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Motivation

Fibonacci Numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

-

0 it n=0 F, Fi
F,=141 it n=1 P
F,_,+F,_, 1if n>1 0

Goal. Given i compute F; .
A very simple recursive implementation:

FIB(n) Leonardo Fibonacci

) 1170—1240
1f (n 0
if (n 1

): return 0
): return 1

return FIB(n-1) + FIB(n-2)



How long does it take to compute FIB(100)?

A. A few seconds.
B. A few minutes.
C. A few hours.
D. A few days.

E. Armageddon!



How long does it take to compute FIB(100)?

A. A few seconds.
B. A few minutes.
C. A few hours.
D. A few days.

E. Armageddon!

If it takes 0.66 seconds to compute FIB(40),
it takes ~72242 years to compute FIB(100).
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if (n == 0): return 0O T(n) = O(1) n<l
if (n == 1): return 1 N\ Tr-D+Tr-2)+06(1) n>1

Recurrence.

return FIB(n-1) + FIB(n-2)
Recursion Tree

C

n

E < number of levels < n C C

Work at level i < 2 C C C C ol
2

T(n) = Q%) = Q(/2) e T(n - 3) T(n — 6)

T(n) = O2")

T(n — 4) T(n —8)

% Running time is exponential!
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What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.

F6
[ S .
I 1
I |
_ ! rmmmmmmmm=pflan !
- ST TS T Sar I e L
: Fy ¥ F3 B3 o B
| 11 (WL 1 ! II
| 11 (WL 1 ! II
I T e e/ ey 11! | csm e e m /= m I I|
E,' """""""" BT S T ‘E:;' ¥ | I A T
' F5 % F, L F, +F X F, Fy ©
1y q
. ¥ 3 L - NETCErEE .
1 1 1Ny : ||:I 1
B F 0 F K E::: Fy ko L AL : :
e s i N eeeoMNzzIzziLooso .
I|I 1 1 1
I|I 1 1 1
FEIT UL SHE :
[ | Vi ' |
1 |

--------



What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.

Goal. Avoid computing the same problem twice!
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Memoization

What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.
Goal. Avoid computing the same problem twice!

Memoization. Store the result of each computation in a table. Compute only if the
table does not yet have an entry for that computation.
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Memoization

What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.

Goal. Avoid computing the same problem twice!

Memoization. Store the result of each computation in a table. Compute only if the
table does not yet have an entry for that computation.

o 1 2 3 4 5 6 7 8 9 10
fib[] = 6 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

base cases unknown fibonacci numbers

Create fib[] of size n+1

Initialize fib[] to -1 initialize the table
fib[0] = 0, fib[1] =1

FIB(n, fib[])

return fib[n] fill the table



Memoization

What is the problem?

- Finding F), involves solving overlapping subproblems.

- Subproblems are recomputed multiple times.

Goal. Avoid computing the same problem twice!

Memoization. Store the result of each computation in a table. Compute only if the
table does not yet have an entry for that computation.

0 1 2 3 4 5 6 7 8 9 10

‘F'ib[] = 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
base cases unknown fibonacci numbers
FIB(n) FIB(n, fib[])
Create fib[] of size n+1 if (fib[n] != -1): return fib[n]

Initialize fib[] to -1
fib[0] = 0, fib[1] =1
fibonacci number was computed before!
FIB(n, fib[])

return fib[n] Note. The pseudocode assumes that changes made to fib[] in

this function are visible in the calling function FIB(n)



Memoization

What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.

Goal. Avoid computing the same problem twice!

Memoization. Store the result of each computation in a table. Compute only if the
table does not yet have an entry for that computation.

0 1 2 3 4 5 6 7 8 9 10

fib[] = © 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
base cases unknown fibonacci numbers
Create fib[] of size n+1 if (fib[n] != -1): return fib[n]
Initialize fib[] to -1
fib[0] = 0, fib[1] = 1 fib[n] = FIB(n-1, fib[]) +

FIB(n-2, fib[])
FIB(n, fib[])
return fib[n]
fibonacci number was not computed before!



Memoization

What is the problem?

Finding F), involves solving overlapping subproblems.

Subproblems are recomputed multiple times.

