
CS11212 - Spring 2022

Data Structures &
Introduction to Algorithms

Data Structures

Hashing

Ibrahim Albluwi

Where are we?

Problem. Design a data structure that supports search, insertion and deletion
 (without duplicates)

Where are we?

insert(val) remove(val) contains(val)

Unordered DLL

Unordered SLL

Candidate implementations.

Problem. Design a data structure that supports search, insertion and deletion
 (without duplicates)

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Ordered DLL

Ordered SLL

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Unordered Array

Ordered Array

O(n)

O(log n)

O(n)

O(log n)

O(n)

O(log n)Balanced BST

O(n) O(n) O(log n)

Where are we?

insert(val) remove(val) contains(val)

Unordered DLL

Unordered SLL

Candidate implementations.

Problem. Design a data structure that supports search, insertion and deletion
 (without duplicates)

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Ordered DLL

Ordered SLL

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Unordered Array

Ordered Array

O(n)

O(log n)

O(n)

O(log n)

O(n)

O(log n)Balanced BST

O(n) O(n) O(log n)

Can we do better?
Can we improve over the performance of balanced BSTs, such that
search, insertion and/or deletion run(s) in ?O(1)

?

I have a dream!

0

1

2

3

4

5

m-1

...

A table with m cellsn elements to be stored

...

magic oracle

I Have a Dream: A magic oracle that knows exactly in
which cell each element should be stored or could be

found!

0

1

2

3

4

5

m-1

...

A table with m cellsn elements to be stored

...

magic oracle

Insertion: The oracle knows exactly which index each element should go to.

insert at 1

I have a dream!

0

1

2

3

4

5

m-1

...

A table with m cellsn elements to be stored

...

magic oracle

Insertion: The oracle knows exactly which index each element should go to.

insert at 5

I have a dream!

0

1

2

3

4

5

m-1

...

A table with m cellsn elements to be stored

...

magic oracle

Insertion: The oracle knows exactly which index each element should go to.

insert at 3

I have a dream!

A table with m cellsn elements to be stored

...

magic oracle

Insertion: The oracle knows exactly which index each element should go to.

0

1

2

3

4

5

m-1

...

Search: The oracle knows exactly which index to search in.

found!
search at 1

I have a dream!

A table with m cellsn elements to be stored

...

magic oracle

Insertion: The oracle knows exactly which index each element should go to.

0

1

2

3

4

5

m-1

...

Search: The oracle knows exactly which index to search in.

not
found!

search at 4

I have a dream!

0

1

2

3

4

5

m-1

...

A hash table with m cellsn elements to be stored

...

I have a dream!

h(x)

hash function

Let's call the oracle a hash function and the table a hash table.

returns an index
for x in O(1)

0

1

2

3

4

5

m-1

...

A hash table with m cellsn elements to be stored

...

I have a dream!

h(x)

Let's call the oracle a hash function and the table a hash table.

hash function

returns an index
for x in O(1)

insert(x) : table[h(x)] = x
remove(x) : table[h(x)] = dummy value
search(x) : return table[h(x)] != dummy value

The implementation is simple:

0

1

2

3

4

5

m-1

...

A hash table with m cellsn elements to be stored

...

I have a dream!

insert(x) : table[h(x)] = x
remove(x) : table[h(x)] = dummy value
search(x) : return table[h(x)] != dummy value

h(x)

All operations are done
in !O(1)

Let's call the oracle a hash function and the table a hash table.

Is this possible?

hash function

returns an index
for x in O(1)

The implementation is simple:

Dream Comes True?

Consider distinct non-negative integers all in the range .
How can we support search, insert and remove in ?

n [0, 109]
O(1)

n distinct integers in
the range [0,109]

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

Dream Comes True?

Consider distinct non-negative integers all in the range .
How can we support search, insert and remove in ?

n [0, 109]
O(1)

Answer.

1. Create a hash table of size (indices are from to).109 + 1 0 109

0

1

2

3

4

5

109

...

n distinct integers in
the range [0,109]

-1

-1

-1

-1
-1

-1

-1

2. Use -1 as a dummy value in empty cells.

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

Dream Comes True?

