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Basic Operations
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Implementation

valprev next

Class Node. Both a BST node and a DLL node store a value and two pointers to  
other nodes. 

In a BST node, the two pointers represent 
links to the left and right children.

In a DLL node, the two pointers represent 
links to the next and previous nodes.
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Implementation

valprev next

Class Node. Both a BST node and a DLL node store a value and two pointers to  
other nodes. 

Class BST. Stores a pointer to the root of the tree. 
A DLL class stores a pointer to the head of the list (and the tail of the list).

root

In a BST node, the two pointers represent 
links to the left and right children.

In a DLL node, the two pointers represent 
links to the next and previous nodes.
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Recursive Search

public function used by the user 
calls the private recursive version

template <class T> 
bool BST<T>::contains(const T& val) { 
     return contains(val, root); 
} 

template <class T> 
bool BST<T>::contains(const T& val, Node<T>* n)  
{ 
    if (n == nullptr)   
        return false; 

    if (n->val == val)  
        return true; 

    if (val > n->val)   
        return contains(val, n->right); 
    else                
        return contains(val, n->left); 
}



private recursive function. 
Requires a pointer to the root of  
the tree (or subtree) where the  
search will be performed

Recursive Search

template <class T> 
bool BST<T>::contains(const T& val) { 
     return contains(val, root); 
} 

template <class T> 
bool BST<T>::contains(const T& val, Node<T>* n)  
{ 
    if (n == nullptr)   
        return false; 

    if (n->val == val)  
        return true; 

    if (val > n->val)   
        return contains(val, n->right); 
    else                
        return contains(val, n->left); 
}



Base case. 
val can't be present 
in an empty tree!

Recursive Search

template <class T> 
bool BST<T>::contains(const T& val) { 
     return contains(val, root); 
} 

template <class T> 
bool BST<T>::contains(const T& val, Node<T>* n)  
{ 
    if (n == nullptr)   
        return false; 

    if (n->val == val)  
        return true; 

    if (val > n->val)   
        return contains(val, n->right); 
    else                
        return contains(val, n->left); 
}



val found in the  
current node

Recursive Search

template <class T> 
bool BST<T>::contains(const T& val) { 
     return contains(val, root); 
} 

template <class T> 
bool BST<T>::contains(const T& val, Node<T>* n)  
{ 
    if (n == nullptr)   
        return false; 

    if (n->val == val)  
        return true; 

    if (val > n->val)   
        return contains(val, n->right); 
    else                
        return contains(val, n->left); 
}



Search recursively in the 
left subtree or in the 
right subtree

Recursive Search

template <class T> 
bool BST<T>::contains(const T& val) { 
     return contains(val, root); 
} 

template <class T> 
bool BST<T>::contains(const T& val, Node<T>* n)  
{ 
    if (n == nullptr)   
        return false; 

    if (n->val == val)  
        return true; 

    if (val > n->val)   
        return contains(val, n->right); 
    else                
        return contains(val, n->left); 
}



template <class T> 
bool BST<T>::contains(const T& val) { 
    Node<T>* curr = root;  

    while (curr != nullptr) { 

        if (curr->val == val) 
            return true; 

        if (val > curr->val)   
            curr = curr->right;  
        else                
            curr = curr->left;  
    } 

    return false; 
}

Iterative Search



Search Running Time

Best Case.  
If val is found at the root of the tree. 

It does not matter if the tree is 
balanced or not. 

O(1)template <class T> 
bool BST<T>::contains(const T& val) { 
    Node<T>* curr = root;  

    while (curr != nullptr) { 

        if (curr->val == val) 
            return true; 

        if (val > curr->val)   
            curr = curr->right;  
        else                
            curr = curr->left;  
    } 

    return false; 
}



Search Running Time

Best Case.  
If val is found at the root of the tree. 

It does not matter if the tree is 
balanced or not. 

O(1)

Worst Case.  
If the search proceeds to the last level 
in the tree. 

 if the tree is balanced. 
 if the tree is unbalanced. 

O( height )

O(log n)
O(n)

 height = O(log n)  height = O(n)

template <class T> 
bool BST<T>::contains(const T& val) { 
    Node<T>* curr = root;  

    while (curr != nullptr) { 

        if (curr->val == val) 
            return true; 

        if (val > curr->val)   
            curr = curr->right;  
        else                
            curr = curr->left;  
    } 

    return false; 
}



Insert

template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}
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Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert

insert 4
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert

prev
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insert 4
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Iterative Insert
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template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Iterative Insert

Unbalanced Tree. 
Best Case:     
Worst Case:  

O(1)
O(n)

best case

worst case

template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}



Iterative Insert

Unbalanced Tree. 
Best Case:     
Worst Case:  

O(1)
O(n)

Balanced Tree.

