CS1 1212 - Spring 2022
 Data Structures \&
 Introduction to Algorithms

Data Structures
Hashing

Ibrahim Albluwi

Where are we?

Problem. Design a data structure that supports search, insertion and deletion (without duplicates)

Where are we?

Problem. Design a data structure that supports search, insertion and deletion (without duplicates)
Candidate implementations.

	insert(val)	remove (val)	contains (val)
Unordered DLL	O(n)	0 (n)	O(n)
Unordered SLL	0 (n)	0 (n)	0 (n)
Ordered DLL	0 (n)	0 (n)	0 (n)
Ordered SLL	$0(\mathrm{n})$	0 (n)	$0(\mathrm{n})$
Unordered Array	$0(\mathrm{n})$	0 (n)	0 (n)
Ordered Array	0 (n)	0 (n)	O(log n)
Balanced BST	$0(\log n)$	$0(\log n)$	$0(\log n)$

Where are we?

Problem. Design a data structure that supports search, insertion and deletion (without duplicates)
Candidate implementations.

	insert(val)	remove(val)	contains(val)
Unordered DLL	0 (n)	0 (n)	O(n)
Unordered SLL	0 (n)	0 (n)	$0(\mathrm{n})$
Ordered DLL	0 (n)	0 (n)	0 (n)
Ordered SLL	0 (n)	0 (n)	0 (n)
Unordered Array	0 (n)	0 (n)	$0(\mathrm{n})$
Ordered Array	0 (n)	0 (n)	$0(\log n)$
Balanced BST	$0(\log n)$	$0(\log n)$	$0(\log n)$

? Can we do better?
Can we improve over the performance of balanced BSTs, such that search, insertion and/or deletion run(s) in $O(1)$?

I have a dream!

n elements to be stored

A table with m cells

I Have a Dream: A magic oracle that knows exactly in which cell each element should be stored or could be found!

I have a dream!

Insertion: The oracle knows exactly which index each element should go to.

I have a dream!

Insertion: The oracle knows exactly which index each element should go to.

I have a dream!

Insertion: The oracle knows exactly which index each element should go to.

I have a dream!

Insertion: The oracle knows exactly which index each element should go to.

Search: The oracle knows exactly which index to search in.

I have a dream!

Insertion: The oracle knows exactly which index each element should go to.

Search: The oracle knows exactly which index to search in.

I have a dream!

Let's call the oracle a hash function and the table a hash table.

n elements to be stored

A hash table with m cells

I have a dream!

Let's call the oracle a hash function and the table a hash table.

hash function returns an index for x in $O(1)$

A hash table with m cells

The implementation is simple:

```
insert(x) : table[h(x)] = x
remove(x) : table[h(x)] = dummy value
search(x) : return table[h(x)] != dummy value
```


I have a dream!

Let's call the oracle a hash function and the table a hash table.

hash function returns an index for x in $O(1)$

A hash table with m cells

All operations are done in $O(1)$!

Is this possible?

Dream Comes True?

Consider n distinct non-negative integers all in the range $\left[0,10^{9}\right]$.
How can we support search, insert and remove in $O(1)$?

555591887
72986660
$4335 \quad 1342$
$119 \quad 233 \quad 5$
119999994
8479
n distinct integers in
the range $\left[0,10^{9}\right]$

Dream Comes True?

Consider n distinct non-negative integers all in the range $\left[0,10^{9}\right]$. How can we support search, insert and remove in $O(1)$?

Answer.

1. Create a hash table of size $10^{9}+1$ (indices are from 0 to 10^{9}).
2. Use -1 as a dummy value in empty cells.

$$
555591887
$$

72986660
$4335 \quad 1342$
1192335
119999994
8479
n distinct integers in the range $\left[0,10^{9}\right]$

-1	0
-1	1
-1	2
-1	3
-1	4
-1	5
\ldots	
-1	10^{9}

Dream Comes True?

Consider n distinct non-negative integers all in the range $\left[0,10^{9}\right]$. How can we support search, insert and remove in $O(1)$?

Answer.

1. Create a hash table of size $10^{9}+1$ (indices are from 0 to 10^{9}).
2. Use -1 as a dummy value in empty cells.
3. Use the following hash function: $h(x)=x$.
i.e. 0 goes to index 0,1 to index 1,2 to index 2 , etc.

