
CS11212 - Spring 2022

Data Structures &  
Introduction to Algorithms

Data Structures

Trees: Tree Traversals

Ibrahim Albluwi

Tree Data Structures

Definitions and properties

Basic operations

Balanced binary search trees

Tree traversals

Printing the Tree (in order)

Assuming the tree is a binary search tree,  
how can we traverse it in order?

6

82

41 9

53

7

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

 (recursion ♥)

6

82

41 9

53

7

Assuming the tree is a binary search tree,  
how can we traverse it in order?

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at 6 
do not print 6 yet! 
print left subtree first.

stack frames

left - current - rightat (6)

Console

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at 2 
do not print 2 yet! 
print left subtree first.

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at 1 
do not print 1 yet! 
print left subtree first.

stack frames

left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (1)

Console

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at NULL 
nothing to be done!

stack frames

left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (1)

do nothing!at (NULL)

Console

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at 1 
ready to print 1

stack frames

left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (1)

Console

 1

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

print the tree rooted at NULL 
nothing to be done

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1

left - current - rightat (1)

do nothing!at (NULL)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

82

41 9

53

7

stack frames

left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (1)

Console

 1

done with tree rooted at 1

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

6

8

41 9

53

7

print the tree rooted at 2 
ready to print 2  
right subtree still needs to be printed.

2

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1 2

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

1 9

53

7

print tree rooted at 4 
do not print 4 yet! 
print left subtree first.

2

6

4

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1 2

left - current - rightat (4)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

1 9

53

7

print tree rooted at 3 
ready to print 3 after going lef

2

6

4

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1 2 3

left - current - rightat (4)

left - current - rightat (3)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

1 9

53

7

print tree rooted at 4 
ready to print 4 
right subtree still needs to be printed.

2

6

4

stack frames

Console

 1 2 3 4left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (4)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

1 9

53

7

print tree rooted at 5 
ready to print 5 after going lef

2

6

4

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1 2 3 4 5

left - current - rightat (4)

left - current - rightat (5)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

41 9

53

7

done with tree rooted at 4

2

6

stack frames

left - current - rightat (6)

left - current - rightat (2)

left - current - rightat (4)

Console

 1 2 3 4 5

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

8

41 9

53

7

2

6

stack frames

left - current - rightat (6)

left - current - rightat (2) Console

 1 2 3 4 5

done with tree rooted at 2

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

82

41 9

53

7

print tree rooted at 6 
ready to print 6 
right subtree still needs to be printed.

6

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

2

41 9

53

7

print tree rooted at 8 
do not print 8 yet! 
print left subtree first.

6

8

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6

left - current - rightat (8)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

2

41 9

53

7

print tree rooted at 7 
ready to print 7 after going lef

6

8

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6 7

left - current - rightat (8)

left - current - rightat (7)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

2

41 9

53

7

print tree rooted at 8 
ready to print 8 
right subtree still needs to be printed

6

8

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6 7 8

left - current - rightat (8)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

2

41 9

53

7

print tree rooted at 9 
ready to print 9 after going lef

6

8

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6 7 8 9

left - current - rightat (8)

left - current - rightat (9)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

2

41 9

53

7

done with tree rooted at 8

6

8

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6 7 8 9

left - current - rightat (8)

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

82

41 9

53

7

done with tree rooted at 6

6

stack frames

left - current - rightat (6)

Console

 1 2 3 4 5 6 7 8 9

Printing the Tree (in order)

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

82

41 9

53

7

done!

6

Console

 1 2 3 4 5 6 7 8 9

Printing the Tree (in order)

6

82

41 9

53

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

7

template <class T>

void BST<T>::print_in_order() const {

 print_in_order(root);

}

template <class T>

void BST<T>::print_in_order(Node<T>* node) const {

 if (node == nullptr) return;

 print_in_order(node->left);

 cout << node->val << " ";

 print_in_order(node->right);

}

Printing the Tree (in order)

6

82

41 9

53

Idea. Print all of the lef subtree and
then print the current node and
then print all of the right subtree.

I.e. Print the smaller nodes then 
 print the current node, then 
 print the larger nodes

7

public function used by the user

private helper
(recursive) function

template <class T>

void BST<T>::print_in_order() const {

 print_in_order(root);

}

template <class T>

void BST<T>::print_in_order(Node<T>* node) const {

 if (node == nullptr) return;

 print_in_order(node->left);

 cout << node->val << " ";

 print_in_order(node->right);

}

Clearing the Tree

How can we traverse the tree and delete 
every node?

6

82

41 9

53

7

Clearing the Tree

How can we traverse the tree and delete 
every node?

6

82

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

Clearing the Tree

To clear the tree rooted at 6,  
2 and 8 have to be cleared first

6

82

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

Clearing the Tree

To clear the tree rooted at 2,  
1 and 4 have to be cleared first

6

82

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

Clearing the Tree

6

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

1 can be cleared!