Consider distinct non-negative integers all in the range .
How can we support search, insert and remove in ?

n [0, 109]
O(1)

Answer.

1. Create a hash table of size (indices are from to).109 + 1 0 109

2. Use -1 as a dummy value in empty cells.

0

1

2

3

4

5

109

...

n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

3. Use the following hash function: .
 i.e. 0 goes to index 0, 1 to index 1, 2 to index 2, etc.

h(x) = x

-1

Dream Comes True?

Consider distinct non-negative integers all in the range .
How can we support search, insert and remove in ?

n [0, 109]
O(1)

Answer.

1. Create a hash table of size (indices are from to).109 + 1 0 109

2. Use -1 as a dummy value in empty cells.

0

1

2

3

4

5

109

...

n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

3. Use the following hash function: .
 i.e. 0 goes to index 0, 1 to index 1, 2 to index 2, etc.

h(x) = x

-1

BINGO!
 insertion,

deletion and search
O(1)

A Perfect Hash Function

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

A Perfect Hash Function

0

1

2

3

4

5

109

...n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

-1

a table fo size
m = 109 + 1

Example. is a perfect hash function.h(x) = x

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

A Perfect Hash Function

0

1

2

3

4

5

109

...n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

-1

a table fo size
m = 109 + 1

Any Problem?

Example. is a perfect hash function.h(x) = x

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

A Perfect Hash Function

0

1

2

3

4

5

109

...n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

-1

a table fo size
m = 109 + 1

What if n = 10 ?
Any Problem?

Example. is a perfect hash function.h(x) = x

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

A Perfect Hash Function

0

1

2

3

4

5

109

...n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

-1

a table fo size
m = 109 + 1

What if n = 10 ?
We still need a table of size
 m = 109 + 1

Any Problem?

The table size depends on
the range of possible values
regardless of the number of
elements to be stored (n)

IMPRACTICAL

Example. is a perfect hash function.h(x) = x

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

A Perfect Hash Function

0

1

2

3

4

5

109

...n distinct integers in
the range [0,109]

h(x) = x

...

0
1342

72 98666

233 5
4335
119

555591 887

999999411
847 9

5

0

-1
-1

-1

-1

-1

a table fo size
m = 109 + 1

What if n = 10 ?
We still need a table of size
 m = 109 + 1

Any Problem?

The table size depends on
the range of possible values
regardless of the number of
elements to be stored (n)

IMPRACTICAL

We want to limit to be not much
larger than .

m
n

Example. is a perfect hash function.h(x) = x

Definition. A hash function is perfect if
 implies

In other words, if is perfect, no two distinct elements
have the same hash value.

h(x)
h(x1) = h(x2) x1 = x2

h(x)

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

6

7

9

4

12

318

999991
1735

h(x) = x mod m

11

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 4
(4 mod 10 = 4)

6

7

9

4

10

318

1735

h(x) = x mod m 4
999991

20

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 0
(10 mod 10 = 0)

6

7

9

4

10
318

1735

h(x) = x mod m 4

10

999991

20

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 8
(318 mod 10 = 8)

6

7

9

4

10

318
999991

1735

h(x) = x mod m 4

318

20

10

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 1
(999991 mod 10 = 1)

6

7

9

4

10

318

999991
1735

h(x) = x mod m 4

318

999991

20

10

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 5
(1735 mod 10 = 5)

6

7

9

4

10

318

999991
1735

h(x) = x mod m 4

318

999991

1735

20

10

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

store at index 0
(20 mod 10 = 0)

6

7

9

4

10

318

999991
1735

20

h(x) = x mod m 4

12

318

999991

1735

10 Index 0
already
has an
element ‼

COLLISION!

Modular Hashing

1. Pick a hash table size that is not much larger than the number
of elements to be stored .

2. Use the following hash function: .

m
n

h(x) = x mod m

Example.