Insertion always happens at the 
lower levels 

best case

worst case

template <class T> 
void BST<T>::insert(const T& val) { 
     Node<T>* prev; 
     Node<T>* curr = root; 

     while (curr != nullptr) { 

         prev = curr; 

         if (val == curr->val) return; 
         if (val  < curr->val) curr = curr->left; 
         else                  curr = curr->right; 
     } 

     Node<T>* node =  
             new Node<T>(val, nullptr, nullptr); 

     if      (root == nullptr) root        = node; 
     else if (val < prev->val) prev->left  = node; 
     else                      prev->right = node; 
}

Best Case:     

Worst Case: 

O(1)

O(log n)

if the value is already at the root



Recursive Insert

template <class T> 
void BST<T>::insert(T& val) { 
     root = insert(val, root); 
} 

template <class T> 
Node<T>* BST<T>::insert(T& val, Node<T>* node) { 
    if (node == nullptr)  
        return new Node<T>(val, nullptr, nullptr); 
    if (val > node->val)  
        node->right = insert(val, node->right); 
    else if (val < node->val)  
        node->left  = insert(val, node->left); 

    return node; 
}

Optio
nal

Convince yourself that this code works!



Finding the Max and Min

template <class T> 
T BST<T>::get_max() const { 
    if (is_empty()) 
        throw string("No max in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->right != nullptr) 
        curr = curr->right; 

    return curr->val; 
} 

template <class T> 
T BST<T>::get_min() const { 
    if (is_empty()) 
        throw string("No min in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->left != nullptr) 
        curr = curr->left; 

    return curr->val; 
}



Finding the Max and Min

template <class T> 
T BST<T>::get_max() const { 
    if (is_empty()) 
        throw string("No max in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->right != nullptr) 
        curr = curr->right; 

    return curr->val; 
} 

template <class T> 
T BST<T>::get_min() const { 
    if (is_empty()) 
        throw string("No min in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->left != nullptr) 
        curr = curr->left; 

    return curr->val; 
}

Unbalanced Tree. 
Best Case:     
Worst Case:  

O(1)
O(n)

get_min() 
best case

get_max() 
worst case

get_max() 
best case

get_min() 
worst case



Finding the Max and Min

template <class T> 
T BST<T>::get_max() const { 
    if (is_empty()) 
        throw string("No max in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->right != nullptr) 
        curr = curr->right; 

    return curr->val; 
} 

template <class T> 
T BST<T>::get_min() const { 
    if (is_empty()) 
        throw string("No min in an empty tree"); 
  
    Node<T>* curr = root; 
    while (curr->left != nullptr) 
        curr = curr->left; 

    return curr->val; 
}

Unbalanced Tree. 
Best Case:     
Worst Case:  

O(1)
O(n)

Balanced Tree. O(log n)

The max and min are  always at  
the lower levels.

get_min() 
best case

get_max() 
worst case

get_max() 
best case

get_min() 
worst case



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.
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Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.
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Easy cases to deal with!



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right to NULL.

Case 2. If the node has one child:   connect its parent's left or right to this child.



Deleting a Node
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Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right to NULL.

Case 2. If the node has one child:   connect its parent's left or right to this child.

node

parent

connect parent->right  

connect to 
 node->left

connect parent->left  

connect to 
 node->right

connect to 
 node->left

connect to 
 node->right



Deleting a Node With 0 or 1 Children

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 



Deleting a Node With 0 or 1 Children

if the deleted node is 
the root, update the 
root pointer, not the 
parent pointer

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 



Deleting a Node With 0 or 1 Children

if the node to be 
deleted is to the 
right of its 
parent.

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 



Deleting a Node With 0 or 1 Children

if the node to be 
deleted is to the 
left of its parent.

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 



Deleting a Node With 0 or 1 Children

delete the node once 
the parent and child 
have been connected

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 



Deleting a Node With 0 or 1 Children

Convince yourself. 
This code handles 
correctly the case of 
node being a leaf.

template<class T> 
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) { 
    if (node == root) { 
        if (node->left == nullptr) 
            root = root->right; 
        else  
            root = root->left; 
    } 

    else if (node == parent->right) {  
        if (node->right != nullptr) 
            parent->right = node->right; 
        else  
            parent->right = node->left; 
    }  

    else {  
        if (node->right != nullptr) 
            parent->left = node->right; 
        else 
            parent->left = node->left; 
    } 

    delete node; 
} 

Running Time. 
This code runs 
in O(1)

!

!



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.
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An easy case! An easy case!

How should E be 
deleted?

?

? ?

What if the node has two 
children?



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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Idea. (1) Replace the node to be deleted with the  
              max in its left subtree

5 is the max in 6's left subtree. 
5 can replace 6 and the tree would remain a BST

node to be 
deleted



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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Idea. (1) Replace the node to be deleted with the  
              max in its left subtree or with the  
              min in its right subtree.