1

Clearing the Tree

6

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

To clear the tree rooted at 4,  
3 and 5 have to be cleared first

1

Clearing the Tree

6

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

1 and 5 can be cleared!

1

2 3

Clearing the Tree

6

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

4 can be cleared!

1

2 3

4

Clearing the Tree

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

2 can be cleared!

1

2 3

4

5

6

Clearing the Tree

8

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2

To clear the tree rooted at 8,  
7 and 9 have to be cleared first

1

2 3

4

5

6

Clearing the Tree

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2 8

7 and 9 can be cleared!

1

2 3

4

5

6 7

6

Clearing the Tree

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2 8

6

8 can be cleared!

1

2 3

4

5

6 7

8

Clearing the Tree

41 9

53

7

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

2 8

6

6 can be cleared!

1

2 3

4

5

6 7

8

9

Clearing the Tree

template <class T>

void BST<T>::clear() {

 clear(root); 
 root = nullptr;

}

template <class T>

void BST<T>::clear(Node<T>* node) {

 if (node == nullptr) return;

 clear(node->left);

 clear(node->right);

 delete node;

}

Idea. Since the children of a node
are accessible only through the
node, do not delete the node until its
children have been deleted.

I.e. Clear the left subtree 
 Clear the right subtree, then 
 delete the current node

1

2 3

4

5

6 7

8

9

Copying the Tree

6

82

41 9

53

7

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

82

41 9

53

7

6

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

82

41 9

53

7

6

2

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

82

41 9

53

7

6

2

1

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

41 9

53

7

6

2

1

2

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

3

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

3

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

3 5

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

3 5

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

6

8

1 9

53

7

6

2

1

2

4

4

3 5

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Copying the Tree

8

1 9

53

7

6

2

1

2

4

4

3 5

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

6

8

Copying the Tree

6

1 9

53

7

6

2

1

2

4

4

3 5

8

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

8

Copying the Tree

6

1 9

53

7

6

2

1

2

4

4

3 5

8

7

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

8

Copying the Tree

6

1 9

53

7

6

2

1

2

4

4

3 5

8

7

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

8

Copying the Tree

6

1 9

53

7

6

2

1

2

4

4

3 5

8

7 9

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

8

Copying the Tree

6

1 9

53

7

6

2

1

2

4

4

3 5

8

7 9

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

8

Copying the Tree

1 9

53

7

6

2

1

2

4

4

3 5

8

7 9

BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

6

Copying the Tree

template <class T>

BST<T>::BST(const BST<T>& other) { 
 root = nullptr;

 copy_from(other.root);

}

template <class T>

void BST<T>::copy_from(Node<T>* node) {

 if (node == nullptr) return;

 insert(node->val); 
 copy_from(node->left);

 copy_from(node->right);

}

3

5 6

4

2

8 9

7

1
BST Copy Constructor. Given another
BST named other, insert every node in
other into the current tree, such that
the current tree becomes exactly like
other.

Procedure. Insert the current node value  
 Copy the left subtree 
 Copy the right subtree

Note. This code creates an exact copy of
the tree assuming the insert function
does not rebalance with rotations!

!

Running Time. nodes are inserted.

In general:

Balanced Trees:

Worst Case:

n
O(n × height)
O(n log n)
O(n2)

!

Depth-First Traversals

Problem. Given a binary tree, visit
every node in the tree and perform
some operation (e.g. delete the
node, print the node, etc.)

Solution. Start at the root and use
recursion to traverse the left and
right subtrees.

Pre-order Traversal. Perform the
operation before traversing the left

Post-order Traversal. Perform the
operation aftft

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 do_something();

 preOrder(node->left);

 preOrder(node->right);

}

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 preOrder(node->left);

 preOrder(node->right);

 do_something();

}

In-order Traversal. Perform the
operation aftft

void inOrder(Node<T>* node) {

 if (node == nullptr) return;

 inOrder(node->left);

 do_something();

 inOrder(node->right);

}

Depth-First Traversals

Problem. Given a binary tree, visit
every node in the tree and perform
some operation (e.g. delete the
node, print the node, etc.)

Solution. Start at the root and use
recursion to traverse the left

Pre-order Traversal. Perform the
operation before traversing the left
and right subtrees.

Post-order Traversal. Perform the
operation aftft

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 do_something();

 preOrder(node->left);

 preOrder(node->right);

}

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 preOrder(node->left);

 preOrder(node->right);

 do_something();

}

In-order Traversal. Perform the
operation aftft

void inOrder(Node<T>* node) {

 if (node == nullptr) return;

 inOrder(node->left);

 do_something();

 inOrder(node->right);

}Example applications. Copying a BST

and computing node depths.

