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

fix the heap a"er
inserting the new
element

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

3

8

7

4 1

5

2

0 1 2 3 4 5 6 7
8 7 5 6 2 4 1 3

6

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

fix the heap a"er
inserting the new
element

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

Max: Always at index 0.
 Θ(1)

3

8

7

4 1

5

2

0 1 2 3 4 5 6 7
8 7 5 6 2 4 1 3

6

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

INSERT(a[], k, size)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

3INSERT(a[], k, size)

8

7

4 1

5

2

0 1 2 3 4 5 6 7
8 7 5 6 2 4 1 3

6

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

: Sink at most to the last level.O(log n)

Max: Always at index 0.
 Θ(1)

the element
that must be

removed

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

3INSERT(a[], k, size)

8

7

4 1

5

2

0 1 2 3 4 5 6 7
8 7 5 6 2 4 1 3

6

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

: Sink at most to the last level.O(log n)

the element
that must be

removed
the element we
are allowed to

remove

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

8INSERT(a[], k, size)

3

7

4 1

5

2

0 1 2 3 4 5 6 7
3 7 5 6 2 4 1 8

6

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

: Sink at most to the last level.O(log n)

swap

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

8INSERT(a[], k, size)

3

7

4 1

5

2

0 1 2 3 4 5 6 7
3 7 5 6 2 4 1 8

6

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

8INSERT(a[], k, size)

7

3

4 1

5

2

0 1 2 3 4 5 6 7
7 3 5 6 2 4 1 8

6

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

8INSERT(a[], k, size)

7

6

4 1

5

2

0 1 2 3 4 5 6 7
7 6 5 3 2 4 1 8

3

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

swap

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

Max: Always at index 0.
 Θ(1)

Max-PQ Operations

 a[size] = k
 size = size + 1
 SWIM(a, size-1, size)

: Swim at most to the root.O(log n)

Insert: Insert at the end of the
 array and then swim.

8INSERT(a[], k, size)

7

6

4 1

5

2

0 1 2 3 4 5 6 7
7 6 5 3 2 4 1 8

3

Del-Max: Swap the last element with
the element at index 0 and then sink.

DEL-MAX(a[], size)

: Sink at most to the last level.O(log n)

 swap(a[size-1], a[0])
 size = size - 1
 SINK(a, 0, size)

Max: Always at index 0.
 Θ(1)

Quiz # 1

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

7

2

2

2 2

6 6

6

2

random

Example 1.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

7

2

2

2 2

6 6

6

2

random

swap

Example 1.

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

7

2

2

2 6

6 6

2

2

sink

Example 1.

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

7

6

6

6 6

2 2

2

6

Example 2.

random

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

7

6

6

6 6

2 2

2

6

random

Example 2.

swap

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

7

6

6

6 2

6 2

2

6

swim

Example 2.

Implement a max-PQ that supports the following operation:

del-Random: Removes a random element from the priority queue.

Answer.

Quiz # 1

DEL-RANDOM(a[], size)

 k = random index in [0, size-1]
 swap(a[k], a[size-1])
 size = size-1
 SINK(a, k, size)
 SWIM(a, k, size)

Heapsort

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

insert all the array elements
into a max-heap

1
 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1
 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1. log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!)

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1. log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!)

insert the second
element into a
heap of size 1

insert the last
element into a

heap of size n -1

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1.

• Step 2.

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!)

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1.

• Step 2.

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

check the analysis
of the SINK operation!

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1.

• Step 2.

• Total.

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

O(n log n)

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: Naive Implementation

copy all the elements back
from the heap to the array
(in order)

insert all the array elements
into a max-heap

2

1

Running Time. (number of compares in the worst case)

• Step 1.

• Step 2.

• Total.

log2(1) + log2(2) + log2(3) + … + log2(n − 1) ≤ log2(n!) = O(n log n)

2 × (log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(1))
≤ 2 × log2(n!) = O(n log n)

O(n log n)
Can we do be!er?

Not asymptotically, but we can still
improve the actual running time!

 heap An empty max heap

 for i = 0 n-1:
 heap.INSERT(a[i])

 for i = n-1 0:
 a[i] = heap.MAX()
 heap.DELETE-MAX()

←
→

→

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 7 6 2 4 4 5 2 5
0 1 2 3 4 5 6 7 8

size-1random array

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

construct a max-heap in-place
(convert the array to become a heap)

How ? stay tuned!

6 7 6 2 4 4 5 2 5
0 1 2 3 4 5 6 7 8

size-1

7 6 6 5 5 4 4 2 2
size-1

random array

max-heap

 CONSTRUCT-HEAP()
7

6

5

2 2

4 4

6

5
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

7 6 6 5 5 4 4 2 2
0 1 2 3 4 5 6 7 8

size-1max-heap

7

6

5

2 2

4 4

6

5

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

7 6 6 5 5 4 4 2 2
size-1max-heap

7

2 2

6

5 4 4

6

5
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

2 6 6 5 5 4 4 2 7
size-1max-heap

2

2 7

6

5 4 4

6

5
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

2 6 6 5 5 4 4 2 7
size-1max-heap

2 7

6

5 4 4

6

5

2

0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 2 6 5 5 4 4 2 7
size-1max-heap