Goal. Avoid computing the same problem twice!

Memoization. Store the result of each computation in a table. Compute only if the
table does not yet have an entry for that computation.

0 1 2 3 4 5 6 7 8 9 10

fib[] = © 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
base cases unknown fibonacci numbers
Create fib[] of size n+1 if (fib[n] != -1): return fib[n]
Initialize fib[] to -1
fib[0] = 0, fib[1] = 1 fib[n] = FIB(n-1, fib[]) +

FIB(n-2, fib[])
FIB(n, fib[])
return fib[n] return fib[n]



Computing F- :

FIB(n, fib[])

if (fib[n] != -1): return fib[n]

fib[n] = FIB(n-1, fib[]) +
FIB(n-2, fib[])

return fib[n]
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FIB(n, fib[])

if (fib[n] != -1): return fib[n]

fib[n] = FIB(n-1, fib[]) +
FIB(n-2, fib[])

return fib[n]



Computing F- :
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if (fib[n] != -1): return fib[n]

fib[n] = FIB(n-1, fib[]) +
FIB(n-2, fib[])

return fib[n]



Computing F- :
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N / \
ke Fs

Fs F,

FIB(n, fib[]) /\

. . : Fy F;

1if (fib[n] != -1): return fib[n] //\\

fib[n] = FIB(n-1, fib[]) + F; F,

FIB(n-2, fib[])

return fib[n]



Computing F- :
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Fs F,
FIB(n, fib[]) /\
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return fib[n]
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Computing F- :
I
0 1 2 3 4 5 6 ! / \
0 1 -1 -1 -1 -1 -1
> Fg  Fs

/\

Fs F,
FIB(n, fib[]) /\
. . : by Fy
1if (fib[n] != -1): return fib[n] /\
fib[n] = FIB(n-1, fib[]) + F; F,
FIB(n-2, fib[]) /\
return fib[n] /FZ\ F,

done! done!
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return fib[n]
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1if (fib[n] != -1): return fib[n] //\\
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Computing F- :

0 1 2 3 4 5 6 !

8 + 5
5 + 3
FIB(n, fib[])
if (fib[n] != -1): return fib[n] M
fib[n] = FIB(n-1, fib[]) + 2 + 1

FIB(n-2, fib[])
return fib[n]

Running Time. 1 + 0
®(n): n + 1 problems
each computed only once.
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Figure 3.2. Therecursion tree for F,, trimmed by memoization. Downward green arrows indicate writing
into the memoization array; upward red arrows indicate reading from the memoization array.

Figure from Algorithms by Jeff Erickson
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Bottom-up Approach

Note. We know that larger subproblems depend on smaller subproblems.

Implication. Solve smaller subproblems before larger ones!

Create fib[] of size i+1
fib[0] = 0, fib[1l] = 1

for (j =2 — n):

start from smaller problems
fib[j] = fib[j-1] + fib[j-2]

and move up to larger ones

return fib[n]
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Bottom-up Approach

Note. We know that larger subproblems depend on smaller subproblems.

Implication. Solve smaller subproblems before larger ones!
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Create fib[] of size i+1
fib[0] = 0, fib[1l] = 1

for (j =2 — n):

start from smaller problems
fib[j] = fib[j-1] + fib[j-2]

and move up to larger ones

return fib[n]



Bottom-up Approach

Note. We know that larger subproblems depend on smaller subproblems.

Implication. Solve smaller subproblems before larger ones!

0 1 2 3 2L 5 6 I

0] 1 1 2 3 5 8 solution found!

Create fib[] of size i+1
fib[0] = 0, fib[1l] = 1

for (j =2 — n):

start from smaller problems
fib[j] = fib[j-1] + fib[j-2]

and move up to larger ones

return fib[n]
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Space Improvement optional

The bottom-up solution uses ®(n) extra space. Can we reduce it to ©(1)?

Answer.

FIB(i, fib[])

f=1, g=0

for j=
.F

g

l

return f
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Dynamic Programming

Introduced by Richard Bellman in 1952.

