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A Set ADT

Problem. Design a data structure to support the following operations: 

• insert(val)   // add val to the set if it is not already in the set. 
• remove(val)   // remove val from the set of items. 
• contains(val) // check if val belongs to the set.
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A Set ADT

insert(val) remove(val) contains(val)

Unordered DLL

Unordered SLL

Candidate implementations.

Problem. Design a data structure to support the following operations: 

• insert(val)   // add val to the set if it is not already in the set. 
• remove(val)   // remove val from the set of items. 
• contains(val) // check if val belongs to the set.
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both need searching in the list
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Ordered SLL
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Unordered Array

Ordered Array
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O(log n) Great!

Bad!

Maintaining 
order does not 
help!

insert/remove  
are bad!



A Set ADT

What is going on? 

• Linked lists support efficient insertion and deletion. 
Provided that there is a pointer to the insertion or deletion position. 

• Arrays support efficient search. 
Provided that the array is sorted. 

• Linked lists do not support efficient search. 
Sorted linked lists do not support efficient binary search because it requires direct access. 

• Arrays do not support efficient insertion and removal at any position. 
Elements need to be shifted.
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A Set ADT

Can we achieve the good of the two?
Efficient search (as in binary search)
Efficient insertion / removal (given a pointer to the insertion / removal position)

What is going on? 

• Linked lists support efficient insertion and deletion. 
Provided that there is a pointer to the insertion or deletion position. 

• Arrays support efficient search. 
Provided that the array is sorted. 

• Linked lists do not support efficient search. 
Sorted linked lists do not support efficient binary search because it requires direct access. 

• Arrays do not support efficient insertion and removal at any position. 
Elements need to be shifted.
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Can we perform binary search on a sorted linked list?

Binary Search on Linked Lists?
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start

n/2 steps are needed to get to mid!

O(n) operations to get to the middle element!

Binary Search on Linked Lists?
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start

Idea: Maintain a pointer to the middle element. 
The middle element is now accessible in O(1).

Binary Search on Linked Lists?



10 32 54 6 8

7

109 1211 13 13

start

Idea: Maintain a pointer to the middle element. 
The middle element is now accessible in O(1).

Binary Search on Linked Lists?



10 32 54 6 8

7

109 1211 13 14

start

n/4 steps n/4 steps

Still O(n) to get to the middle of the left half or the middle of the right half!

Binary Search on Linked Lists?
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Idea (again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?
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Idea (again): Maintain a pointer to the middle elements!
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Idea (again, again): Maintain a pointer to the middle elements!

Binary Search on Linked Lists?
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Idea (again, again): Maintain a pointer to the middle elements!
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A Binary Search Tree!

Binary Search on Linked Lists?
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A Binary Search Tree!
We need to build a linked tree structure.
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A Binary Search Tree!
We need to build a linked tree structure.

Trees are not useful only for efficient 
search. They are useful for representing 
hierarchies and relationships in general.
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A Binary Search Tree!
We need to build a linked tree structure.

Trees are not useful only for efficient 
search. They are useful for representing 
hierarchies and relationships in general.

Questions.
• How do we insert into the tree? 
• How do we remove from the tree? 
• How do we search the tree? 
• How do we traverse the tree? 
• What other operations can we perform? 
• What properties do trees have? 
• … ?



Tree Data Structures

Definitions and properties

Operations on BSTs

Balanced binary search trees

Tree traversals



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees.

NULL NULL NULL

NULL

NULL NULL

NULL NULL NULL NULL



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees.

A node connected to two disjoint trees

NULL NULL NULL

NULL

NULL NULL

NULL NULL NULL NULL



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees.

A node connected to two disjoint trees: 
- A NULL tree and 

- A node connected to two NULL trees

NULL NULL NULL

NULL

NULL NULL

NULL NULL NULL NULL



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees.

not a tree: A node connected  
to two overlapping trees
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A tree is a set of nodes in which any two nodes  
are connected by exactly one path
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Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees. NULL NULL NULL
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NULL NULL

NULL NULL NULL NULL
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A binary tree in nature!



Binary trees?



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees.

parent

children

nodes that share the same parent are siblings



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees.

ancestor

descendents
children, grandchildren, 
grand grand children, etc.

parent, grandparent, 
grand grand parent, etc.



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees. 

Every tree has one root node. 
The root node has no parent. 
The root is an ancestor for all nodes. 
All nodes are descendants of the root.

root



Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees. 

Every tree has one root node. 
The root node has no parent. 
The root is an ancestor for all nodes. 
All nodes are descendants of the root. 

A leaf node has no children.

root

leafs leafs
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Terminology

Definition. A tree is: 
• NULL or 
• a node connected to a set of disjoint trees. 

A binary tree is: 
• NULL or 
• a node connected to at most two 

disjoint binary trees. 

Every tree has one root node. 
The root node has no parent. 
The root is an ancestor for all nodes. 
All nodes are descendants of the root. 

A leaf node has no children. 

Nodes that are not leafs are called internal nodes. 
Leafs are also called "external nodes". 