		0	0
555591887		-1	1
72986660		-1	2
43351342		-1	3
1192335	$h(x)=x$	-1	4
119999994		5	5
8479			
n distinct integers in the range $\left[0,10^{9}\right]$		-1	10^{9}

Dream Comes True?

Consider n distinct non-negative integers all in the range $\left[0,10^{9}\right]$. How can we support search, insert and remove in $O(1)$?

Answer.

1. Create a hash table of size $10^{9}+1$ (indices are from 0 to 10^{9}).
2. Use -1 as a dummy value in empty cells.
3. Use the following hash function: $h(x)=x$.
i.e. 0 goes to index 0,1 to index 1,2 to index 2 , etc.

555591887		0	0
		-1	1
72986660		-1	2
43351342	$h(x)=x$	-1	3
1192335		-1	4
119999994		5	5
8479			
n distinct integers in the range $\left[0,10^{9}\right]$	BINGO! $O(1)$ insertion, deletion and search	-1	10^{9}

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $x_{1}=x_{2}$

In other words, if $h(x)$ is perfect, no two distinct elements have the same hash value.

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $x_{1}=x_{2}$

In other words, if $h(x)$ is perfect, no two distinct elements have the same hash value.

Example. $h(x)=x$ is a perfect hash function.

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if

Example. $h(x)=x$ is a perfect hash function.

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $x_{1}=x_{2}$

In other words, if $h(x)$ is perfect, no two distinct elements have the same hash value.

Example. $h(x)=x$ is a perfect hash function.

Any Problem?
What if $n=10$?

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $x_{1}=x_{2}$

In other words, if $h(x)$ is perfect, no two distinct elements have the same hash value.

Example. $h(x)=x$ is a perfect hash function.

Any Problem?

What if $n=10$?
We still need a table of size $m=10^{9}+1$

IMPRACTICAL

The table size depends on the range of possible values regardless of the number of elements to be stored (n)

A Perfect Hash Function

Definition. A hash function $h(x)$ is perfect if $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $x_{1}=x_{2}$

In other words, if $h(x)$ is perfect, no two distinct elements have the same hash value.

Example. $h(x)=x$ is a perfect hash function.

Any Problem?

What if $n=10$?
We still need a table of size $m=10^{9}+1$

IMPRACTICAL

The table size depends on the range of possible values regardless of the number of elements to be stored (n)

We want to limit m to be not much larger than n.

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

> store at index 4
> $(4 \bmod 10=4)$

1735
20
elements to be stored

$$
n=6
$$

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

> store at index 0
> $(10 \bmod 10=0)$

1735
20
elements to be stored

$$
n=6
$$

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.
store at index 0
$(20 \bmod 10=0)$

elements to be stored

$$
n=6
$$

COLLISION!

$\mathbf{1 0}$	0	Index 0 already
999991	1	has an element !!
12	2	
	3	
4	4	
1735	5	
	6	7
318	8	
	9	

A table with $m=10$ cells

Modular Hashing

1. Pick a hash table size m that is not much larger than the number of elements to be stored n.
2. Use the following hash function: $h(x)=x \bmod m$.

Example.
store at index 0
$(20 \bmod 10=0)$

elements to be stored

$$
n=6
$$

COLLISION!

10	- Index 0
999991	1 has an
12	2 element!
	3
4	4
1735	5
	6
	7
318	8
	9

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.
insert(x) : table[h(x)].addToTail(x)

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.
insert(x) : table[h(x)].addToTail(x)
use the hash function to know which linked list x should be added to

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

```
insert(x) : table[h(x)].addToTail(x)
remove(x) : table[h(x)].remove(x)
```

search the linked list for x and remove it if found

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element. Implementation. Define the hash table as an array of linked lists.

```
insert(x) : table[h(x)].addToTail(x)
remove(x) : table[h(x)].remove(x)
search(x) : return table[h(x)].find(x)
```


Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element. Implementation. Define the hash table as an array of linked lists.

```
insert(x) : table[h(x)].addToTail(x)
remove(x) : table[h(x)].remove(x)
search(x) : return table[h(x)].find(x)
```


Running Time

Different chain lengths?

