
Design & Analysis

 Algorithms

Greedy Algorithms

of

Ibrahim Albluwi

CS11313 - Spring 2022

Reminder: Collecting Apples

113

327

4511

198

10

1

11

50

1

2

22

3

start

end
Solution # 1.

 if apples[i+1][j] > apples[i][j+1]:  
 go down. 
 else go right.

Total = 50

113

327

4511

198

10

1

11

50

1

2

22

3

Total = 104

Problem Description.

• Goal. Collect as many apples as possible.

• Constraints. Move right or down only.

• Input. The matrix apples[N][M] 
apples[i][j] is the number  
of apples at cell [i][j].

Reminder: Collecting Apples

113

327

4511

198

10

1

11

50

1

2

22

3

start

end
Solution # 1.

 if apples[i+1][j] > apples[i][j+1]:  
 go down. 
 else go right.

Total = 50

113

327

4511

198

10

1

11

50

1

2

22

3

Total = 104

Problem Description.

• Goal. Collect as many apples as possible.

• Constraints. Move right or down only.

• Input. The matrix apples[N][M] 
apples[i][j] is the number  
of apples at cell [i][j].

A GREEDY efficient
solution that does not
always work!

Reminder: Collecting Apples

113

327

4511

198

10

1

11

50

1

2

22

3

start

end
Solution # 1.

 if apples[i+1][j] > apples[i][j+1]:  
 go down. 
 else go right.

Total = 50

113

327

4511

198

10

1

11

50

1

2

22

3

Total = 104

Problem Description.

• Goal. Collect as many apples as possible.

• Constraints. Move right or down only.

• Input. The matrix apples[N][M] 
apples[i][j] is the number  
of apples at cell [i][j].

A GREEDY efficient
solution that does not
always work!

Which problems have
greedy solutions that
always work?

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

valid  
(respects the constraints)

maximizes or 
minimizes an 

objective function

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.

Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.

Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment
(without looking ahead or backtracking).

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.

Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment
(without looking ahead or backtracking).

Example. Should we take Item 1?

Item 2 
$5

4 kg 6kg 7 kg
3 kg

Item 1 
$10

Item 3 
$12

Knapsack

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.

Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment
(without looking ahead or backtracking).

Example. Should we take Item 1?

Item 2 
$5

4 kg 6kg 7 kg
3 kg

Item 1 
$10

Item 3 
$12

Knapsack

Non-Greedy. I can't tell yet! I must first
know the best value I can get without
Item 1 and compare it to the best value I
can get with Item 1.

Greedy Algorithms

Optimization problem. The problem of finding the best solution among all feasible solutions.

Example. 0-1 Knapsack.

Objective Function: Choose the subset of items with the maximum value. 
Constraints: The total weight of the chosen items must be less than the knapsack capacity.

Greedy Algorithm. Makes the best choice given the available information at the moment
(without looking ahead or backtracking).

Example. Should we take Item 1?

Item 2 
$5

4 kg 6kg 7 kg
3 kg

Item 1 
$10

Item 3 
$12

Knapsack

Non-Greedy. I can't tell yet! I must first
know the best value I can get without
Item 1 and compare it to the best value I
can get with Item 1.

Greedy 1. Take it if it is  
the most valuable item!

Greedy 2. Take it if it is  
the lightest item!

Greedy 3. Take it if it has  
the maximum value per Kg.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.

Dynamic programming. Picks between solutions to multiple subproblems and 
 stores them to avoid recomputing them again.

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.

Dynamic programming. Picks between solutions to multiple subproblems and 
 stores them to avoid recomputing them again.

Greedy. Decide (without much effort) whether to pick Item 1 or not and  
 solve: Knapsack(2 ... n, W-w1) or Knapsack(2 ... n, W)

Item 1 Item 2 Item 3 Item 4 Item 5 Item n
W

Example. Knapsack()

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.

Dynamic programming. Picks between solutions to multiple subproblems and 
 stores them to avoid recomputing them again.

Greedy. Decide (without much effort) whether to pick Item 1 or not and  
 solve: Knapsack(2 ... n, W-w1) or Knapsack(2 ... n, W)

Item 1 Item 2 Item 3 Item 4 Item 5 Item n
W

Example. Knapsack()

We need a proof that such a decision is safe !

