CS11212-Spring 2022 Data Structures \& Introduction to Algorithms

Data Structures
Trees: Definitions and Properties

Ibrahim Albluwi

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

Candidate implementations.

	insert(val)	remove(val)	contains (val)
Unordered DLL			
Unordered SLL			

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

Candidate implementations.
both need searching in the list

	insert(val)	remove(val)	contains (val)
Unordered DLL	$0(n)$	$O(n)$	$O(n)$
Unordered SLL	$0(n)$	$O(n)$	$O(n)$

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

Candidate implementations.
both need searching in the list

	insert(val)	remove(val)	contains (val)
Unordered DLL	$0(n)$	$O(n)$	$O(n)$
Unordered SLL	$O(n)$	$O(n)$	$O(n)$

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

Candidate implementations.
both need searching in the list

	insert(val)	remove(val)	contains (val)	Bad!
Unordered DLL	O(n)	O(n)		
Unordered SLL	O(n)	O(n)	O(n)	
Ordered DLL Ordered SLL	$\begin{aligned} & O(n) \\ & O(n) \end{aligned}$	$\begin{aligned} & O(n) \\ & O(n) \end{aligned}$	$\begin{aligned} & O(n) \\ & O(n) \end{aligned}$	Maintaining order does not help!

A Set ADT

Problem. Design a data structure to support the following operations:

- insert(val) // add val to the set if it is not already in the set.
- remove(val) // remove val from the set of items.
- contains(val) // check if val belongs to the set.

Candidate implementations.
both need searching in the list

A Set ADT

What is going on?

- Linked lists support efficient insertion and deletion.

Provided that there is a pointer to the insertion or deletion position.

- Arrays support efficient search.

Provided that the array is sorted.

- Linked lists do not support efficient search.

Sorted linked lists do not support efficient binary search because it requires direct access.
ジ

- Arrays do not support efficient insertion and removal at any position.

Elements need to be shifted.

A Set ADT

What is going on?

- Linked lists support efficient insertion and deletion. Provided that there is a pointer to the insertion or deletion position.
- Arrays support efficient search.

Provided that the array is sorted.

- Linked lists do not support efficient search. Sorted linked lists do not support efficient binary search because it requires direct access.
Bad!
- Arrays do not support efficient insertion and removal at any position. Elements need to be shifted.

Can we achieve the good of the two?
Efficient search (as in binary search)
Efficient insertion / removal (given a pointer to the insertion / removal position)

Binary Search on Linked Lists?

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14
$$

Can we perform binary search on a sorted linked list?

Binary Search on Linked Lists?

$O(n)$ operations to get to the middle element!

Binary Search on Linked Lists?

$$
\begin{gathered}
\text { start } \\
0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 4 \leftarrow 5 \leftarrow 6 \leftarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14
\end{gathered}
$$

Idea: Maintain a pointer to the middle element.
The middle element is now accessible in $O(1)$.

Binary Search on Linked Lists?

Idea: Maintain a pointer to the middle element.
The middle element is now accessible in $O(1)$.

Binary Search on Linked Lists?

Still $O(n)$ to get to the middle of the left half or the middle of the right half!

Binary Search on Linked Lists?

Idea (again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?

Idea (again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?

Idea (again, again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?

Idea (again, again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?

A Binary Search Tree!

Proposed Implementation

A Binary Search Tree!
We need to build a linked tree structure.

Proposed Implementation

A Binary Search Tree!
We need to build a linked tree structure.
Trees are not useful only for efficient search. They are useful for representing hierarchies and relationships in general.

Proposed Implementation

A Binary Search Tree!
We need to build a linked tree structure.
Trees are not useful only for efficient search. They are useful for representing hierarchies and relationships in general.

Questions.

- How do we insert into the tree?
- How do we remove from the tree?
- How do we search the tree?
- How do we traverse the tree?
- What other operations can we perform?
- What properties do trees have?
-...?

Tree Data Structures

- Definitions and properties

Operations on BSTs
Balanced binary search trees
Tree traversals

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A node connected to two disjoint trees

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A node connected to two disjoint trees:

- A NULL tree and
- A node connected to two NULL trees

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

not a tree: A node connected to two overlapping trees

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

Alternative definition (from graph theory).
A tree is a set of nodes in which any two nodes are connected by exactly one path

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

Alternative definition (from graph theory).
A tree is a set of nodes in which any two nodes are connected by exactly one path

only one path from the red to the blue node

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

Alternative definition (from graph theory).
A tree is a set of nodes in which any two nodes are connected by exactly one path

only one path from the red to the blue node

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

Alternative definition (from graph theory).
A tree is a set of nodes in which any two nodes are connected by exactly one path

only one path from the red to the blue node

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

\square

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

A binary tree in nature!

Binary trees?

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

nodes that share the same parent are siblings

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

Every tree has one root node.
The root node has no parent.
The root is an ancestor for all nodes.
All nodes are descendants of the root.

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

Every tree has one root node.
The root node has no parent.
The root is an ancestor for all nodes.
All nodes are descendants of the root.
A leaf node has no children.

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

Every tree has one root node.
The root node has no parent.
The root is an ancestor for all nodes.
All nodes are descendants of the root.

A leaf node has no children.

Nodes that are not leafs are called internal nodes.
Leafs are also called "external nodes".

Terminology

Definition. A tree is:

- NULL or
- a node connected to a set of disjoint trees.

A binary tree is:

- NULL or
- a node connected to at most two disjoint binary trees.

Every tree has one root node.
The root node has no parent.
The root is an ancestor for all nodes.
All nodes are descendants of the root.
A leaf node has no children.

Nodes that are not leafs are called internal nodes.
Leafs are also called "external nodes".
The degree of a node is the number of its children.
The degree of a tree is the maximum degree of a node in the tree.
A leaf has degree 0 . The illustrated tree has degree 2.