$m=6$
$n=12$

$m=6$
$n=12$

$m=6$
$n=12$

Running Time

Different chain lengths?

operation	implementation	best case	worst case
insert (x)	table $[\mathrm{h}(\mathrm{x})] . \operatorname{addToTail(x)}$		

Running Time

Different chain lengths?

operation	implementation	best case	worst case		
insert (x)	table $[\mathrm{h}(\mathrm{x})]$. addToTail (x)	$O(1)$	$O(1)$		the running time is
:---					
independent of the					
chain length!					

Running Time

Different chain lengths?

operation	implementation	best case	worst case
insert (x)	$\operatorname{table}[\mathrm{h}(\mathrm{x})] . \operatorname{addToTail}(\mathrm{x})$	$O(1)$	$O(1)$
$\operatorname{remove}(\mathrm{x})$	$\operatorname{table}[\mathrm{h}(\mathrm{x})] . \operatorname{remove}(\mathrm{x})$		
$\operatorname{search}(\mathrm{x})$	return $\operatorname{table}[\mathrm{h}(\mathrm{x})] . \mathrm{find}(\mathrm{x})$		

Running Time

Different chain lengths?

operation	implementation	best case	worst case
insert(x) remove (x) search (x)	table[h(x)].addToTail (x)	$O(1)$	$O(1)$
	table[h(x)].remove (x)	$O(1)$	
	return table[h(x)].find (x)	$O(1)$	
if the chain is empty			

Running Time

Different chain lengths?

$m=6$
$n=12$

$$
\begin{aligned}
& m=6 \\
& n=12
\end{aligned}
$$

$m=6$
$n=12$

operation	implementation	best case	worst case
insert(x)	table[h(x)].addToTail(x)	$O(1)$	$O(1)$
remove(x)	table[h(x)].remove(x)	$O(1)$	$O(n)$
search(x)	return table[h(x)].find(x)	$O(1)$	$O(n)$

Running Time

Different chain lengths?

$m=6$
$n=12$

$$
\begin{aligned}
& m=6 \\
& n=12
\end{aligned}
$$

$m=6$
$n=12$

operation	implementation	best case	worst case
insert (x)	table[h(x)].addToTail(x)	$O(1)$	$O(1)$
remove (x)	table[h(x)].remove(x)	$O(1)$	$O(n)$
$\operatorname{search}(x)$	return $\operatorname{table}[h(x)] . f i n d(x)$	$O(1)$	$O(n)$

Running Time

Different chain lengths?

operation	implementation	best case	worst case
insert (x)	table[h(x)].addToTail(x)	$O(1)$	$O(1)$
remove (x)	table[h(x)].remove(x)	$O(1)$	$O(n)$
$\operatorname{search}(\mathrm{x})$	return $\operatorname{table}[\mathrm{h}(\mathrm{x})] . \mathrm{find}(\mathrm{x})$	$O(1)$	$O(n)$

! Good news. The running time is $O(1)$ in many practical applications.

When do hash tables perform well?

Load Factor. The average chain length in the table $=n / m$.
Examples.

$m=6$
$n=12$
Load factor $(n / m)=2$

$m=6$
$n=90$
Load factor $(n / m)=15$

When do hash tables perform well?

Load Factor. The average chain length in the table $=n / m$.
Examples.

$m=6$
$n=12$
Load factor $(n / m)=2$

$m=6$
$n=90$
Load factor $(n / m)=15$

Assumption 1. Elements are distributed uniformly in the table.
Under this assumption, search and remove run in $O(n / m)$

When do hash tables perform well?

Load Factor. The average chain length in the table $=n / m$.
Examples.

	uniformly distributed
- - - - - -	
- \square	
- - - - -	
-	
$m=6$	
$n=12$	
Load factor $(n / m)=2$	

Assumption 1. Elements are distributed uniformly in the table. Under this assumption, search and remove run in $O(n / m)$

When do hash tables perform well?

Load Factor. The average chain length in the table $=n / m$.
Examples.

Assumption 1. Elements are distributed uniformly in the table. Under this assumption, search and remove run in $O(n / m)$

Assumption 2. n is not much larger or much smaller than m. Under this assumption, n / m is a small constant, which means that $O(n / m)=O(1)$

When do hash tables perform well?