Greedy Algorithms vs Dynamic Programming

Similarities. Both can be used to solve optimization problems and both work on problems with
an optimal substructure.

Differences.

A Greedy Algorithm. Makes a decision that is guaranteed to be optimal and  
then solves a single subproblem.

Dynamic programming. Picks between solutions to multiple subproblems and 
 stores them to avoid recomputing them again.

Greedy. Decide (without much effort) whether to pick Item 1 or not and  
 solve: Knapsack(2 ... n, W-w1) or Knapsack(2 ... n, W)

Dynamic Programming. Try picking Item 1 and solve Knapsack(2 ... n, W-w1)

 Try not picking Item 1 and solve Knapsack(2 ... n, W)

 Decide which is better.

Item 1 Item 2 Item 3 Item 4 Item 5 Item n
W

Example. Knapsack()

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first.

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first. 
$9

4 kg 6 kg 7 kg
3 kg

$8

Counter Example. Greedy gives $12 but the  
optimal is $17.

$12

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first. 

Greedy choice # 2. Take the lightest item first. 

$9
4 kg 6 kg 7 kg

3 kg

$8

Counter Example. Greedy gives $12 but the  
optimal is $17.

$12

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first. 

Greedy choice # 2. Take the lightest item first.

$9
4 kg 6 kg 7 kg

3 kg

$8

Counter Example. Greedy gives $12 but the  
optimal is $17.

$12

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first. 

Greedy choice # 2. Take the lightest item first.

Greedy choice # 3. Take the item with the  
highest value per Kg.

$9
4 kg 6 kg 7 kg

3 kg

$8
$12

Counter Example. Greedy gives $12 but the  
optimal is $17.

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

Greedy Algorithms Don't Always Work!

Greedy choice # 1. Take the most valuable item first. 

Greedy choice # 2. Take the lightest item first.

Greedy choice # 3. Take the item with the  
highest value per Kg.

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

$9
4 kg 6 kg 7 kg

3 kg

$8
$12

Counter Example. Greedy gives $12 but the  
optimal is $17.

$2 → = $2/kg 2
15 kg 5 kg

1 kg

$5 → = $1/kg 5
5

Counter Example. Greedy gives $2 but the  
optimal is $5.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution 
can be reached with a sequence of locally optimal  
decisions.

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

$9
4 kg 6 kg 7 kg

3 kg

$8
$12

Counter Example. Greedy gives $12 but the  
optimal is $17.

$2 → = $2/kg 2
15 kg 5 kg

1 kg

$5 → = $1/kg 5
5

Counter Example. Greedy gives $2 but the  
optimal is $5.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution 
can be reached with a sequence of locally optimal  
decisions.

To prove that the greedy choice property holds, 
we must prove that a greedy strategy produces an  
optimal solution for every instance of the problem.

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

$9
4 kg 6 kg 7 kg

3 kg

$8
$12

Counter Example. Greedy gives $12 but the  
optimal is $17.

$2 → = $2/kg 2
15 kg 5 kg

1 kg

$5 → = $1/kg 5
5

Counter Example. Greedy gives $2 but the  
optimal is $5.

Greedy Algorithms Don't Always Work!

Greedy Choice Property. A globally optimal solution 
can be reached with a sequence of locally optimal  
decisions.

To prove that the greedy choice property holds, 
we must prove that a greedy strategy produces an  
optimal solution for every instance of the problem.

To prove that a greedy strategy is not optimal it is 
enough to find one counter example.

There is no known optimal greedy
strategy for the 0-1 Knapsack problem

$1
7 kg 7 kg

1 kg

$100

Counter Example. Greedy gives $1 but the  
optimal is $100.

$9
4 kg 6 kg 7 kg

3 kg

$8
$12

Counter Example. Greedy gives $12 but the  
optimal is $17.

$2 → = $2/kg 2
15 kg 5 kg

1 kg

$5 → = $1/kg 5
5

Counter Example. Greedy gives $2 but the  
optimal is $5.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.

Greedy choice.  
Start filling with the item that has highest value per Kg.

$9 ($3/kg)
4 kg 6kg7 Kg

3 kg

$8 ($2/kg)
$12 ($2/kg)

(3 x $3/kg) + (4 x $2/kg)  
= $17

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.