A table with m = 10 cells

elements to be stored
n = 6

0

1

2

3

4

5

8

6

7

9

4

10

318

999991
1735

20

4

12

318

999991

1735

10

Since m = 10: 0, 10, 20, 30, etc. all map to index 0,
 1, 11, 21, 31, etc. all map to index 1, etc.
How can we deal with such collisions?

!

Index 0
already
has an
element ‼

COLLISION!

store at index 0
(20 mod 10 = 0)

h(x) = x mod m

Collision Resolution using Separate Chaining

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

7

9 19

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

125

Collision Resolution using Separate Chaining

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

7

9 19

insert(x) : table[h(x)].addToTail(x)

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

125

Collision Resolution using Separate Chaining

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

115

7

9 19

insert(x) : table[h(x)].addToTail(x)

use the hash function to
know which linked list x

should be added to

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

Collision Resolution using Separate Chaining

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

7

9 19

insert(x) : table[h(x)].addToTail(x)

search the linked list for x
and remove it if found

remove(x) : table[h(x)].remove(x)

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

125

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

125

7

9 19

insert(x) : table[h(x)].addToTail(x)

remove(x) : table[h(x)].remove(x)

search(x) : return table[h(x)].find(x)

Collision Resolution using Separate Chaining

Idea. Allow each cell in the table to hold more than one element.
Implementation. Define the hash table as an array of linked lists.

An array of
m = 10

linked lists

0

1

2

3

4

5

8

6

7

9

10 0 110

21 741

12 332 2

4 5064

125

7

9 19

insert(x) : table[h(x)].addToTail(x)

remove(x) : table[h(x)].remove(x)

search(x) : return table[h(x)].find(x)

Is the running
time still ?O(1)

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

insert(x) table[h(x)].addToTail(x)

operation implementation best case worst case

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

insert(x) table[h(x)].addToTail(x) O(1) O(1)

operation implementation best case worst case

the running time is
independent of the

chain length!

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

insert(x) table[h(x)].addToTail(x) O(1) O(1)

remove(x) table[h(x)].remove(x)

search(x) return table[h(x)].find(x)

operation implementation best case worst case

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

insert(x) table[h(x)].addToTail(x) O(1) O(1)

remove(x) table[h(x)].remove(x) O(1)

search(x) return table[h(x)].find(x) O(1)

operation implementation best case worst case

if the chain
is empty

remove from here

search here

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

x found
here

insert(x) table[h(x)].addToTail(x) O(1) O(1)

remove(x) table[h(x)].remove(x) O(1) O(n)

search(x) return table[h(x)].find(x) O(1) O(n)

operation implementation best case worst case

if all the elements are in one chain
and x is found at the end of that chain

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

x found
here

insert(x) table[h(x)].addToTail(x) O(1) O(1)

remove(x) table[h(x)].remove(x) O(1) O(n)

search(x) return table[h(x)].find(x) O(1) O(n)

operation implementation best case worst case

Running Time

Different chain lengths?

m = 6
n = 12

m = 6
n = 12

m = 6
n = 12

insert(x) table[h(x)].addToTail(x) O(1) O(1)

remove(x) table[h(x)].remove(x) O(1) O(n)

search(x) return table[h(x)].find(x) O(1) O(n)

operation implementation best case worst case

Good news. The running time is in many practical applications.O(1)!

Load Factor. The average chain length in the table .= n /m
Examples.

m = 6
n = 12
Load factor (n /m) = 2

m = 6
n = 90
Load factor (n /m) = 15

When do hash tables perform well?

Load Factor. The average chain length in the table .= n /m

m = 6
n = 12
Load factor (n /m) = 2

Examples.

m = 6
n = 90
Load factor (n /m) = 15

Assumption 1. Elements are distributed uniformly in the table.

Under this assumption, search and remove run in O(n /m)

When do hash tables perform well?

Load Factor. The average chain length in the table .= n /m
Examples.

m = 6
n = 12
Load factor (n /m) = 2

Assumption 1. Elements are distributed uniformly in the table.