Assumption 1.
 Elements are distributed uniformly in the table.

If not true, chains can become very long (of length n in the worst case).

When do hash tables perform well?

Assumption 1.

Elements are distributed uniformly in the table.

If not true, chains can become very long (of length n in the worst case).

Not guaranteed to be true, but true in many practical applications.

Examples.
\checkmark Hashing phone numbers of PSUT students.
\checkmark Hashing birth days (day and month) of PSUT students.
X Hashing timestamps of assignment submissions across a year. clustered around certain hours of the day

When do hash tables perform well?

Assumption 1.

Elements are distributed uniformly in the table.

- If not true, chains can become very long (of length n in the worst case).
- Not guaranteed to be true, but true in many practical applications.

Examples.
\checkmark Hashing phone numbers of PSUT students.
\checkmark Hashing birth days (day and month) of PSUT students.
X Hashing timestamps of assignment submissions across a year. clustered around certain hours of the day

Denial of Service Attacks

If an adversary has enough information about your hash function and hash table, they can send a large set of carefully chosen elements that hash to the same chain. This will heavily degrade the performance of the hash table!

When do hash tables perform well?

Assumption 1.
Elements are distributed uniformly in the table.

- If not true, chains can become very
long (of length n in the worst case).

Not guaranteed to be true, but
true in many practical applications.

If true, search and remove
run in $O(n / m)$

When do hash tables perform well?

Assumption 1.
Elements are distributed uniformly in the table.

If not true, chains can become very
long (of length n in the worst case).

- Not guaranteed to be true, but
true in many practical applications.

If true, search and remove
run in $O(n / m)$

Assumption 2. n is not much larger or much smaller than m.

If $m \gg n:$ wasted space
If $m \ll n$: very long chains

When do hash tables perform well?

Assumption 1.
Elements are distributed uniformly in the table.

If not true, chains can become very
long (of length n in the worst case).

Not guaranteed to be true, but
true in many practical applications.

Assumption 2. n is not much larger or much smaller than m.

If $m \gg n:$ wasted space
If $m \ll n$: very long chains

Can be guaranteed by resizing the table up/down to keep m around $\frac{1}{4} n$.

If true, search and remove
run in $O(n / m)$

When do hash tables perform well?

Assumption 1.
Elements are distributed uniformly in the table.

If not true, chains can become very long (of length n in the worst case).

Not guaranteed to be true, but
true in many practical applications.

If true, search and remove
run in $O(n / m)$

Assumption 2.
n is not much larger
or much smaller than m.

If $m \gg n:$ wasted space
If $m \ll n$: very long chains

Can be guaranteed by resizing the table up/down to keep m around $\frac{1}{4} n$.

If true, $O(n / m)=O(1)$

When do hash tables perform well?

Assumption 1.
Elements are distributed uniformly in the table.

- If not true, chains can become very long (of length n in the worst case).

Not guaranteed to be true, but true in many practical applications.

If true, search and remove run in $O(n / m)$

Assumption 2.

n is not much larger
or much smaller than m.

```
_If m> n: wasted space
    If m<<n: very long chains
    Can be guaranteed by resizing
    the table up/down to keep m
    around }\frac{1}{4}n\mathrm{ .
    If true, }O(n/m)=O(1
```

Conclusion. Hash tables implemented with separate chaining perform the insert, search and remove operations in $O(1)$ assuming the load factor is a small constant and the elements are distributed uniformly across the chains in the table.

Exercise. Resizing Hash Tables

How does the above hash table look like after resizing it to become of size $m=8$?

Exercise. Resizing Hash Tables

How does the above hash table look like after resizing it to become of size $m=8$?

All items need to be rehashed after resizing the table!

Coding Demo

What＇s in a Name？

シ ア 多
入幽玄维 Wiktionary

The free dictionary

Entry Discussion Citations

hash

Etymology 1 ［ edit ］

From French hacher（＂to chop＂），from Old French hache（＂axe＂）．

Noun［edit］

hash（plural hashes）
1．Food，especially meat and potatoes，chopped and mixed together．

Hatchet（English）
Hache（French）

Chopped parsley（English）
Persil hachée（French）

Chopped cilantro（English）
Coriandre hachée（French）Viande hachée（French）

Coding Interview Question

Design a data structure that supports insert, search and remove in $O(\log n)$ in the worst case and in $O(1)$ in most practical applications.