Greedy choice.  
Start filling with the item that has highest value per Kg.

$9 ($3/kg)
4 kg 6kg7 Kg

3 kg

$8 ($2/kg)
$12 ($2/kg)

$1  
($0.33/kg)

4 kg 5kg7 Kg

3 kg

$1  
($0.25/kg)

$100 ($20/kg)

(3 x $3/kg) + (4 x $2/kg)  
= $17

(5 x $20/kg) + (2 x $0.33/kg)  
= $100.66

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.

Greedy choice.  
Start filling with the item that has highest value per Kg.

$9 ($3/kg)
4 kg 6kg7 Kg

3 kg

$8 ($2/kg)
$12 ($2/kg)

$1  
($0.33/kg)

4 kg 5kg7 Kg

3 kg

$1  
($0.25/kg)

$100 ($20/kg)

$10 ($5/kg)
5 kg 5 kg

2 kg

$15 ($3/kg)

(3 x $3/kg) + (4 x $2/kg)  
= $17

(5 x $20/kg) + (2 x $0.33/kg)  
= $100.66

(2 x $5/kg) + (3 x $3/kg)  
= $19

Fractional Knapsack

Fractional Knapsack. Assume that we are allowed to 
take fractions of the items.

Greedy choice.  
Start filling with the item that has highest value per Kg.

$9 ($3/kg)
4 kg 6kg7 Kg

3 kg

$8 ($2/kg)
$12 ($2/kg)

$1  
($0.33/kg)

4 kg 5kg7 Kg

3 kg

$1  
($0.25/kg)

$100 ($20/kg)

$10 ($5/kg)
5 kg 5 kg

2 kg

$15 ($3/kg)

(3 x $3/kg) + (4 x $2/kg)  
= $17

(5 x $20/kg) + (2 x $0.33/kg)  
= $100.66

(2 x $5/kg) + (3 x $3/kg)  
= $19

This algorithm is optimal. 
However, we need a proof!

Fractional Knapsack

Item 1

v1

w1

Item 2 Item 3 Item 4 Item 5 Item n

v2

w2

v3

w3

v4

w4

v5

w5

vn

wn

Consider a set of n items sorted by value per weight.

> > > > > >

Fractional Knapsack

Assume that there is an optimal solution for the fractional knapsack problem that  
does not consume the item with the highest value per Kg.

Item 1

v1

w1

Item 2 Item 3 Item 4 Item 5 Item n

v2

w2

v3

w3

v4

w4

v5

w5

vn

wn

Consider a set of n items sorted by value per weight.

> > > > > >

Fractional Knapsack

Item 2

Knapsack

Item 3 Item 4 Item 5

We can replace parts of this item  
with parts of item 1 and get a better  
solution! Therefore, the solution is  
not optimal! (contradiction)

Assume that there is an optimal solution for the fractional knapsack problem that  
does not consume the item with the highest value per Kg.

Consider a set of n items sorted by value per weight.

Note. This is not a proof. However, it
captures the essence of the argument
for why this greedy choice is optimal.

Item 1

v1

w1

Item 2 Item 3 Item 4 Item 5 Item n

v2

w2

v3

w3

v4

w4

v5

w5

vn

wn
> > > > > >

Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order

load = 0, i = 1

while i <= n and load < W:

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order

load = 0, i = 1

while i <= n and load < W:

 if w[i] <= W-load:

 else

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

all of the item fits inside the
remaining capacity

only a fraction of the item fits
inside the remaining capacity

Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order

load = 0, i = 1

while i <= n and load < W:

 if w[i] <= W-load:

 Take all of item i

 load += w[i]

 profit = profit + v[i]

 else

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

only a fraction of the item fits
inside the remaining capacity

Fractional Knapsack (Algorithm)

Sort w and v by v[i]/w[i] in decreasing order

load = 0, i = 1

while i <= n and load < W:

 if w[i] <= W-load:

 Take all of item i

 load += w[i]

 profit = profit + v[i]

 else

 Take (W - load) of item i

 profit = profit + (W - load) * v[i]/w[i]

 load = W

 i = i+1

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

Fractional Knapsack (Algorithm)

 FRACTIONAL_KNAPSACK(w[], v[], n, W)

Θ(n log n)

O(n)

Sort w and v by v[i]/w[i] in decreasing order

load = 0, i = 1

while i <= n and load < W:

 if w[i] <= W-load:

 Take all of item i

 load += w[i]

 profit = profit + v[i]

 else

 Take (W - load) of item i

 profit = profit + (W - load) * v[i]/w[i]

 load = W

 i = i+1

Running Time. Θ(n log n)
Lesson. Greedy algorithms are typically simple and efficient.