Under this assumption, search and remove run in O(n /m)

m = 6
n = 12
Load factor (n /m) = 2

m = 6
n = 90
Load factor (n /m) = 15

X

When do hash tables perform well?

uniformly
distributed

uniformly
distributed

Load Factor. The average chain length in the table .= n /m
Examples.

Assumption 1. Elements are distributed uniformly in the table.

Under this assumption, search and remove run in

Assumption 2. n is not much larger or much smaller than m.

Under this assumption, is a small constant, which means
that

O(n /m)

n /m
O(n /m) = O(1)m = 6

n = 12
Load factor (n /m) = 2 X

✓

m = 6
n = 12
Load factor (n /m) = 2

m = 6
n = 90
Load factor (n /m) = 15 X

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

If not true, chains can become very
long (of length in the worst case).n

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

If not true, chains can become very
long (of length in the worst case).n

Examples.

✓ Hashing phone numbers of PSUT students.
✓ Hashing birth days (day and month) of PSUT students.

X Hashing timestamps of assignment submissions across a year.
 clustered around certain hours of the day

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

If not true, chains can become very
long (of length in the worst case).n

Examples.

✓ Hashing phone numbers of PSUT students.
✓ Hashing birth days (day and month) of PSUT students.

X Hashing timestamps of assignment submissions across a year.
 clustered around certain hours of the day

When do hash tables perform well?

If an adversary has enough information about your hash function and hash
table, they can send a large set of carefully chosen elements that hash to the
same chain. This will heavily degrade the performance of the hash table!

Denial of Service Attacks

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

If not true, chains can become very
long (of length in the worst case).n

If true, search and remove
run in O(n /m)

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

If not true, chains can become very
long (of length in the worst case).n

If : wasted space
If : very long chains

m ≫ n
m ≪ n

If true, search and remove
run in O(n /m)

Assumption 2.
n is not much larger
or much smaller than m.

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

Can be guaranteed by resizing
the table up/down to keep
around .

m
1
4 n

If not true, chains can become very
long (of length in the worst case).n

If : wasted space
If : very long chains

m ≫ n
m ≪ n

If true, search and remove
run in O(n /m)

Assumption 2.
n is not much larger
or much smaller than m.

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

Can be guaranteed by resizing
the table up/down to keep
around .

m
1
4 n

If not true, chains can become very
long (of length in the worst case).n

If : wasted space
If : very long chains

m ≫ n
m ≪ n

If true, O(n /m) = O(1)If true, search and remove
run in O(n /m)

Assumption 2.
n is not much larger
or much smaller than m.

When do hash tables perform well?

Assumption 1.
Elements are distributed
uniformly in the table.

Not guaranteed to be true, but
true in many practical applications.

Can be guaranteed by resizing
the table up/down to keep
around .

m
1
4 n

If not true, chains can become very
long (of length in the worst case).n

If : wasted space
If : very long chains

m ≫ n
m ≪ n

If true, O(n /m) = O(1)If true, search and remove
run in O(n /m)

Assumption 2.
n is not much larger
or much smaller than m.

Conclusion. Hash tables implemented with separate chaining perform the insert,
search and remove operations in assuming the load factor is a small constant
and the elements are distributed uniformly across the chains in the table.

O(1)
✓

When do hash tables perform well?

Exercise. Resizing Hash Tables

How does the above hash table look like after resizing it to become of size m=8?

4

1 5

6 10

9

7

0

1

2

3

4

1 5

6 10

9

7

0

1

2

3

4

5

6

7

10

1

6

5

0

1

2

3

4

5

6

7

A B

4

1 5

6 10

9

7

0

1

2

3

4

5

6

7

C

8

4

9

7

4

1 5

6 10

9

7

0

1

2

3

4

5

6

7

10

1

6

5

0

1

2

3

4

5

6

7

A B

4

1 5

6 10

9

7

0

1

2

3

4

5

6

7

C

8

4

9

7

How does the above hash table look like after resizing it to become of size m=8?

All items need to be rehashed after resizing the table!