716 MATHEMATICS: RICHARD BELLMAN Proc. N. A S.

ON THE THEORY OF DYNAMIC PROGRAMMING
BY RICHARD BELLMAN
THE RAND CORPORATION, SANTA MoONICA, CALIFORNIA
Communicated by J. von Neumann, June 5, 1952

" 1. Introduction.—We are interested in a class of mathematical problems
which arise in connection with situations which require that a bounded or
unbounded sequence of operations be performed for the purpose of achiev-
ing a desired result. Particularly important are the cases where each oper-
ation gives rise to a stochastic event, the result of which is applied to the
determination of subsequent operations.

Two fundamental problems encountered in situations of this type, in
some sense duals of each other, are those of maximizing the yield obtained
in a given time, or of minimizing the time or cost required to accomplish a
certain task.

In many cases, the problem of determining an optimal sequence of oper-
ations may be reduced to that of determining an optimal first operation.
The general class of functional equations generated by problems of this
nature has the form |

min.
f(p) = max. (T(f)), @t
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Dynamic Programming

Introduced by Richard Bellman in 1952.
Typically used for solving optimization problems.

In an optimization problem, we aim at optimizing a certain
value (e.g. find the shortest path, the maximum return, the
minimum number of hours, etc.)
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Dynamic Programming

Introduced by Richard Bellman in 1952.
Typically used for solving optimization problems.

In an optimization problem, we aim at optimizing a certain
value (e.g. find the shortest path, the maximum return, the
minimum number of hours, etc.)

Fibonacci is not an example of
an optimization problem
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" 1. Introduction.—We are interested in a class of mathematical problems
which arise in connection with situations which require that a bounded or
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ing a desired result. Particularly important are the cases where each oper-
ation gives rise to a stochastic event, the result of which is applied to the
determination of subsequent operations.
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some sense duals of each other, are those of maximizing the yield obtained
in a given time, or of minimizing the time or cost required to accomplish a
certain task.
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Dynamic Programming

Introduced by Richard Bellman in 1952.
Typically used for solving optimization problems.

In an optimization problem, we aim at optimizing a certain
value (e.g. find the shortest path, the maximum return, the
minimum number of hours, etc.)

Main Steps:

Identify the optimal substructure in the problem.

716 MATHEMATICS: RICHARD BELLMAN Proc. N. A S.

ON THE THEORY OF DYNAMIC PROGRAMMING
BY RICHARD BELLMAN
THE RAND CORPORATION, SANTA MoONICA, CALIFORNIA
Communicated by J. von Neumann, June 5, 1952

" 1. Introduction.—We are interested in a class of mathematical problems
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ing a desired result. Particularly important are the cases where each oper-
ation gives rise to a stochastic event, the result of which is applied to the
determination of subsequent operations.
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Dynamic Programming

Introduced by Richard Bellman in 1952.
Typically used for solving optimization problems.

In an optimization problem, we aim at optimizing a certain
value (e.g. find the shortest path, the maximum return, the
minimum number of hours, etc.)

Main Steps:

Identify the optimal substructure in the problem.

Store the results for each solved subproblem to avoid
recomputing it again.
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which arise in connection with situations which require that a bounded or
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ing a desired result. Particularly important are the cases where each oper-
ation gives rise to a stochastic event, the result of which is applied to the
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some sense duals of each other, are those of maximizing the yield obtained
in a given time, or of minimizing the time or cost required to accomplish a
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Dynamic Programming

Introduced by Richard Bellman in 1952.
Typically used for solving optimization problems.

In an optimization problem, we aim at optimizing a certain
value (e.g. find the shortest path, the maximum return, the
minimum number of hours, etc.)

Main Steps:

Identify the optimal substructure in the problem.

Store the results for each solved subproblem to avoid
recomputing it again.

If there are no overlapping subproblems,
@ the solution becomes a normal divide-
and-conquer solution.

Q
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Example: Collecting Apples

Problem Description.

Goal. Collect as many apples as possible.

Constraints. Move right or down only:. ) 1 7 5 3

22 11 11

3 50 8 96

end
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Constraints. Move right or down only:. ) 1 7 5 3

Input. The matrix apples[N] [M]
22 11 11 5 4

3 50 8 9

end



Example: Collecting Apples

Problem Description.

