CS11313 - Spring 2022

Design \& Analysis of Algorithms

Greedy Algorithms

Ibrahim Albluwi

Reminder: Collecting Apples

Problem Description.

- Goal. Collect as many apples as possible.
- Constraints. Move right or down only.
- Input. The matrix apples[N][M] apples [i][j] is the number of apples at cell [i][j].

Solution \# 1.

if apples $[\mathbf{i}+1][j]>$ apples $[\mathbf{i}][j+1]$: go down.
else go right. $i+T M A$
start

Total $=50$

Total $=104$

Reminder: Collecting Apples

Problem Description.

- Goal. Collect as many apples as possible.
- Constraints. Move right or down only.
- Input. The matrix apples[N][M] apples [i][j] is the number of apples at cell [i][j].

Solution \# 1.

if apples[i+1][j] > apples[i][j+1]: go down.
else go right. $1+1,4$,

A GREEDY efficient solution that does not always work!
start

Total $=50$

Total $=104$

Reminder: Collecting Apples

Problem Description.

- Goal. Collect as many apples as possible.
- Constraints. Move right or down only.
- Input. The matrix apples [N] [M] apples [i][j] is the number of apples at cell [i][j].

Solution \# 1.
if apples[i+1][j] > apples[i][j+1]: go down.

A GREEDY efficient solution that does not always work!

Which problems have greedy solutions that always work?
start

Total $=50$

Total $=104$

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.
Objective Function: Choose the subset of items with the maximum value.
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.
Objective Function: Choose the subset of items with the maximum value.
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment (without looking ahead or backtracking).

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.
Objective Function: Choose the subset of items with the maximum value.
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment (without looking ahead or backtracking).

Example. Should we take Item 1?

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.
Objective Function: Choose the subset of items with the maximum value.
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment (without looking ahead or backtracking).

Example. Should we take Item 1?

Non-Greedy. I can't tell yet! I must first know the best value I can get without Item 1 and compare it to the best value I can get with Item 1.

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.
Objective Function: Choose the subset of items with the maximum value.
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment (without looking ahead or backtracking).

Example. Should we take Item 1?

Non-Greedy. I can't tell yet! I must first know the best value I can get without Item 1 and compare it to the best value I can get with Item 1.

Greedy 1 . Take it if it is the most valuable item!

Greedy 2. Take it if it is the lightest item!

Greedy 3. Take it if it has
the maximum value per Kg .

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Differences.
A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and then solves a single subproblem.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Differences.
A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and then solves a single subproblem.
Dynamic programming. Picks between solutions to multiple subproblems and stores them to avoid recomputing them again.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and then solves a single subproblem.
Dynamic programming. Picks between solutions to multiple subproblems and stores them to avoid recomputing them again.

Example. Knapsack (Item 1

Greedy.
Decide (without much effort) whether to pick Item 1 or not and solve: Knapsack ($2 \ldots \mathrm{n}, \mathrm{W}-\mathrm{w}_{1}$) or Knapsack ($2 \ldots \mathrm{n}$, W)

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and then solves a single subproblem.
Dynamic programming. Picks between solutions to multiple subproblems and stores them to avoid recomputing them again.

Example. Knapsack (Item 1

Greedy.

Decide (without much effort) whether to pick Item 1 or not and solve: Knapsack ($2 \ldots \mathrm{n}, \mathrm{W}-\mathrm{w}_{1}$) or Knapsack ($2 \ldots \mathrm{n}$, W)

We need a proof that such a decision is safe !!

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and then solves a single subproblem.
Dynamic programming. Picks between solutions to multiple subproblems and stores them to avoid recomputing them again.

Greedy. Decide (without much effort) whether to pick Item 1 or not and solve: Knapsack ($2 \ldots \mathrm{n}, \mathrm{W}-\mathrm{w}_{1}$) or Knapsack ($2 \ldots \mathrm{n}$, W)

Dynamic Programming. __ Try picking Item 1 and solve Knapsack (2 . . n, $\mathrm{W}-\mathrm{w}_{1}$) Try not picking Item 1 and solve Knapsack (2 . . n, W) Decide which is better.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Greedy choice \# 2. Take the lightest item first.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Greedy choice \# 2. Take the lightest item first.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Greedy choice \# 3. Take the item with the highest value per Kg.

Greedy Algorithms Don't Always Work!

Greedy choice \# 1. Take the most valuable item first.