Exercise. Resizing Hash Tables

4

1 5

6 10

9

7

0

1

2

3

C++

Coding Demo

What's in a Name?

Ground meet (English)
Viande hachée (French)

Chopped cilantro (English)
Coriandre hachée (French)

Chopped parsley (English)
Persil hachée (French)

Hatchet (English)
Hache (French)

Coding Interview Question

Design a data structure that supports insert, search and remove in in the
worst case and in in most practical applications.

O(log n)
O(1)

Coding Interview Question

Design a data structure that supports insert, search and remove in in the
worst case and in in most practical applications.

O(log n)
O(1)

Answer.
Use separate chaining with AVL trees instead of singly linked lists!

Coding Interview Question

Design a data structure that supports insert, search and remove in in the
worst case and in in most practical applications.

O(log n)
O(1)

Answer.
Use separate chaining with AVL trees instead of singly linked lists!

Any reason to use singly-linked lists for
chaining instead of AVL trees?

Coding Interview Question

Design a data structure that supports insert, search and remove in in the
worst case and in in most practical applications.

O(log n)
O(1)

Answer.
Use separate chaining with AVL trees instead of singly linked lists!

• Singly-linked lists are simpler and require less memory
than AVL trees.

• They also can be faster than AVL trees if the number
of elements they store is very small.

• BSTs require a definition of order (<, > and ==),
whereas linked lists require only a definition for
equality.

Any reason to use singly-linked lists for
chaining instead of AVL trees?

Java's hash table implementation uses linked lists.
However, if a chain's length exceeds a certain
threshold, the chain is converted to a balanced BST.

Hashing Strings

How can strings be hashed?

Hashing Strings

How can strings be hashed?

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97

0

1

2

3

4

5

6

7

8

9

m = 10

ant

Hashing Strings

How can strings be hashed?

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98

ant

0

1

2

3

4

5

6

7

8

9

ball

m = 10

Hashing Strings

How can strings be hashed?

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.

0

1

2

3

4

5

6

7

8

9

m = 10

antidisestablishmentarianismant

ball

Hashing Strings

How can strings be hashed?

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.
 "dog" → 100, "doll" → 100, "fly" → 102, "goal" → 103, "girl"→ 103

0

1

2

3

4

5

6

7

8

9

m = 10

dog doll

fly

goal girl

antidisestablishmentarianismant

ball

Hashing Strings

How can strings be hashed?

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language
and in many practical applications.

First letter frequencies in an English dictionary

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.

Hashing Strings

How can strings be hashed?

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language.

2. There will be a very limited number of chains used (e.g. 26, 52, 127 or 256) regardless of
the table size.

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.

Hashing Strings

How can strings be hashed?

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language.

2. There will be a very limited number of chains used (e.g. 26, 52, 127 or 256) regardless of
the table size.

English
language

letters
lower and
upper case

letters

7-bit
ASCII

8-bit ASCII

Solution # 1.
Convert to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.

Hashing Strings

How can strings be hashed?

Problem. The hashed strings are unlikely to be uniformly distributed in the table.

1. The distribution of first character frequencies is not uniform in the English language.

2. There will be a very limited number of chains used (e.g. 26, 52, 127 or 256) regardless of
the table size.

long chains at indices
between 'a'=97 and
'z'=122

empty chains at
indices < 'a'=97

An illustration of chains
in a hash table storing
dictionary words based
on their first character

empty chains at
indices > 'z'=122

Solution # 1.
Convert the string to an integer using the ASCII value of the first character of the string.
Examples. "ant" → 97, "ball" → 98, "antidisestablishmentarianism" → 97.

Hashing Strings

How can strings be hashed?

Solution # 2.
Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" → 97, "am" → 97+155=252, "ant" → 97+156+164=417, etc.

Hashing Strings

How can strings be hashed?

Problem. In many applications, some hash values are much more likely to occur than others.

Frequency of hash values of
words in the dictionary

Fr
eq

ue
nc

y

Hash value

Solution # 2.
Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" → 97, "am" → 97+155=252, "ant" → 97+156+164=417, etc.