Terminology

The depth of a node is its level in the tree.
The root has depth 0 .

Terminology

The depth of a node is its level in the tree.
The root has depth 0 .
The height of a node is the maximum number of levels below it. All leafs have height 0 .

Terminology

The depth of a node is its level in the tree.
The root has depth 0 .
The height of a node is the maximum number of levels below it. All leafs have height 0 .

Terminology

The depth of a node is its level in the tree.
The root has depth 0 .
The height of a node is the maximum number of levels below it. All leafs have height 0 .

The height of a tree is the height of the root.
Also called "tree depth".

Exercise

Root $=$
Leafs =
Tree height =
Tree Degree =
Ancestors of $\mathbf{L}=$

Height of $\mathbf{E}=$
Depth of $\mathbf{E}=$
Degree of $\mathbf{E}=$
Descendants of $\mathbf{E}=$ Siblings of $\mathbf{G}=$

Exercise


```
    Root = A
Height of \(\mathbf{E}=3\)
    Leafs = I J N M F G H
        Depth of E = 2
    Tree height = 5
        Degree of E = 1
    Tree Degree = 3
        Descendants of E = K L M N
Ancestors of L = K E B A
                        Siblings of G = F H
```


Binary Search Trees

```
Search for 10
```


Informally. A binary search tree (BST) is a binary tree that allows performing binary search!

Binary Search Trees

Informally. A binary search tree (BST) is a binary tree that allows performing binary search!

Binary Search Trees

```
Search for 10
```


Informally. A binary search tree (BST) is a binary tree that allows performing binary search!

Binary Search Trees

```
Search for 10
```


Informally. A binary search tree (BST) is a binary tree that allows performing binary search!

Binary Search Trees

Search for 10

Why is binary search possible on such a tree?

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

5 is to the left of 1

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

NOT a BST

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

5
3
(4)

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

(5)

3
(4)

YES! a BST

Binary Search Trees

Definition. A binary search tree (BST)

is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

This applies also to every element in any sorted array!

$$
\begin{array}{lllll|l|l|l|l|l|l|l|l|l|l}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array}
$$

Exercise

Question. Which node is always the maximum node in a BST?

Exercise

Question. Which node is always the maximum node in a BST?
Answer. The right-most node.

Exercise

Question. Which node is always the maximum node in a BST?
Answer. The right-most node.
Question. Which node is always the minimum node in a BST?

Exercise

Question. Which node is always the maximum node in a BST?
Answer. The right-most node.
Question. Which node is always the minimum node in a BST? Answer. The left-most node.

Exercise

Question. Which node is always the maximum node in a BST?
Answer. The right-most node.
Question. Which node is always the minimum node in a BST? Answer. The left-most node.

Question. Which node is always the median node in a BST?

Exercise

Question. Which node is always the maximum node in a BST?
Answer. The right-most node.
Question. Which node is always the minimum node in a BST?
Answer. The left-most node.
Question. Which node is always the median node in a BST?
Answer. Impossible to tell without performing a search for the median. stay tuned!

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

3
(4)

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.

Binary Search Trees

Definition. A binary search tree (BST) is a binary tree where each node is:

- larger than all the nodes to its left.
- smaller than all the nodes to its right.
- a binary search tree.
! Searching a BST requires O (height) compares. what is the height of a BST?

YES! a BST

Perfect Binary Trees

Definition.

- All levels are full.
- All leafs are in the last level and all internal nodes have exactly two children.

CAUTION

You might find different definitions online. Some texts call this tree complete

Perfect Binary Trees

Definition.

- All levels are full.
- All leafs are in the last level and all internal nodes have exactly two children.
$\#$ of nodes $(N)=2^{\text {height }+1}-1$

Perfect Binary Trees

Definition.

- All levels are full.
- All leafs are in the last level and all internal nodes have exactly two children.
$\#$ of nodes $(N)=2^{\text {height }+1}-1$
Height $=\log _{2}(N+1)-1$

Perfect Binary Trees

Definition.

- All levels are full.
- All leafs are in the last level and all internal nodes have exactly two children.
\# of nodes $(N)=2^{\text {height }+1}-1$
Height $=\log _{2}(N+1)-1$

IMPORTANT!

The height of a perfect binary tree is logarithmic in the number of nodes in the tree!

Perfect Binary Trees

Definition.

- All levels are full.
- All leafs are in the last level and all internal nodes have exactly two children.
\# of nodes $(N)=2^{\text {height }+1}-1$
Height $=\log _{2}(N+1)-1$
\# of leafs = 2 height
$\#$ of leafs $=\frac{N+1}{2}$
$\#$ of internal nodes $=\frac{N-1}{2}$
$N=1$
$H=0$
$\mathrm{N}=3$
$\mathrm{H}=1$
$\mathrm{N}=7$
$\mathrm{H}=2$
$\mathrm{N}=15$
$\mathrm{H}=3$
$\mathrm{N}=31$
$H=4$

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one.

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node (bf) = height of left child - height of right child

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node $(\mathrm{bf})=$ height of left child - height of right child

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node $(\mathrm{bf})=$ height of left child - height of right child

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node (bf) = height of left child - height of right child

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node $(\mathrm{bf})=$ height of left child - height of right child

Which trees are balanced?

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node $(\mathrm{bf})=$ height of left child - height of right child

Which trees are balanced?

Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at most one. I.e. the balance factor for every node $=0,1$ or -1 .

Balance Factor of a node $(\mathrm{bf})=$ height of left child - height of right child

IMPORTANT!
The height of a balanced binary tree is logarithmic in the number of nodes in the tree.

Tree Data Structures

Definitions and properties

- Basic Operations

Balanced binary search trees
Tree traversals