Coding Interview Question

Design a data structure that supports insert, search and remove in $O(\log n)$ in the worst case and in $O(1)$ in most practical applications.

Answer.
Use separate chaining with AVL trees instead of singly linked lists!

Coding Interview Question

Design a data structure that supports insert, search and remove in $O(\log n)$ in the worst case and in $O(1)$ in most practical applications.

Answer.
Use separate chaining with AVL trees instead of singly linked lists!

Coding Interview Question

Design a data structure that supports insert, search and remove in $O(\log n)$ in the worst case and in $O(1)$ in most practical applications.

Answer.

Use separate chaining with AVL trees instead of singly linked lists!

\ldots Any reason to use singly-linked lists for chaining instead of AVL trees?

- Singly-linked lists are simpler and require less memory than AVL trees.
- They also can be faster than AVL trees if the number of elements they store is very small.
- BSTs require a definition of order ($<,>$ and $==$), whereas linked lists require only a definition for equality.

Java's hash table implementation uses linked lists. However, if a chain's length exceeds a certain threshold, the chain is converted to a balanced BST.

Hashing Strings

How can strings be hashed?

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" $\rightarrow 97$

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" \rightarrow 97, "ball" $\rightarrow 98$

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" \rightarrow 97, "ball" \rightarrow 98, "antidisestablishmentarianism" $\rightarrow 97$.

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" \rightarrow 97, "ball" $\rightarrow 98$, "antidisestablishmentarianism" $\rightarrow 97$. "dog" \rightarrow 100, "doll" \rightarrow 100, "fly" \rightarrow 102, "goal" \rightarrow 103, "girl" $\rightarrow 103$

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" \rightarrow 97, "ball" \rightarrow 98, "antidisestablishmentarianism" $\rightarrow 97$.

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language and in many practical applications.

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" \rightarrow 97, "ball" \rightarrow 98, "antidisestablishmentarianism" $\rightarrow 97$.

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language.
2. There will be a very limited number of chains used (e.g. 26, 52,127 or 256) regardless of the table size.

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert to an integer using the ASCII value of the first character of the string.
Examples. "ant" \rightarrow 97, "ball" \rightarrow 98, "antidisestablishmentarianism" $\rightarrow 97$.
8-bit ASCII
Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language
2. There will be a very limited number of chains used (e.g. 26, 52, 127 or 256) regardless of the table size.

Hashing Strings

How can strings be hashed?

Solution \# 1.

Convert the string to an integer using the ASCII value of the first character of the string. Examples. "ant" \rightarrow 97, "ball" \rightarrow 98, "antidisestablishmentarianism" $\rightarrow 97$.

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language.
2. There will be a very limited number of chains used (e.g. 26, 52,127 or 256) regardless of the table size.

An illustration of chains in a hash table storing dictionary words based on their first character

Hashing Strings

How can strings be hashed?
Solution \# 2.
Convert to an integer by summing the ASCII values of all the characters in the string. Example. "a" $\rightarrow 97, \quad$ "am" $\rightarrow 97+155=252, \quad$ "ant" $\rightarrow 97+156+164=417$, etc.

Hashing Strings

How can strings be hashed?

Solution \# 2.

Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" \rightarrow 97, "am" $\rightarrow 97+155=252, \quad$ "ant" $\rightarrow 97+156+164=417$, etc.
Problem. In many applications, some hash values are much more likely to occur than others.

Frequency of hash values of words in the dictionary

Hashing Strings

How can strings be hashed?

Solution \# 2.

Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" $\rightarrow 97, \quad$ "am" $\rightarrow 97+155=252, \quad$ "ant" $\rightarrow 97+156+164=417$, etc.
Problem. In many applications, some hash values are much more likely to occur than others. Problem. Very different strings get the same integer value (many collisions). For example:

int value	strings
394	All permutations of "abcd" (e.g, abdc, acdb, acbd, adbc, etc.)
455	snow, soup, tusk, suez, winy
456	guys, lust, rots, runs, sort, sums, town, twit
574	wormy, stunt, puppy, tutor
796	pursuit, puzzler, stylist, sunspot, uproots
900	portrays, pronouns, protests, robustly, textures, typhoons
1120	interrupts, introverts, oppressors, repository, transports
1726	multidimensional, terminologically, unaccountability

Hashing Strings

How can strings be hashed?