Depth-First Traversals

Problem. Given a binary tree, visit
every node in the tree and perform
some operation (e.g. delete the
node, print the node, etc.)

Solution. Start at the root and use
recursion to traverse the left

Pre-order Traversal. Perform the
operation before traversing the left

Post-order Traversal. Perform the
operation aftft

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 do_something();

 preOrder(node->left);

 preOrder(node->right);

}

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 preOrder(node->left);

 preOrder(node->right);

 do_something();

}

In-order Traversal. Perform the
operation after traversing the left
subtree and before traversing the
right subtree.

void inOrder(Node<T>* node) {

 if (node == nullptr) return;

 inOrder(node->left);

 do_something();

 inOrder(node->right);

}Example application.  

Printing a BST in order

Depth-First Traversals

Problem. Given a binary tree, visit
every node in the tree and perform
some operation (e.g. delete the
node, print the node, etc.)

Solution. Start at the root and use
recursion to traverse the left

Pre-order Traversal. Perform the
operation before traversing the left

Post-order Traversal. Perform the
operation after traversing the left
and right subtrees.

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 do_something();

 preOrder(node->left);

 preOrder(node->right);

}

void preOrder(Node<T>* node) {

 if (node == nullptr) return;

 preOrder(node->left);

 preOrder(node->right);

 do_something();

}

In-order Traversal. Perform the
operation aftft

void inOrder(Node<T>* node) {

 if (node == nullptr) return;

 inOrder(node->left);

 do_something();

 inOrder(node->right);

}

Example applications. Clearing a tree
and computing node heights.

Printing the Tree (level-by-level)

A

CB

ED F

G IH J

How can we traverse the tree level-by-level?

Printing the Tree (level-by-level)

A

CB

ED F

G IH J

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

Queue

Console

Printing the Tree (level-by-level)

A

CB

ED F

G IH J

Queue

Console

Initially, the root is added to the
queue A

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

Printing the Tree (level-by-level)

A

B

ED F

G IH J

Queue

Console

 A

Remove A and add its children A B C

C

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

Printing the Tree (level-by-level)

A

B

F

G IH J

Queue

Console

 A B

Remove B and add its children A B C

C

D E

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

Printing the Tree (level-by-level)

A

B

F

G IH J

Queue

Console

 A B C

Remove C and add its children

C

ED

F

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

A B C D E

Printing the Tree (level-by-level)

A

B

F

G IH J

Queue

Console

 A B C D

Remove D and add its children

C

ED

G

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

FA B C D E

Printing the Tree (level-by-level)

A

B

F

G IH J

Queue

Console

 A B C D E

Remove E and add its children

C

ED

H I

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

first

GFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F

Remove F and add its children

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

J

I

first

H IGFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F G

Remove G

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

I

first

JH IGFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F G H

Remove H

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

I

first

JH IGFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F G H I

Remove I

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

I

first

JH IGFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F G H I J

Remove J

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

I

JH IGFA B C D E

Printing the Tree (level-by-level)

A

B

F

G H J

Queue

Console

 A B C D E F G H I J

The queue is empty!

C

ED

Idea. Maintain a queue of the
nodes yet to be visited.

Repeat until the queue is
empty: Remove a node and
add its children.

I

JH IGFA B C D E

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Create a queue of pointers to nodes

No need to store complete copies of  
nodes!

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Repeat until the queue is empty

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Remove from the queue and print!

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Add the children only if they

are not null

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Add the children only if they

are not null

Terminology. Breadth-First Traversal (BFT) = Level-Order Traversal

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Add the children only if they

are not null

Terminology. Breadth-First Traversal (BFT) = Level-Order Traversal

Right-to-left BFT. Enqueue the right child before the left child.

Printing the Tree (level-by-level)

template <class T>

void BST<T>::level_order() const {

 if (is_empty()) return;

 Queue< Node<T>* > queue;

 queue.enqueue(root);

 while (!queue.is_empty()) {

 Node<T>* node = queue.dequeue();

 cout << node->val << " ";

 if (node->left != nullptr) queue.enqueue(node->left);

 if (node->right != nullptr) queue.enqueue(node->right);

 }

}

Add the children only if they

are not null

Terminology. Breadth-First Traversal (BFT) = Level-Order Traversal

Right-to-left BFT. Enqueue the right child before the left child.

Note. While in this code we print each dequeued node, the BFT is a general-purpose traversal that
can be used to go through all the nodes in the tree and perform some operation (e.g. printing the
node value, computing and storing the node depth, checking if the node is a leaf, etc.)

What does the following function do?

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

6

82

41 9

53

7

Console

stack

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

6

82

41 9

53

7

Console

stack

6

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

41 9

53

7

Console

 6

stack

82

6template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

41 9

53

7

Console

 6

stack

8

2

82

6template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

6

1 9

53

7

Console

 6 2

stack

8

8

4

2

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

6

1 9

53

7

Console

 6 2

stack

8

4

1

8

4

2

What does the following function do?