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?

 
 1x50¢ + 1x25¢ + 2x10¢ + 4x1¢

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?

 
 1x50¢ + 1x25¢ + 2x10¢ + 4x1¢

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination 
as much as possible and then move to the next.

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?

 
 1x50¢ + 1x25¢ + 2x10¢ + 4x1¢

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination 
as much as possible and then move to the next.

Counter Example. Consider the denominations {25¢, 20¢, 10¢, 1¢}. What is the minimum  
number of coins needed to pay 40¢ ?

Change-Making Problem

Problem. Given a set of coin denominations (e.g. quarter, dime, nickel, etc.) and an amount of 
money, find the minimum number of coins that add up to this amount of money.

Example. What is the minimum number of coins needed for paying 99¢ using Jordanian currency?

 
 1x50¢ + 1x25¢ + 2x10¢ + 4x1¢

Greedy Strategy. Sort the denominations in decreasing order. Pick from the largest denomination 
as much as possible and then move to the next.

Counter Example. Consider the denominations {25¢, 20¢, 10¢, 1¢}. What is the minimum  
number of coins needed to pay 40¢ ?

 Greedy: 25¢ + 10¢ + 1¢ + 1¢ + 1¢ + 1¢ + 1¢ = 40¢ (7 coins). 
 Optimal: 20¢ + 20¢ = 40¢ (2 coins)

Interview Problem

slide by Kevin Wayne

optional

Interview Problem

adapted from a slide by Kevin Wayne

 create an array opt[] of size V+1

 for (v = 1 to V)

 opt[v] = INFINITY

 for (i = 1 to n)

 if (d[i] > v) continue

 else opt[v] = min(opt[v], 1 + opt[v - d[i]])

optional

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the
maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person. 
 Maximum number of events that can be held in a room.

image by Kevin Wayne

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the
maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person. 
 Maximum number of events that can be held in a room.

Notation. - is the set of activities.S = {a1, a2, a3, . . . , an}

image by Kevin Wayne

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the
maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person. 
 Maximum number of events that can be held in a room.

Notation. - is the set of activities.

 - needs needs the activity during (= start time and = finish time) 
 where .

S = {a1, a2, a3, . . . , an}
ai [si, fi) si fi

0 ≤ si < fi < ∞

image by Kevin Wayne

Activity Selection

Problem. Given n activities that require an exclusive use of a common resource, find the
maximum number of non-overlapping activities.

Examples. Maximum number of jobs that can be done by a person. 
 Maximum number of events that can be held in a room.

Notation. - is the set of activities.

 - needs needs the activity during (= start time and = finish time) 
 where .

 - and are compatible if and do not overlap.

S = {a1, a2, a3, . . . , an}
ai [si, fi) si fi

0 ≤ si < fi < ∞
ai aj [si, fi) [sj, fj)

image by Kevin Wayne

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Counter Examples

Greedy: 1 Optimal: 2

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.

Counter Examples

Greedy: 1 Optimal: 2

?

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.

Counter Examples

Greedy: 1 Optimal: 2

Greedy: 1 Optimal: 2

?

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.

Counter Examples

Greedy: 1 Optimal: 2

Greedy: 1 Optimal: 2

Greedy: 3 Optimal: 4

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.

Greedy strategy # 4. Earliest finish time first. 
Rationale. Activities that finish early leave more time to be filled with other activities later.

Greedy strategy # 5. Latest start time first. 
Rationale. Activities that start late leave more time to be filled with other activities earlier.

Counter Examples

Greedy: 1 Optimal: 2

Greedy: 1 Optimal: 2

Greedy: 3 Optimal: 4

Activity Selection

Greedy strategy # 1. Earliest start time first. 
Rationale. Start the activities as early as possible.

Greedy strategy # 2. Shortest activity first. 
Rationale. Shorter activities tend to have less conflicts.