Solution \# 2.

Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" \rightarrow 97, "am" $\rightarrow 97+155=252, \quad$ "ant" $\rightarrow 97+156+164=417$, etc.
Problem. In many applications, some hash values are much more likely to occur than others. Problem. Very different strings get the same integer value (many collisions). For example:

int value	strings
394	All permutations of "abcd" (e.g. abdc, acdb, acbd, adbc, etc.)
455	snow, soup, tusk, suez, winy
456	guys, lust, rots, runs, sort, sums, town,
574	wormy, stunt, puppy, tutor
pursferent strings get	
different integer values	

Hashing Strings

How can strings be hashed?

Solution \# 3.

Assign weights to the characters based on their position in the string and compute a weighted sum of the ASCII values of the characters.

Decimal System:

radix $=10$

123

$$
1 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}
$$

Hashing Strings

How can strings be hashed?

Solution \# 3.

Assign weights to the characters based on their position in the string and compute a weighted sum of the ASCII values of the characters.

Hashing Strings

How can strings be hashed?

Solution \# 3.

Assign weights to the characters based on their position in the string and compute a weighted sum of the ASCII values of the characters.

Decimal System:
radix $=10$

$$
1 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}
$$

$$
2 \times 10^{2}+3 \times 10^{1}+1 \times 10^{0}
$$

A Positional System for Characters:
pick some radix \mathbf{R}
a b c

$$
\mathbf{a} \times R^{2}+\mathbf{b} \times R^{1}+\mathbf{c} \times R^{0}
$$

b c a
$\mathbf{b} \times R^{2}+\mathbf{c} \times R^{1}+\mathbf{a} \times R^{0}$

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
```


A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--)
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
```

Go through the characters right to left

Example. hash_value(" A B C D ")

$$
\begin{aligned}
& \text { sum }=0 \\
& R=1
\end{aligned}
$$

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
```

Multiply the character by R

Example. hash_value(" A B C D ")

$$
\begin{aligned}
\text { sum } & =(1 * D) \\
R & =1
\end{aligned}
$$

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
        Increase the exponent
        of R for the next
        iteration
    (multiply R by 26)
    return sum % m;
}
Example. hash_value(" A B C D ")
\[
\begin{aligned}
\text { sum } & =(1 \star D) \\
R & =1 \star 26
\end{aligned}
\]
```


A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
Example. hash_value(" A B C D ")
\[
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C) \\
& R=1 \star 26
\end{aligned}
\]
```

Multiply the character by R

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
        Increase the exponent
        of R for the next
        iteration
    (multiply R by 26)
    return sum % m;
}
Example. hash_value(" A B C D ")
\[
\begin{aligned}
& \text { sum }=(1 * D)+(26 \star C) \\
& R=1 \star 26 * 26
\end{aligned}
\]
```


A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
Example. hash_value(" A B C D ")
\[
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C)+(262 \star B) \\
& R=1 \star 26 \star 26
\end{aligned}
\]
```

Multiply the character by R

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
        Increase the exponent
        of R for the next
    iteration
    (multiply R by 26)
    return sum % m;
}
    i
Example. hash_value(" A B C D ")
\[
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C)+\left(26^{2} \star B\right) \\
& R=1 \star 26 \star 26 * 26
\end{aligned}
\]
```


A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
Example. hash_value(" A B C D ")
\[
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C)+\left(26^{2} \star B\right)+\left(26^{3} \star A\right) \\
& R=1 \star 26 \star 26 \star 26
\end{aligned}
\]
```


A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
```

1

Example. hash_value(" A B C D ")

$$
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C)+\left(26^{2} \star B\right)+\left(26^{3} \star A\right) \\
& \mathrm{R}=1 \star 26 \star 26 \star 26 \star 26
\end{aligned}
$$

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
```

R and sum can overflow!