Hashing Strings

How can strings be hashed?

Problem. Very different strings get the same integer value (many collisions). For example:

int value strings

wormy, stunt, puppy, tutor574

snow, soup, tusk, suez, winy455

900 portrays, pronouns, protests, robustly, textures, typhoons

1726 multidimensional, terminologically, unaccountability

796 pursuit, puzzler, stylist, sunspot, uproots

1120 interrupts, introverts, oppressors, repository, transports

456 guys, lust, rots, runs, sort, sums, town, twit

All permutations of "abcd" (e.g. abdc, acdb, acbd, adbc, etc.)394

Problem. In many applications, some hash values are much more likely to occur than others.

Solution # 2.
Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" → 97, "am" → 97+155=252, "ant" → 97+156+164=417, etc.

Hashing Strings

How can strings be hashed?

Problem. Very different strings get the same integer value (many collisions). For example:

Problem. In many applications, some hash values are much more likely to occur than others.

Solution # 2.
Convert to an integer by summing the ASCII values of all the characters in the string.
Example. "a" → 97, "am" → 97+155=252, "ant" → 97+156+164=417, etc.

int value strings

wormy, stunt, puppy, tutor574

snow, soup, tusk, suez, winy455

900 portrays, pronouns, protests, robustly, textures, typhoons

1726 multidimensional, terminologically, unaccountability

796 pursuit, puzzler, stylist, sunspot, uproots

1120 interrupts, introverts, oppressors, repository, transports

456 guys, lust, rots, runs, sort, sums, town, twit

All permutations of "abcd" (e.g. abdc, acdb, acbd, adbc, etc.)394

Goal
Different strings get

different integer values

Hashing Strings

How can strings be hashed?

Solution # 3.
Assign weights to the characters based on their position in the string and compute a weighted
sum of the ASCII values of the characters.

1 2 3

1 x 102 + 2 x 101 + 3 x 100

Decimal System:
radix = 10

Hashing Strings

How can strings be hashed?

Solution # 3.
Assign weights to the characters based on their position in the string and compute a weighted
sum of the ASCII values of the characters.

1 2 3 2 3 1

1 x 102 + 2 x 101 + 3 x 100 2 x 102 + 3 x 101 + 1 x 100

Decimal System:
radix = 10

Hashing Strings

How can strings be hashed?

Solution # 3.
Assign weights to the characters based on their position in the string and compute a weighted
sum of the ASCII values of the characters.

1 2 3 2 3 1

1 x 102 + 2 x 101 + 3 x 100 2 x 102 + 3 x 101 + 1 x 100

a b c b c a

a x R2 + b x R1 + c x R0 b x R2 + c x R1 + a x R0

Decimal System:
radix = 10

A Positional System
for Characters:
pick some radix R

A Sketch Implementation (assuming R = 26)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

Go through the
characters right to left

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

sum = 0
R = 1

Example. hash_value(" A B C D ")
i

A Sketch Implementation (assuming R = 26)

Multiply the
character by R

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

sum = (1*D)
R = 1

Example. hash_value(" A B C D ")
i

A Sketch Implementation (assuming R = 26)

Increase the exponent
of R for the next
iteration
(multiply R by 26)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

Example. hash_value(" A B C D ")
i

sum = (1*D)
R = 1*26

A Sketch Implementation (assuming R = 26)

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C)
R = 1*26

Multiply the
character by R

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C)
R = 1*26*26

Increase the exponent
of R for the next
iteration
(multiply R by 26)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C) + (262*B)
R = 1*26*26

Multiply the
character by R

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C) + (262*B)
R = 1*26*26*26

Increase the exponent
of R for the next
iteration
(multiply R by 26)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C) + (262*B) + (263*A)
R = 1*26*26*26

Multiply the
character by R

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

Example. hash_value(" A B C D ")
i

sum = (1*D) + (26*C) + (262*B) + (263*A)
R = 1*26*26*26*26

A Sketch Implementation (assuming R = 26)

R and sum
can overflow!