Greedy strategy # 3. Least number of conflicts first. 
Rationale. Less conflicts means more compatible activities.

Greedy strategy # 4. Earliest finish time first. 
Rationale. Activities that finish early leave more time to be filled with other activities later.

Greedy strategy # 5. Latest start time first. 
Rationale. Activities that start late leave more time to be filled with other activities earlier.

Counter Examples

Greedy: 1 Optimal: 2

Greedy: 1 Optimal: 2

Greedy: 3 Optimal: 4
optimal

Activity Selection (Optimality of Greedy Solution)

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G = sorted in  
increasing  
finish time

Observation 1. We can always replace in P by from G.
p1 g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G = sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

p1 g1

g1 p1 g1 p2 ⟶ pm

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G = sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G = sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

p1
g1 p1

sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

Proof. If this is not true, then P is not optimal (contradiction).

p1
g1 p1

sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

Proof. If this is not true, then P is not optimal (contradiction).

Hence, we can apply the same argument used in Observation 1 to show that the first activity
() in the optimal solution for the new subproblem can be replaced by .

p1
g1 p1

p2 g2

sorted in  
increasing  
finish time

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

Proof. If this is not true, then P is not optimal (contradiction).

Hence, we can apply the same argument used in Observation 1 to show that the first activity
() in the optimal solution for the new subproblem can be replaced by .

Rolling this out, we conclude that for all , every can be replaced by .

• If k = m, then G is optimal.

p1
g1 p1

p2 g2

i ≤ k pi gi

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

Proof. If this is not true, then P is not optimal (contradiction).

Hence, we can apply the same argument used in Observation 1 to show that the first activity
() in the optimal solution for the new subproblem can be replaced by .

Rolling this out, we conclude that for all , every can be replaced by .

• If k = m, then G is optimal.

• If k > m, then P is not optimal.

p1
g1 p1

p2 g2

i ≤ k pi gi

gi

If G has more then P is not optimal!

Activity Selection (Optimality of Greedy Solution)

Observation 1. We can always replace in P by from G.

Proof. Since is guaranteed to finish before (or with) , is compatible with .

Hence, there is always an optimal solution that starts with the activity that finishes first ().

p1 g1

g1 p1 g1 p2 ⟶ pm

g1

Assume P is an optimal solution with m activities and G is the greedy solution with k activities.
We would like to show that m = k (i.e. G is as good as the optimal solution).

g1 g2 g3 gk

p1 p2 p3 pmP =

G =

Observation 2. P is made of + an optimal solution to the activity selection problem
considering only activities that start after the finish time of and .

Proof. If this is not true, then P is not optimal (contradiction).

Hence, we can apply the same argument used in Observation 1 to show that the first activity
() in the optimal solution for the new subproblem can be replaced by .

Rolling this out, we conclude that for all , every can be replaced by .

• If k = m, then G is optimal.

• If k > m, then P is not optimal.

• If k < m, then there is an activity that starts after that G can still pick!

p1
g1 p1

p2 g2

i ≤ k pi gi

gk

pi pi+1

Why didn't G pick ?pi+1

Activity Selection (Optimality of Greedy Solution)

Greedy Proofs (General Pattern)

• Assume that there is an optimal solution P and a greedy solution G.

• Show that we can always exchange the first choice in P with the first choice in G  
without making the solution worse.

• Show that the problem has an optimal substructure and thus the same argument
applies to the solution of the subproblem after making the first choice.

• Show that P can't be better than G.

This pattern in proving the optimality of greedy solutions is commonly used:

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k
i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k

i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

ki

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k
i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k

i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

ki

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k
i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k

i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k

i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8

k

i

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Activity Selection (Algorithm)

0
1

2
3

4
5

6
7

8 ki

 SELECT(s[], f[], n)

Sort the activities by
increasing finish time

// Let k = the index of
the last taken activity 
// Let A = the indices
of the taken activities

k = 0 
Add k to A

for i=1 to n-1:

 if s[i] > f[k]:

 k = i

 Add k to A

return A

Θ(n log n)

Θ(n)

Activity Selection (Algorithm)

optional

Interview Problem

slide by Kevin Wayne

optional

Interview Problem

slide by Kevin Wayne

optional

Interview Problem

slide by Kevin Wayne

optional