```
    }
    return sum % m;
}
```

i

Example. hash_value(" A B C D ")

$$
\begin{aligned}
& \text { sum }=(1 \star D)+(26 \star C)+\left(26^{2} \star B\right)+\left(26^{3} \star A\right) \\
& R=1 \star 26 \star 26 \star 26 \star 26
\end{aligned}
$$

A Sketch Implementation (assuming $R=26$)

```
int hash_value(string & str) {
    int sum=0, R=1;
    for (int i=str.length()-1; i>=0; i--) {
        sum += R*str[i];
        R *= 26;
    }
    return sum % m;
}
int hash_value(string & str) {
    int sum=0, R=26;
    for (int i=0; i<str.length(); i++)
        sum = (sum*R + str[i]) % m;
    return abs(sum);
}
```


A Sketch Implementation (assuming $R=26$)

```
int has_value(string & str) {
    int sum=0, R=26;
    for (int i=0; i<str.length(); i++)__ Go through the
        sum = (sum*R + str[i]) % m;
    return abs(sum);
}
```


A Sketch Implementation (assuming $R=26$)

```
int has_value(string & str) {
    int sum=0, R=26;
    for (int i=0; i<str.length(); i++)
        sum = (sum*R + str[i]) % m;
    return abs(sum);
}
```

Each iteration in the loop multiplies the sum by R and adds one character.

This is similar to how 9375 in decimal (for example) can be computed:

```
sum = 0
sum = sum * 10 + 9 = 9
sum = sum * 10 + 3 = 93
sum = sum * 10 + 7 = 937
sum = sum * 10 + 5 = 9375
```


A Sketch Implementation (assuming $R=26$)

```
int has_value(string & str) {
    int sum=0, R=26;
    for (int i=0; i<str.length(); i++)
    sum = (sum*R + str[i]) % m;
    return abs(sum);
}
```

$$
\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right) \% m
$$

is equivalent to:

$$
\left.\left.\left.\left(\left(x_{1} \% m\right)+x_{2}\right) \% m\right)+x_{3}\right) \% m \ldots+x_{n}\right) \% m
$$

Example:

$$
(5+6+23) \% 10=34 \% 10=4
$$

$$
(((5 \% 10)+6) \% 10)+23) \% 10=
$$

$$
(((5)+6) \% 10)+23) \% 10=
$$

$$
((11) \% 10)+23) \% 10=
$$

$$
((1 \quad)+23) \% 10=
$$

$$
(24 \quad) \% 10=4
$$

Hashing Strings

Result of hashing words from the dictionary ($\mathrm{n}=70566$) into a hash table with $\mathrm{m}=20000$ chains (using R=31)

Hash Tables vs Balanced BSTs

Asymptotic Analysis

	insert		remove		search	
	average	worst	average	worst	average	worst
Balanced BST	$0(\log n)$	$0(\log n)$	$0(\log n)$	$O(\log n)$	$O(\log n)$	$0(\log n)$
Hash Table with Separate Chaining	$0(1)$	$0(1)$	$0(1)$	$0(n)$	$0(1)$	$0(n)$

\qquad
assumptions

Hash Tables vs Balanced BSTs

Asymptotic Analysis

	insert		remove		search	
	average	worst	average	worst	average	worst
Balanced BST	$0(\log \mathrm{n})$	$0(\log n)$				
Hash Table with Separate Chaining	$0(1)$	$0(1)$	$0(1)$	$0(n)$	$0(1)$	$0(n)$

Experimental Analysis. Insert, remove and search for $10,000,000$ random integers.

Balanced BST

Insert	14.6784 sec	6.11673 sec
Search	13.2523 sec	3.25825 sec
Remove	16.5524 sec	5.39692 sec

Hash Table

5.39692 sec

Notes. Tests were performed using the C++ STL set container as the balanced BST and the C++ STL unordered_set container as the hash table. Each insert operation performs a search for the element before inserting it to avoid duplicates.
(Using a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 and 16 GB DDR4 RAM)

Hash Tables vs Balanced BSTs

Asymptotic Analysis

	insert		remove		search	
	average	worst	average	worst	average	worst
Balanced BST	$O(\log n)$	$0(\log n)$	$0(\log n)$	$O(\log n)$	$0(\log n)$	$0(\log n)$
Hash Table with Separate Chaining	O(1)	O(1)	O(1)	O(n)	O(1)	O(n)

Experimental Analysis. Insert, remove and search for $10,000,000$ random integers.

Balanced BST Hash Table

Insert	14.6784 sec	6.11673 sec
Search	13.2523 sec	3.25825 sec
Remove	16.5524 sec	5.39692 sec

Other Factors.

Hash tables do not support ordered operations efficiently like BSTs (e.g. max (), min(), median(), count_less_than(x), smallest_above(x), largest_below(x), etc.)

Finding the max!

