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 if apples[i+1][j] > apples[i][j+1]:  
      go down. 
 else go right.
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Problem Description.


• Goal. Collect as many apples as possible.


• Constraints. Move right or down only.


• Input. The matrix  apples[N][M] 
apples[i][j] is the number  
of apples at cell [i][j].
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• Input. The matrix  apples[N][M] 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of apples at cell [i][j].

A GREEDY efficient 
solution that does not 
always work!
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Problem Description.


• Goal. Collect as many apples as possible.


• Constraints. Move right or down only.


• Input. The matrix  apples[N][M] 
apples[i][j] is the number  
of apples at cell [i][j].

A GREEDY efficient 
solution that does not 
always work!

Which problems have 
greedy solutions that 
always work?



Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.


valid  
(respects the constraints)

maximizes or 
minimizes an 

objective function
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Non-Greedy. I can't tell yet! I must first 
know the best value I can get without 
Item 1 and compare it to the best value I 
can get with Item 1.



Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.


Example. 0-1 Knapsack.


Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.


Greedy Algorithm. Makes the best choice given the available information at the moment 
(without looking ahead or backtracking).


Example. Should we take Item 1?


Item 2 
$5 

4 kg 6kg  7 kg
3 kg

Item 1 
$10 

Item 3 
$12 

Knapsack

Non-Greedy. I can't tell yet! I must first 
know the best value I can get without 
Item 1 and compare it to the best value I 
can get with Item 1.

Greedy 1. Take it if it is  
the most valuable item!

Greedy 2. Take it if it is  
the lightest item!

Greedy 3. Take it if it has  
the maximum value per Kg.
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an optimal substructure.
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We need a proof that such a decision is safe !



Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with 
an optimal substructure.


Differences. 


A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.


Dynamic programming. Picks between solutions to multiple subproblems and 
 stores them to avoid recomputing them again.


Greedy.                                   Decide (without much effort) whether to pick Item 1 or not and  
                                                 solve: Knapsack(2 ... n, W-w1) or  Knapsack(2 ... n, W)

Dynamic Programming.            Try picking Item 1 and solve Knapsack(2 ... n, W-w1)


                          Try not picking Item 1 and solve Knapsack(2 ... n, W)


                          Decide which is better.

Item 1 Item 2 Item 3 Item 4 Item 5 Item n
W

Example. Knapsack(                                                   )
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can be reached with a sequence of locally optimal  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To prove that the greedy choice property holds, 
we must prove that a greedy strategy produces an  
optimal solution for every instance of the problem.
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Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution 
can be reached with a sequence of locally optimal  
decisions. 


To prove that the greedy choice property holds, 
we must prove that a greedy strategy produces an  
optimal solution for every instance of the problem.


To prove that a greedy strategy is not optimal it is 
enough to find one counter example.

There is no known optimal greedy 
strategy for the 0-1 Knapsack problem

$1 
7 kg  7 kg

1 kg

$100 

Counter Example. Greedy gives $1 but the  
optimal is $100.

$9 
4 kg 6 kg  7 kg

3 kg

$8 
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Counter Example. Greedy gives $12 but the  
optimal is $17.

$2 →  = $2/kg 2
15 kg  5 kg

1 kg

$5 →  = $1/kg 5
5

Counter Example. Greedy gives $2 but the  
optimal is $5.
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$9 ($3/kg) 
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3 kg
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$1  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4 kg 5kg7 Kg

3 kg
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(3 x $3/kg) + (4 x $2/kg)  
= $17 

(5 x $20/kg) + (2 x $0.33/kg)  
= $100.66 
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Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.


Greedy choice.  
Start filling with the item that has highest value per Kg.


$9 ($3/kg) 
4 kg 6kg7 Kg

3 kg

$8 ($2/kg) 
$12 ($2/kg) 

$1  
($0.33/kg) 

4 kg 5kg7 Kg

3 kg

$1  
($0.25/kg) 

$100 ($20/kg) 
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5 kg  5 kg

2 kg

$15 ($3/kg)
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Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.


Greedy choice.  
Start filling with the item that has highest value per Kg.


$9 ($3/kg) 
4 kg 6kg7 Kg

3 kg

$8 ($2/kg) 
$12 ($2/kg) 

$1  
($0.33/kg) 

4 kg 5kg7 Kg

3 kg

$1  
($0.25/kg) 

$100 ($20/kg) 

$10 ($5/kg)
5 kg  5 kg

2 kg

$15 ($3/kg)

(3 x $3/kg) + (4 x $2/kg)  
= $17 

(5 x $20/kg) + (2 x $0.33/kg)  
= $100.66 

(2 x $5/kg) + (3 x $3/kg)  
= $19 

This algorithm is optimal. 
However, we need a proof!
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Fractional Knapsack

Assume that there is an optimal solution for the fractional knapsack problem that  
does not consume the item with the highest value per Kg.
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Fractional Knapsack

Item 2

Knapsack

Item 3 Item 4 Item 5

We can replace parts of this item  
with parts of item 1 and get a better  
solution! Therefore, the solution is  
not optimal! (contradiction)

Assume that there is an optimal solution for the fractional knapsack problem that  
does not consume the item with the highest value per Kg.