2

6

2 7

6

5 4 45
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 6 2 5 4 4 2 7
size-1max-heap

2

6

2 7

65

5 4 4
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 6 2 5 4 4 2 7
size-1max-heap

2

6

5

2 7

4 4

65

0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

2 5 6 2 5 4 4 6 7
max-heap

5

2

7

4 4

65

size-1

6

2
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

2 5 6 2 5 4 4 6 7
size-1max-heap

6

5

2

7

4 4

65

2
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

2 5 6 2 5 4 4 6 7
size-1max-heap

6

5

2

7

4 4

65

2
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 2 2 5 4 4 6 7
size-1max-heap

6

5

2

7

4 4

6

5

2
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 4 2 5 2 4 6 7
size-1max-heap

6

5 2

7

4

4

6

5

2
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 4 2 5 2 4 6 7
size-1max-heap

6

5 2

7

4

4

6

5

2

repeat until all the elements
are in their correct positions

0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

6 5 4 2 5 2 4 6 7
max-heap

6

5 2

7

4

4

6

5

2

repeat until all the elements
are in their correct positions

size-1

0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

5 5 4 2 4 2 6 6 7
size-1max-heap

6

4 2

7

4

6

5

5

2

repeat until all the elements
are in their correct positions

0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

size-1max-heap

6

2 5

7

4

6

5

4

2

repeat until all the elements
are in their correct positions

5 4 4 2 2 5 6 6 7
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

size-1max-heap

6

5 5

7

4

6

4

2

2

repeat until all the elements
are in their correct positions

4 2 4 2 5 5 6 6 7
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

size-1max-heap

6

5 5

7

2

6

4

2

4

repeat until all the elements
are in their correct positions

4 2 2 4 5 5 6 6 7
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

repeatedly place the next
maximum in its right position

construct a max-heap in-place
(change the array to become a heap)

2

1 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

size-1

6

5 5

7

2

6

2

4

4

repeat until all the elements
are in their correct positions

2 2 4 4 5 5 6 6 7
0 1 2 3 4 5 6 7 8

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

at indices 0 to size/2 - 1

sink all the
non-leaf nodes

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: 1 ∙ h number of swaps = tree height

number of nodes

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: (1 ∙ h) + 2(h − 1)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + (n
4 ∙ 1)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1) = O(n)

tricky sum
(math skipped)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps: (1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

number of
swaps is linear!

= O(n)

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps:

• Maximum number of compares: number of swaps

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

2 ×
= O(n)

check the analysis
of the SINK operation!

HEAP-SORT(a[], size)

Heapsort: A Better Implementation

for i = size/2 - 1 0:
 SINK(a, i, size)

→

 CONSTRUCT-HEAP(a, size)

 while (size > 1):
 swap(a[0], a[size-1])
 size = size-1
 SINK(a, 0, size)

CONSTRUCT-HEAP(a, size)

Heap Construction Analysis:

• Maximum number of swaps:

• Maximum number of compares: number of swaps

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

2 ×
= O(n)

check the analysis
of the SINK operation!

Think. Why does this heap construction
code run in while inserting all the
elements into a heap takes time?

O(n)
O(n log n)

Optional

(1 ∙ h) + 2(h − 1) + 4(h − 2) + … + n
4 (1)

= 20(1 ∙ h) + 21(h − 1) + 22(h − 2) + … + 2h−1

n

∑
i=0

i × 2i = (n − 1)2n+1 + 2

=
h−1

∑
i=0

2i(h − i) = (
h−1

∑
i=0

2ih) − (
h−1

∑
i=0

i2i) = h(2h − 1) − (
h−1

∑
i=0

i2i)

= h(2h − 1) − ((h − 2)2h + 2)

= h(2h − 1) − (h2h − 2h+1 + 2)

= h2h − h − h2h + 2h+1 − 2

= 2h+1 − 2

= O(n)

⟵ h ∼ log2 n

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Θ(n) Θ(n log n)
Θ(n log n)

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

Why? Trace on a piece of paper to see why!

Heapsort Analysis

 for merge sort and
 for quicksort (on random data)

∼ n log2 n
∼ 1.39n log2 n

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Running Time:

• Number of compares: At most .

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Running Time:

• Number of compares: At most .

• Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

optimizations are possible

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Running Time:

• Number of compares: At most .

• Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

Memory. Heapsort is an in-place sorting algorithm.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

Heapsort Analysis

Worst Case: to construct the heap and to heapsort.
Average Case:

Best Case: if all the elements are the same.

Running Time:

• Number of compares: At most .

• Actual running time: Slower than merge sort and quicksort because
of the higher number of comparisons and the the poor use of cache.

Memory. Heapsort is an in-place sorting algorithm.

Bo"om line.

• in the worst case and also sorts in-place at the same time.
(Merge Sort is not in-place and !icksort has a theoretical worst case of)

• Practically, not frequently used because it is slower than merge sort and quicksort.

Θ(n) Θ(n log n)
Θ(n log n)
Θ(n)

∼ 2n log2 n

Θ(n log n)
Θ(n2)

Used for the C++ STL sort() function

By Kevin Wayne