1 9

53

7

Console

 6 2 1

stack

8

4

6

2 8

4

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

1 9

53

7

Console

 6 2 1

stack

8

4

6

2 8

4

What does the following function do?

1 9

53

7

Console

stack

8

6

2 8

4

 6 2 1 4

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4

stack

8

5

3

1 9

53

7

6

2 8

4

What does the following function do?

Console

 6 2 1 4 3

stack

8

5

1 9

53

7

6

2 8

4

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3

stack

8

5

1 9

53

7

6

2 8

4

What does the following function do?

Console

 6 2 1 4 3 5

stack

8

1 9

53

7

6

2 8

4

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3 5

stack

8

1 9

53

7

6

2 8

4

What does the following function do?

Console

 6 2 1 4 3 5 8

stack

1

53

6

2 8

4 97

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3 5 8

stack

9

7

1

53

6

2 8

4 97

What does the following function do?

Console

 6 2 1 4 3 5 8 7

stack

9

1

53

6

2 8

4 97

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3 5 8 7

stack

9

1

53

6

2 8

4 97

What does the following function do?

Console

 6 2 1 4 3 5 8 7 9

stack

1

53

6

2 8

4 97

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3 5 8 7 9

stack

1

53

6

2 8

4 97

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

What does the following function do?

Console

 6 2 1 4 3 5 8 7 9

stack

1

53

6

2 8

4 97

Pre-order Traversal !

What does the following function do?

template <class T>

void BST<T>::mystery() const {

 if (is_empty()) return;

 Stack< Node<T>* > stack;

 stack.push(root);

 while (!stack.is_empty()) {

 Node<T>* node = stack.pop();

 cout << node->val << " ";

 if (node->right != nullptr)

 stack.push(node->right);

 if (node->left != nullptr)

 stack.push(node->left);

 }

}

Console

 6 2 1 4 3 5 8 7 9

Pre-order Traversal !

More Practice Exercises

1. Store in every node its height.

2. Store in every node its depth.

3. Count the number of nodes in the tree 
 or count the number of leafs in the tree.

4. Store in every node the number of nodes in the subtree rooted at that node.

5. Find the maximum in a general binary tree (not a BST)

6. Print the tree in reverse level-order (from the right-most node in the last level  
 to the root).

7. Find the median in a BST (in O(n))

8. Find the median in a balanced BST (in O(log n)) assuming exercise 4 is solved.

9. Remove all the leafs from the tree.

10. Count all the nodes in the last level.

... and many more!

Back to the Set ADT

insert(val) remove(val) contains(val)

Unordered DLL

Unordered SLL

Candidate implementations.

Problem. Design a data structure to support the following operations:

• insert(val) // add val to the set if it is not already in the set.

• remove(val) // remove val from the set of items.

• contains(val) // check if val belongs to the set.

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Ordered DLL

Ordered SLL

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Unordered Array

Ordered Array

O(n)

O(log n)

O(n)

O(log n)

O(n)

O(log n)Balanced BST

O(n) O(n) O(log n)

Winner!

Another ADT: A Map (or Dictionary)

Problem. Design a data structure to support the following operations:

• insert(key, val) // insert a new key-value pair or reset 
 // the current value of they key

• remove(key) // remove the key and its corresponding value

• get(key) // return the value corresponding to the key

Optio
nal

Another ADT: A Map (or Dictionary)

Problem. Design a data structure to support the following operations:

• insert(key, val) // insert a new key-value pair or reset 
 // the current value of they key

• remove(key) // remove the key and its corresponding value

• get(key) // return the value corresponding to the key

Optio
nal

Example Applications.

• A mapping between words and their meanings (key and val are string)

• A mapping between usernames and passwords (key and val are string)

• A mapping between IDs and GPAs (key is string and val is float)

• A mapping between years and number of new borns (key and val are int)

Another ADT: A Map (or Dictionary)

Problem. Design a data structure to support the following operations:

• insert(key, val) // insert a new key-value pair or reset 
 // the current value of they key

• remove(key) // remove the key and its corresponding value

• get(key) // return the value corresponding to the key

Optio
nal

Example Applications.

• A mapping between words and their meanings (key and val are string)

• A mapping between usernames and passwords (key and val are string)

• A mapping between IDs and GPAs (key is string and val is float)

• A mapping between years and number of new borns (key and val are int)

Solution. Use a balanced BST. Modify the Node class to have a key and a value.

• insert(key, val) // search based on key. If key is found, change the 
 // current val, else insert a new node O(log n)

• remove(key) // same as remove in the set ADT O(log n)

• get(key) // search based on key O(log n)

⟶
⟶

⟶