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

sum = (1*D) + (26*C) + (262*B) + (263*A)
R = 1*26*26*26*26

Example. hash_value(" A B C D ")
i

A Sketch Implementation (assuming R = 26)

int hash_value(string & str) {
 int sum=0, R=26;

 for (int i=0; i<str.length(); i++)
 sum = (sum*R + str[i]) % m;

 return abs(sum);
}

R and sum
can overflow!

No overflow!
(assuming m is not too large)

int hash_value(string & str) {
 int sum=0, R=1;

 for (int i=str.length()-1; i>=0; i--) {
 sum += R*str[i];
 R *= 26;
 }

 return sum % m;
}

A Sketch Implementation (assuming R = 26)

int has_value(string & str) {
 int sum=0, R=26;

 for (int i=0; i<str.length(); i++)
 sum = (sum*R + str[i]) % m;

 return abs(sum);
}

Go through the
characters left to right

A Sketch Implementation (assuming R = 26)

Each iteration in the loop multiplies the
sum by R and adds one character.

This is similar to how 9375 in decimal
(for example) can be computed:

sum = 0
sum = sum * 10 + 9 = 9
sum = sum * 10 + 3 = 93
sum = sum * 10 + 7 = 937
sum = sum * 10 + 5 = 9375

int has_value(string & str) {
 int sum=0, R=26;

 for (int i=0; i<str.length(); i++)
 sum = (sum*R + str[i]) % m;

 return abs(sum);
}

A Sketch Implementation (assuming R = 26)

(x1 + x2 + x3 + ... + xn) % m
is equivalent to:

((x1%m) + x2) % m) + x3) % m ... + xn) % m

Example:
(5 + 6 + 23) % 10 = 34 % 10 = 4

(((5 % 10) + 6) % 10) + 23) % 10 =
(((5) + 6) % 10) + 23) % 10 =
((11) % 10) + 23) % 10 =
((1) + 23) % 10 =
(24) % 10 = 4

int has_value(string & str) {
 int sum=0, R=26;

 for (int i=0; i<str.length(); i++)
 sum = (sum*R + str[i]) % m;

 return abs(sum);
}

Hashing Strings

ch
ai

n
le

ng
th

index

Result of hashing words from the dictionary
(n=70566) into a hash table with m=20000 chains

(using R=31)

Hash Tables vs Balanced BSTs

insert remove search

O(log n)Balanced BST

average worst

Hash Table with
Separate Chaining

O(log n)

average worst

O(log n)

average worst

O(log n) O(log n) O(log n)

O(1) O(1) O(1) O(n) O(1) O(n)

Asymptotic Analysis

Under reasonable
assumptions

Hash Tables vs Balanced BSTs

insert remove search

O(log n)Balanced BST

average worst

Hash Table with
Separate Chaining

O(log n)

average worst

O(log n)

average worst

O(log n) O(log n) O(log n)

O(1) O(1) O(1) O(n) O(1) O(n)

Asymptotic Analysis

Hash tables are faster on average but
do not guarantee good performance
for all applications. A balanced BST is
typically slightly slower but is
guaranteed not to perform badly.

Notes. Tests were performed using the C++ STL set container as
the balanced BST and the C++ STL unordered_set container
as the hash table. Each insert operation performs a search for the
element before inserting it to avoid duplicates.
(Using a MacBook Pro with 2.6 GHz 6-Core Intel Core
i7 and 16 GB DDR4 RAM)

✓

14.6784 sec
13.2523 sec
16.5524 sec

6.11673 sec
3.25825 sec
5.39692 sec

Insert
Search
Remove

Balanced BST Hash Table

Experimental Analysis. Insert, remove and search for 10,000,000 random integers.

Hash Tables vs Balanced BSTs

Experimental Analysis.

Other Factors.