Consider a set of n items sorted by value per weight.

Note. This is not a proof. However, it 
captures the essence of the argument 
for why this greedy choice is optimal.
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Item 2 Item 3 Item 4 Item 5 Item n
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inside the remaining capacity



Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order 


load = 0, i = 1 

while i <= n and load < W:


   if w[i] <= W-load:

        Take all of item i 

        load += w[i] 

        profit = profit + v[i]

    else 


 FRACTIONAL_KNAPSACK(w[], v[], n, W) 

only a fraction of the item fits 
inside the remaining capacity



Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order 


load = 0, i = 1 

while i <= n and load < W:


   if w[i] <= W-load:

        Take all of item i 

        load += w[i] 

        profit = profit + v[i]

    else

        Take (W - load) of item i 

        profit = profit + (W - load) * v[i]/w[i] 

        load = W 

    

    i = i+1


 FRACTIONAL_KNAPSACK(w[], v[], n, W) 



Fractional Knapsack (Algorithm)

 FRACTIONAL_KNAPSACK(w[], v[], n, W) 

Θ(n log n)

O(n)

Sort w and v by v[i]/w[i] in decreasing order 


load = 0, i = 1 

while i <= n and load < W:


   if w[i] <= W-load:

        Take all of item i 

        load += w[i] 

        profit = profit + v[i]

    else

        Take (W - load) of item i 

        profit = profit + (W - load) * v[i]/w[i] 

        load = W 

    

    i = i+1


Running Time. Θ(n log n)
Lesson. Greedy algorithms are typically simple and efficient.
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Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?
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Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.


Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?


 
         1x50¢   +   1x25¢  +   2x10¢            +  4x1¢


Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination 
as much as possible and then move to the next.


Counter Example. Consider the denominations {25¢, 20¢, 10¢, 1¢}. What is the minimum  
number of coins needed to pay 40¢ ?


    Greedy:  25¢ + 10¢ + 1¢ + 1¢ + 1¢ + 1¢ + 1¢ = 40¢ (7 coins). 
    Optimal: 20¢ + 20¢ = 40¢ (2 coins)



Interview Problem

slide by Kevin Wayne

optional



Interview Problem

adapted from a slide by Kevin Wayne

 create an array opt[] of size V+1


 for (v = 1 to V)

    opt[v] = INFINITY

    for (i = 1 to n)

        if (d[i] > v) continue

        else opt[v] = min(opt[v], 1 + opt[v - d[i]])

optional
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Problem. Given n activities that require an exclusive use of a common resource, find the 
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                 Maximum number of events that can be held in a room.
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Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the 
maximum number of non-overlapping activities.


Examples. Maximum number of jobs that can be done by a person. 
                 Maximum number of events that can be held in a room.


Notation.  -   is the set of activities.


                 -   needs needs the activity during  (  = start time and  = finish time) 
                    where .


                 -   and  are compatible if  and  do not overlap.

S = {a1, a2, a3, . . . , an}
ai [ si, fi ) si fi

0 ≤ si < fi < ∞
ai aj [ si, fi ) [ sj, fj )

image by Kevin Wayne
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Rationale. Start the activities as early as possible. 


Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.


Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.


Greedy strategy # 4. Earliest finish time first. 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Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible. 


Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.


Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.


Greedy strategy # 4. Earliest finish time first. 
Rationale. Activities that finish early leave more time to be filled with other activities later.


Greedy strategy # 5. Latest start time first. 
Rationale. Activities that start late leave more time to be filled with other activities earlier.

Counter Examples

Greedy: 1     Optimal: 2

Greedy: 1     Optimal: 2

Greedy: 3     Optimal: 4
optimal



Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. 
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G = sorted in  
increasing  
finish time
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p1 g1

g1 p1 g1 p2 ⟶ pm

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. 
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considering only activities that start after the finish time of  and .


Proof. If this is not true, then P is not optimal (contradiction).


Hence, we can apply the same argument used in Observation 1 to show that the first activity 
( ) in the optimal solution for the new subproblem can be replaced by .


Rolling this out, we conclude that for all , every  can be replaced by .
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• If  k > m, then P is not optimal.

• If  k < m, then there is an activity that starts after  that G can still pick!
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Greedy Proofs (General Pattern)

• Assume that there is an optimal solution P and a greedy solution G.


• Show that we can always exchange the first choice in P with the first choice in G  
without making the solution worse.


• Show that the problem has an optimal substructure and thus the same argument 
applies to the solution of the subproblem after making the first choice.


• Show that P can't be better than G.

This pattern in proving the optimality of greedy solutions is commonly used:
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Θ(n log n)

Θ(n)
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