Greedy choice \# 2. Take the lightest item first.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Greedy choice \# 3. Take the item with the highest value per Kg.

$$
\$ 5 \rightarrow \frac{5}{5}=\$ 1 / \mathrm{kg}
$$

Counter Example. Greedy gives $\$ 2$ but the optimal is $\$ 5$.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution can be reached with a sequence of locally optimal decisions.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Counter Example. Greedy gives $\$ 2$ but the optimal is $\$ 5$.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution can be reached with a sequence of locally optimal decisions.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Counter Example. Greedy gives $\$ 2$ but the optimal is $\$ 5$.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution can be reached with a sequence of locally optimal decisions.

Counter Example. Greedy gives $\$ 12$ but the optimal is $\$ 17$.

Counter Example. Greedy gives $\$ 1$ but the optimal is $\$ 100$.

Counter Example. Greedy gives $\$ 2$ but the optimal is $\$ 5$.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to take fractions of the items.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to take fractions of the items.

Greedy choice.
Start filling with the item that has highest value per Kg.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to take fractions of the items.

Greedy choice.
Start filling with the item that has highest value per Kg.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to take fractions of the items.

Greedy choice.
Start filling with the item that has highest value per Kg.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to take fractions of the items.

Greedy choice.

This algorithm is optimal. However, we need a proof!

Start filling with the item that has highest value per Kg.

Fractional Knapsack

Consider a set of n items sorted by value per weight.

Fractional Knapsack

Consider a set of n items sorted by value per weight.

Assume that there is an optimal solution for the fractional knapsack problem that does not consume the item with the highest value per Kg.

Fractional Knapsack

Consider a set of n items sorted by value per weight.

Assume that there is an optimal solution for the fractional knapsack problem that does not consume the item with the highest value per Kg.

We can replace parts of this item with parts of item 1 and get a better solution! Therefore, the solution is not optimal! (contradiction)

Fractional Knapsack (Algorithm)

FRACTIONAL_KNAPSACK (w[], v[], n, w)
Sort w and v by $v[i] / w[i]$ in decreasing order

Fractional Knapsack (Algorithm)

```
FRACTIONAL_KNAPSACK(w[], v[], n, W)
Sort w and v by v[i]/w[i] in decreasing order
load = 0, i = 1
while i <= n and load < W:
```


Fractional Knapsack (Algorithm)

```
FRACTIONAL_KNAPSACK(w[], v[], n, W)
Sort w and v by v[i]/w[i] in decreasing order
load = 0, i = 1
while i <= n and load < W:
    if w[i] <= W-load:
    all of the item fits inside the
    remaining capacity
    else
    only a fraction of the item fits
        inside the remaining capacity
```


Fractional Knapsack (Algorithm)

```
FRACTIONAL_KNAPSACK(w[], v[], n, W)
Sort w and v by v[i]/w[i] in decreasing order
load = 0, i = 1
while i <= n and load < W:
    if w[i] <= W-load:
    Take all of item i
    load += w[i]
    profit = profit + v[i]
    else
        only a fraction of the item fits
        inside the remaining capacity
```


Fractional Knapsack (Algorithm)

```
FRACTIONAL_KNAPSACK(w[], v[], n, W)
Sort w and v by v[i]/w[i] in decreasing order
load = 0, i = 1
while i <= n and load < W:
    if w[i] <= W-load:
        Take all of item i
        load += w[i]
        profit = profit + v[i]
    else
        Take (W - load) of item i
        profit = profit + (W - load) * v[i]/w[i]
        load = W
    i = i+1
```


Fractional Knapsack (Algorithm)

```
FRACTIONAL_KNAPSACK(w[], v[], n, W)
Sort w and v by v[i]/w[i] in decreasing order & \Theta(n\operatorname{log}n)
load = 0, i = 1
while i <= n and load < W:
    if w[i] <= W-load:
        Take all of item i
        load += w[i]
        profit = profit + v[i]
                                    O(n)
    else
        Take (W - load) of item i
        profit = profit + (W - load) * v[i]/w[i]
        load = W
    i = i+1
```

Running Time. $\Theta(n \log n)$
Lesson. Greedy algorithms are typically simple and efficient.

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 994 using Jordanian currency?

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 994 using Jordanian currency?

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying $99 \$$ using Jordanian currency?

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination as much as possible and then move to the next.

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99d using Jordanian currency?

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination as much as possible and then move to the next.

Counter Example. Consider the denominations $\{25 \$, 20 \$, 10 \$, 1 \$\}$. What is the minimum number of coins needed to pay 40 $\$$?

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying $99 \$$ using Jordanian currency?

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination as much as possible and then move to the next.

Counter Example. Consider the denominations $\{25 \$, 20 \$, 10 \$, 1 \$\}$. What is the minimum number of coins needed to pay 40 $\$$?

```
Greedy: 25$ + 10$ + 1$ + 1$ + 1$ + 1$ + 1$ = 40$ (7 coins).
Optimal: 20$ + 20$ = 40$ (2 coins)
```


Interview Problem

Problem. Given n coin denominations $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ and a target value V, find the fewest coins needed to make change for V (or report impossible).