```
template <class T>
T HashTable<T>::max() const {
    if (is_empty())
        throw "Attempting to get the max from an empty table."
    DLLNode<T>* max_node = nullptr;
    for (int i = 0; i < m; i++) {
        DLLNode<T>* c = table[i].head_node();
        while (c != nullptr) {
            if (max_node == nullptr) max_node = c;
            else if (c->get_val() > max_node->get_val()) max_node = c;
            c = c->get_next();
    }
    }
    return max_node->get_val();
}
```


Finding the max!

```
template <class T>
T HashTable<T>::max() const {
    if (is_empty())
        throw "Attempting to get the max from an empty table."
    DLLNode<T>* max_node = nullptr; go through every chain
    for (int i = 0; i<m; i++) {
        DLLNode<T>* c = table[i].head_node();
        while (c != nullptr) {
            if (max_node == nullptr) max_node = c;
        else if (c->get_val() > max_node->get_val()) max_node = c;
        c = c->get_next();
    }
    }
    return max_node->get_val();
}
```

go through every node in that chain

Running Time. $O(n) \quad$ Data compares $O(n+m)$ Total amount of work. Even if the table is empty, the code still creates a pointer for every empty chain!

djb2 String Hash Function

```
int hash(char * str) {
    int sum = 5381;
    int c;
    while (c = *str++)
        sum = ((sum << 5)+sum) + c;
    return (sum & 0x7fffffff) % m;
}
```


djb2 String Hash Function

A random prime seed for the first cycle.
Could have been set to 0 or to another value, but this was found experimentally to produce a good distribution of hash values.

```
int hash(char * str) {
    int sum = 5381;
    int c;
    while (c = *str++)
        sum = ((sum << 5)+sum) + c; - 33 was found
    experimentally to
    distribute the hash
    values well.
Equivalent to (but faster than)
returning abs(sum) % m
Assuming int is 32 bits
```


Hashing Other Than Integers and Strings

Floating point numbers. Given floating point numbers between MIN and MAX, the numbers can be normalized to be between 0 and 1 and then multiplied by the number of chains:

```
int hash(float x) {
    return abs((x-MIN) / (MAX-MIN) * m);
}
```

Composite types. Hashing an array, a user defined object or any composite type can be done using the same logic as that of the djb2 algorithm:

```
sum = 0
sum = sum * 33 + hash(1st element)
sum = sum * 33 + hash(2nd element)
sum = sum * 33 + hash(3rd element)
etc.
```

The elements can be array elements or data members in a class or a struct.

Picking a Good Hash Table Size

If the hashed keys are random, then any hash table size m that is around $\frac{1}{4} n$ should be fine. If the hashed keys might follow a pattern, then care must be taken when choosing the table size. Examples.

- If the hash table size is $\mathbf{m = 1 2}$ and all the hashed keys are even numbers, only half of the chains will be used no matter how many keys are hashed.

$$
(0 \% 12=0,2 \% 12=2,4 \% 12=4,6 \% 12=6,8 \% 12=8,10 \% 12=10,12 \% 12=0,14 \% 12=2,16 \% 12=4 \text {, etc. })
$$

- If the hash table size is $\mathbf{m}=\mathbf{2}^{\mathbf{X}}$, then only the least significant \mathbf{x} bits will play a role in determining the chain indices.
- Using a prime number for the hash table size guards against such issues.

The GCC maintains the following precomputed array of hash table sizes that are prime and as close as possible to powers of 2 :

$[7$,	13,	31,	61,	127,	251,	509,
1021,	2039,	4093,	8191,	16381,	32749,	65521,
131071,	262139,	524287,	1048573,	2097143,	4194301,	8388593,
16777213,	33554393,	67108859,	134217689,	268435399,	536870909,	
1073741789,	$2147483647]$					