The degree of a node is the number of its children. 
The degree of a tree is the maximum degree of a node in the tree. 
A leaf has degree 0. The illustrated tree has degree 2.

root

degree 0

degree 1

degree 2



Terminology

The depth of a node is its level in the tree. 
The root has depth 0.
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The height of a node is the maximum number of levels below it. 
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Terminology

The depth of a node is its level in the tree. 
The root has depth 0. 

The height of a node is the maximum number of levels below it. 
All leafs have height 0.
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Terminology

The depth of a node is its level in the tree. 
The root has depth 0. 

The height of a node is the maximum number of levels below it. 
All leafs have height 0. 

The height of a tree is the height of the root. 
Also called "tree depth".

height = 5 Level 0

Level 1

Level 2

Level 3

Level 4

Level 5



Exercise

A

CB

ED HF

I J K

L M

G

N

            Root = A                     Height of E = 3 
           Leafs = I J N M F G H          Depth of E = 2 
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     Tree Degree = 3                Descendants of E = K L M N 
  Ancestors of L = K E B A             Siblings of G = F H 
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Binary Search Trees

Search for 10

Informally. A binary search tree (BST) 
is a binary tree that allows performing 
binary search!
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found!

Why is binary search possible on such a tree?
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 
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• a binary search tree.
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YES! a BST

Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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• a binary search tree.
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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This applies also to every 
element in any sorted array!
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Question. Which node is always the maximum node in a BST?
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Question. Which node is always the maximum node in a BST?
Answer. The right-most node.
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Question. Which node is always the maximum node in a BST?

Question. Which node is always the minimum node in a BST?

Question. Which node is always the median node in a BST?

Answer. The right-most node.

Answer. The left-most node.
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Question. Which node is always the maximum node in a BST?

Question. Which node is always the minimum node in a BST?

Question. Which node is always the median node in a BST?

Answer. The right-most node.

Answer. The left-most node.

Answer. Impossible to tell without performing a search for the median. stay tuned!
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Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Binary Search Trees

Definition. A binary search tree (BST) 
is a binary tree where each node is: 

• larger than all the nodes to its left. 

• smaller than all the nodes to its right. 

• a binary search tree.
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Searching a BST requires  compares.O( height )!

what is the height of a BST? YES! a BST
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Perfect Binary Trees

N = 1 
H = 0

N = 3 
H = 1

N = 7 
H = 2

N = 15 
H = 3

N = 31 
H = 4

Definition. 

• All levels are full. 

• All leafs are in the last level 
and all internal nodes have 
exactly two children.

CAUTION  
You might find different 

definitions online. Some texts 
call this tree complete



Perfect Binary Trees

N = 1 
H = 0

N = 3 
H = 1

N = 7 
H = 2

N = 15 
H = 3

N = 31 
H = 4

Definition. 

• All levels are full. 

• All leafs are in the last level 
and all internal nodes have 
exactly two children.

# of nodes  =  (N ) 2 height + 1 − 1
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Definition. 

• All levels are full. 

• All leafs are in the last level 
and all internal nodes have 
exactly two children.

# of nodes  =  

Height = 

(N ) 2 height + 1 − 1

log2(N + 1) − 1



Perfect Binary Trees

N = 1 
H = 0

N = 3 
H = 1

N = 7 
H = 2

N = 15 
H = 3

N = 31 
H = 4

# of nodes  =  

Height = 

(N ) 2 height + 1 − 1

log2(N + 1) − 1

Definition. 

• All levels are full. 

• All leafs are in the last level 
and all internal nodes have 
exactly two children.

IMPORTANT! 
The height of a perfect binary 

tree is logarithmic in the number 
of nodes in the tree!



Perfect Binary Trees

Definition. 

• All levels are full. 

• All leafs are in the last level 
and all internal nodes have 
exactly two children.

N = 1 
H = 0

N = 3 
H = 1

N = 7 
H = 2

N = 15 
H = 3

N = 31 
H = 4

# of leafs =  

# of leafs =  

# of internal nodes = 

2 height

N + 1
2

N − 1
2

# of nodes  =  

Height = 

(N ) 2 height + 1 − 1

log2(N + 1) − 1



Balanced Binary Trees

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one.

Balanced Binary Trees



Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A
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HG F
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Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.
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Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A

CB

HG F

I KJ

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

Balanced Binary Trees
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bf = 0 

bf = 0 

bf = 0 bf = 0 

bf = 0 



Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A

CB

HG F

I KJ

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

Balanced Binary Trees

bf = 1 

bf = 1 
assuming the height 
of a NULL tree is -1

h = 0
h = -1
NULL

bf = 0 - -1 = 1



Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A

CB

HG F

I KJ

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

Balanced Binary Trees
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Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

Which trees are balanced?



Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A

CB

HG F

I KJ

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

Which trees are balanced?

✓ ✓ ✓ ✓ XX

bf=-2 

bf=2 



Balanced Binary Trees

Balance Factor of a node (bf) = height of left child − height of right child

A

CB

HG F

I KJ

Balanced Binary Tree. the heights of the two child subtrees of any node differ by at 
most one. I.e. the balance factor for every node = 0, 1 or -1.

IMPORTANT! 
The height of a balanced binary 
tree is logarithmic in the number 

of nodes in the tree.



Tree Data Structures

Definitions and properties

Basic Operations

Balanced binary search trees

Tree traversals