Subproblems. $O P T(v)=$ fewest coins needed to make change for amount v. Optimal value. $O P T(V)$.

Multiway choice. To compute $O P T(v)$,

- Select a coin of denomination $d_{i} \leq v$ for some i.
- Use fewest coins to make change for $v-d_{i}$.

Dynamic programming recurrence.

$$
O P T(v)= \begin{cases}\infty & \text { if } v<0 \\ 0 & \text { if } v=0 \\ \min _{1 \leq i \leq n}\left\{1+O P T\left(v-d_{i}\right)\right\} & \text { if } v>0\end{cases}
$$

Interview Problem

Bottom-up DP implementation.

```
create an array opt[] of size V+1
for (v = 1 to V)
    opt[v] = INFINITY
    for (i = 1 to n)
        if (d[i] > v) continue
        else opt[v] = min(opt[v], 1 + opt[v - d[i]])
```

Running time. The bottom-up DP algorithm takes $\Theta(n V)$ time.
Note. Not polynomial in input size (and no poly-time algorithm is known).
$n, \log V$

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person.
Maximum number of events that can be held in a room.

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person.
Maximum number of events that can be held in a room.
Notation. - $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is the set of activities.

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person.
Maximum number of events that can be held in a room.
Notation. - $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is the set of activities.

- a_{i} needs needs the activity during $\left[s_{i}, f_{i}\right)\left(s_{i}=\right.$ start time and $f_{i}=$ finish time $)$ where $0 \leq s_{i}<f_{i}<\infty$.

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person.
Maximum number of events that can be held in a room.
Notation. - $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is the set of activities.

- a_{i} needs needs the activity during $\left[s_{i}, f_{i}\right)\left(s_{i}=\right.$ start time and $f_{i}=$ finish time $)$ where $0 \leq s_{i}<f_{i}<\infty$.
- a_{i} and a_{j} are compatible if $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right.$) do not overlap.

Activity Selection

Greedy strategy \# 1. Earliest start time first.
Rationale. Start the activities as early as possible.

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first.
Rationale. Start the activities as early as possible.

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first.
Rationale. Start the activities as early as possible.
Greedy: 1 Optimal: 2

Greedy strategy \# 2. Shortest activity first. Rationale. Shorter activities tend to have less conflicts.

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first. Rationale. Start the activities as early as possible.

Greedy strategy \# 2. Shortest activity first. Rationale. Shorter activities tend to have less conflicts.

Greedy strategy \# 3. Least number of conflicts first. Rationale. Less conflicts means more compatible activities.

Greedy: 1 Optimal: 2

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first.
Rationale. Start the activities as early as possible.

Greedy strategy \# 2. Shortest activity first.
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy \# 3. Least number of conflicts first. Rationale. Less conflicts means more compatible activities.

Greedy: 3 Optimal: 4

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first. Rationale. Start the activities as early as possible.

Greedy strategy \# 2. Shortest activity first.
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy \# 3. Least number of conflicts first. Rationale. Less conflicts means more compatible activities.

Greedy: 1 Optimal: 2

Greedy: 1 Optimal: 2

Greedy strategy \# 4. Earliest finish time first.
Rationale. Activities that finish early leave more time to be filled with other activities later.
Greedy strategy \# 5. Latest start time first.
Rationale. Activities that start late leave more time to be filled with other activities earlier.

Activity Selection

Counter Examples

Greedy strategy \# 1. Earliest start time first. Rationale. Start the activities as early as possible.

Greedy: 1 Optimal: 2

Greedy strategy \# 2. Shortest activity first.
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy \# 3. Least number of conflicts first. Rationale. Less conflicts means more compatible activities.

optimal

Greedy strategy \# 4. Earliest finish time first.
Rationale. Activities that finish early leave more time to be filled with other activities later.
Greedy strategy \# 5. Latest start time first.
Rationale. Activities that start late leave more time to be filled with other activities earlier.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1 . We can always replace p_{1} in P by g_{1} from G.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$. Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$. Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.

Observation 2. Pis made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$. Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.

Observation 2. Pis made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.
Proof. If this is not true, then P is not optimal (contradiction).

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$.
Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.
Observation 2. Pis made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.
Proof. If this is not true, then P is not optimal (contradiction).
Hence, we can apply the same argument used in Observation 1 to show that the first activity $\left(p_{2}\right)$ in the optimal solution for the new subproblem can be replaced by g_{2}.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$.
Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.
Observation 2. P is made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.
Proof. If this is not true, then P is not optimal (contradiction).
Hence, we can apply the same argument used in Observation 1 to show that the first activity $\left(p_{2}\right)$ in the optimal solution for the new subproblem can be replaced by g_{2}.