Hash tables do not support ordered operations efficiently like BSTs (e.g. max(), min(),
median(), count_less_than(x), smallest_above(x), largest_below(x), etc.)

insert remove search

O(log n)Balanced BST

average worst

Hash Table with
Separate Chaining

O(log n)

average worst

O(log n)

average worst

O(log n) O(log n) O(log n)

O(1) O(1) O(1) O(n) O(1) O(n)

Asymptotic Analysis

14.6784 sec
13.2523 sec
16.5524 sec

6.11673 sec
3.25825 sec
5.39692 sec

Insert
Search
Remove

Balanced BST Hash Table

Insert, remove and search for 10,000,000 random integers.

Finding the max!

template <class T>
T HashTable<T>::max() const {
 if (is_empty())
 throw "Attempting to get the max from an empty table."

 DLLNode<T>* max_node = nullptr;
 for (int i = 0; i < m; i++) {

 DLLNode<T>* c = table[i].head_node();
 while (c != nullptr) {
 if (max_node == nullptr) max_node = c;
 else if (c->get_val() > max_node->get_val()) max_node = c;

 c = c->get_next();
 }
 }

 return max_node->get_val();
}

Finding the max!

go through every chain
in the table.

go through every node
in that chain

Running Time. Data compares
 Total amount of work.

Even if the table is empty, the code still creates a pointer for every empty chain!

O(n)
O(n + m)

template <class T>
T HashTable<T>::max() const {
 if (is_empty())
 throw "Attempting to get the max from an empty table."

 DLLNode<T>* max_node = nullptr;
 for (int i = 0; i < m; i++) {

 DLLNode<T>* c = table[i].head_node();
 while (c != nullptr) {
 if (max_node == nullptr) max_node = c;
 else if (c->get_val() > max_node->get_val()) max_node = c;

 c = c->get_next();
 }
 }

 return max_node->get_val();
}

djb2 String Hash Function

int hash(char * str) {
 int sum = 5381;
 int c;

 while (c = *str++)
 sum = ((sum << 5)+sum) + c;

 return (sum & 0x7fffffff) % m;
}

djb2 String Hash Function

A random prime seed for the first cycle.

Could have been set to 0 or to another
value, but this was found experimentally to
produce a good distribution of hash values.

Loop through the
characters from
left to right

int hash(char * str) {
 int sum = 5381;
 int c;

 while (c = *str++)
 sum = ((sum << 5)+sum) + c;

 return (sum & 0x7fffffff) % m;
}

sum << 5 ≡ sum * 32
Adding sum again makes
it equivalent to sum * 33

Shifting and adding is
faster than multiplying

33 was found
experimentally to
distribute the hash
values well.

Equivalent to (but faster than)
returning abs(sum) % m

Assuming int is 32 bits

Hashing Other Than Integers and Strings

Composite types. Hashing an array, a user defined object or any composite type can be done
using the same logic as that of the djb2 algorithm:

 sum = 0
 sum = sum * 33 + hash(1st element)
 sum = sum * 33 + hash(2nd element)
 sum = sum * 33 + hash(3rd element)

 etc.

The elements can be array elements or data members in a class or a struct.

Floating point numbers. Given floating point numbers between MIN and MAX, the numbers can be
normalized to be between 0 and 1 and then multiplied by the number of chains:

 int hash(float x) {
 return abs((x-MIN) / (MAX-MIN) * m);
 }

Picking a Good Hash Table Size

If the hashed keys are random, then any hash table size that is around should be fine.

If the hashed keys might follow a pattern, then care must be taken when choosing the table size.

Examples.

• If the hash table size is m=12 and all the hashed keys are even numbers, only half of the
chains will be used no matter how many keys are hashed.
(0%12=0, 2%12=2, 4%12=4, 6%12=6, 8%12=8, 10%12=10, 12%12=0, 14%12=2, 16%12=4, etc.)

• If the hash table size is m=2x, then only the least significant x bits will play a role in
determining the chain indices.

• Using a prime number for the hash table size guards against such issues.

The GCC maintains the following precomputed array of hash table sizes that are prime and as
close as possible to powers of 2:

[7, 13, 31, 61, 127, 251, 509,
 1021, 2039, 4093, 8191, 16381, 32749, 65521,
 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
 1073741789, 2147483647]

m 1
4 n