Goal. Collect as many apples as possible.
Constraints. Move right or down only:. ) 1 7 5 3

Input. The matrix apples[N] [M]
22 11 11 5 4

3 50 8 9

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description. start
Goal. Collect as many apples as possible. & % 3 1 1
Constraints. Move right or down only:. ) 1 7 5 3

Input. The matrix apples[N] [M]
22 11 11 5 4

3 50 8 9

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Do

22 11 11 "5 4

Problem Description.

Goal. Collect as many apples as possible.

Constraints. Move right or down only:.

Input. The matrix apples[N] [M]

3 50 8 9

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description. start
Goal. Collect as many apples as possible. & % é 1 1
Constraints. Move right or down only:. 5 1 & g 3

Input. The matrix apples[N] [M]
22 11 11 5 4

3 50 8 9

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description.

Goal. Collect as many apples as possible. 1 1
Constraints. Move right or down only:. 5 3
Input. The matrix apples[N] [M]

S5 4

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description.

Goal. Collect as many apples as possible. 1 1
Constraints. Move right or down only:. 5 3
Input. The matrix apples[N] [M]

S5 4

end

Solution # 1. Repeat the following until the goal is reached.

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description.
Goal. Collect as many apples as possible.
Constraints. Move right or down only:.

Input. The matrix apples[N] [M]

Solution # 1. Repeat the following until the goal is reached.

Total = 50

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.



Example: Collecting Apples

Problem Description.
Goal. Collect as many apples as possible.
Constraints. Move right or down only:.

Input. The matrix apples[N] [M]

Solution # 1. Repeat the following until the goal is reached.

Total = 50

if apples[i+1][j] > apples[i][j+1]:
go down.
else go right.

Can we do better?

W:



Example: Collecting Apples

Problem Description.
Goal. Collect as many apples as possible.
Constraints. Move right or down only:.

Input. The matrix apples[N] [M]

Solution # 1.

if apples[i+1][j] > apples[i][j+1]:
go down. m
else go right.

Total = 104



Example: Collecting Apples

Let:
b 10 3 1 1

max_apples(i, j) maximum number of apples that can b
1

be collected from [0] [0] to [i][]] 7
DO u s

1 O000

end
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Let:
b 10 3 1 1

max_apples(i, j) maximum number of apples that can
be collected from [0] [0] to [i][]] b 1 7
max_apples(N-1, M-1) The problem to be solved. é é 11 5 4
- X:X-X:

end




Example: Collecting Apples

Let:

max_apples(i, j) maximum number of apples that can
be collected from [0] [0] to [i][]]

max_apples(N-1, M-1) The problem to be solved.

Observations.
The path to the final cell can only come from the cell above or the cell to its lefft.

If we know the best solution to these two cells, we know the best solution to the final cell!



Example: Collecting Apples

Let:

max_apples(i, j) maximum number of apples that can
be collected from [0] [0] to [i][]]

max_apples(N-1, M-1) The problem to be solved.

Observations.
The path to the final cell can only come from the cell above or the cell to its lefft.

If we know the best solution to these two cells, we know the best solution to the final cell!

best solution
Optimal Substructure. upper

max_apples (i, j-1)) |

[max_apples('i, j) = apples[i][j] + MAX(max_apples(i-1, j),w
W,

# of apples best solution

current left



Example: Collecting Apples

Optimal Substructure.

rrmax_app'tes(-i, j) = apples[i][j] + A

MAX (max_apples(i-1, j),
. max_apples (i, j—l))J

Recursive Solution

MAX_APPLES (i, j, apples[])

if (i == 0 and j == 0): return apples[0][0]

base case



Example: Collecting Apples

Optimal Substructure.

rrmax_app'tes(-i, j) = apples[i][j] + A

MAX (max_apples(i-1, j),
. max_apples (i, j—l))J

Recursive Solution

MAX_APPLES (i, j, apples[])

if (i == 0 and j == 0): return apples[0][0]

0
MAX_APPLES (i, j-1)
MAX_APPLES (i-1, j)

max_left = 0, max_up
if (j > 0): max_left
if (i > 0): max_up

guard against
corner cases



Example: Collecting Apples

Optimal Substructure.