Rolling this out, we conclude that for all $i \leq k$, every p_{i} can be replaced by g_{i}.

- If $k=m$, then G is optimal.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

$G=$	g_{1}	g_{2}	g_{3}	\ldots	g_{i}	$\ldots \ldots$	g_{k}
$P=$	p_{1}	p_{2}	p_{3}	\ldots	p_{m}	If G has more then P is not optimal!	

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$.
Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.
Observation 2. Pis made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.
Proof. If this is not true, then P is not optimal (contradiction).
Hence, we can apply the same argument used in Observation 1 to show that the first activity $\left(p_{2}\right)$ in the optimal solution for the new subproblem can be replaced by g_{2}.

Rolling this out, we conclude that for all $i \leq k$, every p_{i} can be replaced by g_{i}.

- If $k=m$, then G is optimal.
- If $k>m$, then P is not optimal.

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities. We would like to show that $m=k$ (i.e. G is as good as the optimal solution).

Observation 1. We can always replace p_{1} in P by g_{1} from G.
Proof. Since g_{1} is guaranteed to finish before (or with) p_{1}, g_{1} is compatible with $p_{2} \longrightarrow p_{m}$. Hence, there is always an optimal solution that starts with the activity that finishes first $\left(g_{1}\right)$.

Observation 2. P is made of $p_{1}+$ an optimal solution to the activity selection problem considering only activities that start after the finish time of g_{1} and p_{1}.
Proof. If this is not true, then P is not optimal (contradiction).
Hence, we can apply the same argument used in Observation 1 to show that the first activity $\left(p_{2}\right)$ in the optimal solution for the new subproblem can be replaced by g_{2}.

Rolling this out, we conclude that for all $i \leq k$, every p_{i} can be replaced by g_{i}.

- If $k=m$, then G is optimal.
- If $k>m$, then P is not optimal.
- If $k<m$, then there is an activity that starts after g_{k} that G can still pick!

Greedy Proofs (General Pattern)

This pattern in proving the optimality of greedy solutions is commonly used:

- Assume that there is an optimal solution P and a greedy solution G.
- Show that we can always exchange the first choice in P with the first choice in G without making the solution worse.
- Show that the problem has an optimal substructure and thus the same argument applies to the solution of the subproblem after making the first choice.
- Show that P can't be better than G.

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

3

6
7

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let A = the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

6
7

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SeLECT(s[], f[], n)
```

Sort the activities by
increasing finish time
// Let $k=$ the index of
the last taken activity
// Let $A=$ the indices
of the taken activities
$\mathrm{k}=0$
Add k to A
for $i=1$ to $n-1$:
if $s[i]>f[k]:$
$\mathrm{k}=\mathrm{i}$
Add k to A
return A

Activity Selection (Algorithm)

```
SELECT(s[], f[], n)
Sort the activities by
increasing finish time
\(\longrightarrow \Theta(n \log n)\)
// Let \(k=\) the index of
the last taken activity
// Let A = the indices
of the taken activities
\(\mathrm{k}=0\)
Add k to A
for \(\mathrm{i}=1\) to \(\mathrm{n}-1\) :
    if \(s[i]>f[k]:\)
    \(k=i\)
    Add \(k\) to \(A\)
return A
```


6 optional

Interview Problem

Weighted interval scheduling

- Job j starts at s_{j}, finishes at f_{j}, and has weight $w_{j}>0$.
- Two jobs are compatible if they don't overlap.
- Goal: find max-weight subset of mutually compatible jobs.

Interview Problem

Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.

Def. $p(j)=$ largest index $i<j$ such that job i is compatible with j.
Ex. $p(8)=1, p(7)=3, p(2)=0$.
i is leftmost interval that ends before j begins

time

Interview Problem

Dynamic programming: binary choice
Def. $\operatorname{OPT}(j)=$ max weight of any subset of mutually compatible jobs for subproblem consisting only of jobs $1,2, \ldots, j$.

Goal. $\operatorname{OPT}(n)=$ max weight of any subset of mutually compatible jobs.

Case 1. $O P T(j)$ does not select job j.

- Must be an optimal solution to problem consisting of remaining jobs $1,2, \ldots, j-1$.

Case 2. $O P T(j)$ selects job j.

- Collect profit w_{j}.
- Can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$.
- Must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$.

Bellman equation. $O P T(j)= \begin{cases}0 & \text { if } j=0 \\ \max \left\{O P T(j-1), w_{j}+O P T(p(j))\right\} & \text { if } j>0\end{cases}$