7 is the min in 6's right subtree. 
7 can also replace 6.

node to be 
deleted



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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Idea. (1) Replace the node to be deleted with the  
              max in its left subtree or with the  
              min in its right subtree.

15 is the min in 14's right subtree. 
15 can replace 14 and the tree would remain a BST

node to be 
deleted



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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Idea. (1) Replace the node to be deleted with the  
              max in its left subtree or with the  
              min in its right subtree.

13 is the max in 14's left subtree. 
13 can also replace 14.

node to be 
deleted



Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node:   connect its parent's left or right link to NULL.

Case 2. If the node has one child:   connect its parent's left or right link to this child.

Case 3. If the node has 2 children:  convert the problem to Case 1 or Case 2.
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replace 6 with 5 and delete 5

5

Idea. (1) Replace the node to be deleted with the  
              max in its left subtree or with the  
              min in its right subtree. 

         (2) Delete the replacement node. 
               (guaranteed to have 0 or 1 children!)

node to be 
deleted



Deleting a Node With 0 or 1 Children

template<class T> 
void BST<T>::remove_2(Node<T>* node) { 
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template<class T> 
void BST<T>::remove_2(Node<T>* node) { 
    Node<T>* rep = node->left; 

    Node<T>* prev = node; 

    while (rep->right != nullptr) { 

        prev = rep; 

        rep = rep->right; 

    } 

    node->val = rep->val; 

    remove_1(rep, prev); 
}
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template<class T> 
void BST<T>::remove_2(Node<T>* node) { 
    Node<T>* rep = node->left; 

    Node<T>* prev = node; 

    while (rep->right != nullptr) { 

        prev = rep; 

        rep = rep->right; 

    } 
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    remove_1(rep, prev); 
}
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template<class T> 
void BST<T>::remove_2(Node<T>* node) { 
    Node<T>* rep = node->left; 

    Node<T>* prev = node; 

    while (rep->right != nullptr) { 

        prev = rep; 

        rep = rep->right; 

    } 

    node->val = rep->val; 

    remove_1(rep, prev); 
}



Deleting a Node

finds the node with 
the given val and 
deletes it.

template<class T> 
bool BST<T>::remove(const T& val) { 
    Node<T>* prev = nullptr; 
    Node<T>* curr = root; 

    while (curr != nullptr && curr->val != val) { 
        prev = curr; 
        if (val > curr->val)  
            curr = curr->right; 
        else 
            curr = curr->left; 
    } 

    if (curr == nullptr) 
        return false; 

    if (curr->left != nullptr && curr->right != nullptr) 
        remove_2(curr); 
    else 
        remove_1(curr, prev); 

    return true; 
}
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search for the node 
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template<class T> 
bool BST<T>::remove(const T& val) { 
    Node<T>* prev = nullptr; 
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        prev = curr; 
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Deleting a Node

no node in the tree 
contains val

template<class T> 
bool BST<T>::remove(const T& val) { 
    Node<T>* prev = nullptr; 
    Node<T>* curr = root; 

    while (curr != nullptr && curr->val != val) { 
        prev = curr; 
        if (val > curr->val)  
            curr = curr->right; 
        else 
            curr = curr->left; 
    } 

    if (curr == nullptr) 
        return false; 

    if (curr->left != nullptr && curr->right != nullptr) 
        remove_2(curr); 
    else 
        remove_1(curr, prev); 

    return true; 
}



Deleting a Node

handle the case of 0/1 
children and the case of 
2 children separately

template<class T> 
bool BST<T>::remove(const T& val) { 
    Node<T>* prev = nullptr; 
    Node<T>* curr = root; 

    while (curr != nullptr && curr->val != val) { 
        prev = curr; 
        if (val > curr->val)  
            curr = curr->right; 
        else 
            curr = curr->left; 
    } 

    if (curr == nullptr) 
        return false; 

    if (curr->left != nullptr && curr->right != nullptr) 
        remove_2(curr); 
    else 
        remove_1(curr, prev); 

    return true; 
}
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Note that this best case does not happen if 
the tree is balanced. 

If the tree is balanced: 
if O(h) to search, then O(1) to delete 
if O(1) to search, then O(h) to delete
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Problem. Given n elements, how can we construct a balanced BST?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7

113

etc.

1 5 9 13

See the exercises for the code

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
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Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
                  The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
                  left and right halves. 

A BST built from 256 random keys. 
(image by Sedgwick and Wayne)

Math skipped! 
See the Design & 
Analysis of  
Algorithms course!
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Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
                  The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
                  left and right halves. 

Solution 1. If the tree becomes misbalanced after  
                  an insert or delete operation, rebuild  
                  the whole tree using one of the above  
                  solutions!

Waste of Time!

Solution 2. Rebalance only the affected part of the tree using rotations!

Problem. How can we guarantee the tree is balanced after any insertion or deletion?
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Exercise: Left Rotation
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Exercise: Double Rotation
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