rrmax_app'tes(-i, j) = apples[i][j] + A

MAX (max_apples(i-1, j),
. max_apples (i, j—l))J

Recursive Solution

MAX_APPLES (i, j, apples[])

if (i == 0 and j == 0): return apples[0][0]

0
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Recursively solve the
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Optimal Substructure.
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Recursive Solution

MAX_APPLES (i, j, apples[])

if (i == 0 and j == 0): return apples[0][0]

0
MAX_APPLES (i, j-1)
MAX_APPLES (i-1, j)

max_left = 0, max_up
if (7 > 0): max_left
if (i > 0): max_up

Combine the results of

return apples[i][j] + MAX(max_left, max_up)
the two subproblems
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Example Trace MAX_APPLES (5, 5)
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Example: Collecting Apples

Memoized Solution

COLLECT_APPLES (apples[]) result[][]

create array result[N][M] stores the
solution for

each
subproblem
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Example: Collecting Apples

Memoized Solution

COLLECT_APPLES (apples[])

create array result[N][M]
initialize result[][] to -1
result[0][0] = apples[0][0O]

initially, only MAX_APPLES (0,0)
has a solution

result[][]

stores the solution for
each subproblem

start




Example: Collecting Apples

Memoized Solution

COLLECT_APPLES (apples[]) resultl][]

create array result[N][M] 1
initialize result[][] to -1

result[0][0] = apples[0][0]

MAX_APPLES(N-1, M-1, apples, result)

stores the solution for
each subproblem

fill the table

start
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initialize result[][] to -1
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this is where
the final result
will be!
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Example: Collecting Apples

Memoized Solution

COLLECT_APPLES (apples[]) resultl][]

create array result[N][M]
initialize result[][] to -1
result[0][0] = apples[0][0]

MAX_APPLES(N-1, M-1, apples, result)
return result[N-1][M-1]

this is where
the final result

MAX_APPLES (i, j, apples[], result[]) will be!

if (result[i][j] != -1): return result[i][]j]

start

base case: if we solved this
subproblem before, return
the solution!




Example: Collecting Apples

Memoized Solution

COLLECT_APPLES (apples[]) resultl][]

create array result[N][M]
initialize result[][] to -1
result[0][0] = apples[0][0]

MAX_APPLES(N-1, M-1, apples, result)
return result[N-1][M-1]

this is where
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start
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MAX (max_left, max_up)

recursively solve the needed subproblems and store the result
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for (i = @ — N-1):
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Bottom-up Solution.
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for (i = @ — N-1): 25 36 47 52 56
for (j = 6 — M-1): 28 86 94 1@3

left = 0, up = 0
if (§j > 0): left = result[i][j-1]
if (i > 0): up = result[i-1][]]
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return result[N-1][M-1]
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create array result[N][M] 3 12 21 23 26

Bottom-up Solution.

for (i = @ — N-1): 25 36 47 52 56

for (j = 6 — M-1): 28 86 94 1@3
left = 0, up = 0
if (7 > 0): left = result[i][j-1]
if (i > 0): up = result[i-1][7]

result = MAX(103, 56) + 1

result[1][j] = MAX(left, up) + apples[i][]]

return result[N-1][M-1]

..§.« Running Time. O(NM)
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Collecting Apples: Recap

1. Found the optimal Substructure.

~
max_apples(i, j) = apples[i][j] + MAX(max_apples(i-1, j),

max_apples(i, j-1))

. Y

2. Checked for overlapping subproblems.

overlapping subproblems!

--------------- ‘- -------------

1t
3. Created a table for storing the solutions to subproblems. resuttl]l]

Used memoization or bottom-up dynamic programming,.

f," ". Effect. Reduced the running time from
exponential to linear in the number of cells.



Same Steps for Fibonacci

1. Found the optimal Substructure.

This was already given by the definition of the problem.
G'ib(n) = fib(n-1) + fib(n-2) j

2. Checked for overlapping subproblems.

3. Created a table for storing the solutions to subproblems.
Used memoization or bottom-up dynamic programming.

f,f’ ". Effect. Reduced the running time
from exponential to linear in n.



Those who cannot
remnember the past
are condemned g &
to repeat it. ? ' =)

-George Sanfayana | ’




