
CS11212 - Spring 2022

Data Structures &  
Introduction to Algorithms

Data Structures

Trees: Basic Operations

Ibrahim Albluwi

Tree Data Structures

Definitions and properties

Basic Operations

Balanced binary search trees

Tree traversals

Implementation

valprev next

Class Node. Both a BST node and a DLL node store a value and two pointers to  
other nodes.

In a BST node, the two pointers represent
links to the left and right children.

In a DLL node, the two pointers represent
links to the next and previous nodes.

val

left right

Implementation

valprev next

Class Node. Both a BST node and a DLL node store a value and two pointers to  
other nodes.

Class BST. Stores a pointer to the root of the tree.

A DLL class stores a pointer to the head of the list (and the tail of the list).

root

In a BST node, the two pointers represent
links to the left and right children.

In a DLL node, the two pointers represent
links to the next and previous nodes.

val

left right

val val val

head tailval

val val

val

Recursive Search

public function used by the user

calls the private recursive version

template <class T>

bool BST<T>::contains(const T& val) {

 return contains(val, root);

}

template <class T>

bool BST<T>::contains(const T& val, Node<T>* n)

{

 if (n == nullptr)

 return false;

 if (n->val == val)

 return true;

 if (val > n->val)

 return contains(val, n->right);

 else

 return contains(val, n->left);

}

private recursive function.

Requires a pointer to the root of  
the tree (or subtree) where the  
search will be performed

Recursive Search

template <class T>

bool BST<T>::contains(const T& val) {

 return contains(val, root);

}

template <class T>

bool BST<T>::contains(const T& val, Node<T>* n)

{

 if (n == nullptr)

 return false;

 if (n->val == val)

 return true;

 if (val > n->val)

 return contains(val, n->right);

 else

 return contains(val, n->left);

}

Base case.

val can't be present

in an empty tree!

Recursive Search

template <class T>

bool BST<T>::contains(const T& val) {

 return contains(val, root);

}

template <class T>

bool BST<T>::contains(const T& val, Node<T>* n)

{

 if (n == nullptr)

 return false;

 if (n->val == val)

 return true;

 if (val > n->val)

 return contains(val, n->right);

 else

 return contains(val, n->left);

}

val found in the  
current node

Recursive Search

template <class T>

bool BST<T>::contains(const T& val) {

 return contains(val, root);

}

template <class T>

bool BST<T>::contains(const T& val, Node<T>* n)

{

 if (n == nullptr)

 return false;

 if (n->val == val)

 return true;

 if (val > n->val)

 return contains(val, n->right);

 else

 return contains(val, n->left);

}

Search recursively in the

left subtree or in the
right subtree

Recursive Search

template <class T>

bool BST<T>::contains(const T& val) {

 return contains(val, root);

}

template <class T>

bool BST<T>::contains(const T& val, Node<T>* n)

{

 if (n == nullptr)

 return false;

 if (n->val == val)

 return true;

 if (val > n->val)

 return contains(val, n->right);

 else

 return contains(val, n->left);

}

template <class T>

bool BST<T>::contains(const T& val) {

 Node<T>* curr = root;

 while (curr != nullptr) {

 if (curr->val == val)

 return true;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 return false;

}

Iterative Search

Search Running Time

Best Case.  
If val is found at the root of the tree.

It does not matter if the tree is
balanced or not.

O(1)template <class T>

bool BST<T>::contains(const T& val) {

 Node<T>* curr = root;

 while (curr != nullptr) {

 if (curr->val == val)

 return true;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 return false;

}

Search Running Time

Best Case.  
If val is found at the root of the tree.

It does not matter if the tree is
balanced or not.

O(1)

Worst Case.  
If the search proceeds to the last level
in the tree.

 if the tree is balanced.

 if the tree is unbalanced.

O(height)

O(log n)
O(n)

 height = O(log n) height = O(n)

template <class T>

bool BST<T>::contains(const T& val) {

 Node<T>* curr = root;

 while (curr != nullptr) {

 if (curr->val == val)

 return true;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 return false;

}

Insert

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

1

30 96

5

7

2 8

root

insert 4

Insert

root

insert 4

prev

curr

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

insert 4

root

prev
curr

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev

curr

root

insert 4

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev

root

insert 4

curr1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev

curr

root

insert 4

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev
curr

root

insert 4

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev

curr

root

insert 4

NULL

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Insert

prev

curr

root

insert 4

NULL

1

30 96

5

7

2 8

node 4

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Iterative Insert

prev

root

insert 4

node

4

1

30 96

5

7

2 8

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Iterative Insert

Unbalanced Tree. 
Best Case:  
Worst Case:

O(1)
O(n)

best case

worst case

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Iterative Insert

Unbalanced Tree. 
Best Case:  
Worst Case:

O(1)
O(n)

Balanced Tree.

Insertion always happens at the
lower levels

best case

worst case

template <class T>

void BST<T>::insert(const T& val) {

 Node<T>* prev;

 Node<T>* curr = root;

 while (curr != nullptr) {

 prev = curr;

 if (val == curr->val) return;

 if (val < curr->val) curr = curr->left;

 else curr = curr->right;

 }

 Node<T>* node =  
 new Node<T>(val, nullptr, nullptr);

 if (root == nullptr) root = node;

 else if (val < prev->val) prev->left = node;

 else prev->right = node;

}

Best Case:  

Worst Case:

O(1)

O(log n)

if the value is already at the root

Recursive Insert

template <class T>

void BST<T>::insert(T& val) {

 root = insert(val, root);

}

template <class T>

Node<T>* BST<T>::insert(T& val, Node<T>* node) {

 if (node == nullptr)

 return new Node<T>(val, nullptr, nullptr);

 if (val > node->val)

 node->right = insert(val, node->right);

 else if (val < node->val)

 node->left = insert(val, node->left);

 return node;

}

Optio
nal

Convince yourself that this code works!

Finding the Max and Min

template <class T>

T BST<T>::get_max() const {

 if (is_empty())

 throw string("No max in an empty tree");

 Node<T>* curr = root;

 while (curr->right != nullptr)

 curr = curr->right;

 return curr->val;

}

template <class T>

T BST<T>::get_min() const {

 if (is_empty())

 throw string("No min in an empty tree");

 Node<T>* curr = root;

 while (curr->left != nullptr)

 curr = curr->left;

 return curr->val;

}

Finding the Max and Min

template <class T>

T BST<T>::get_max() const {

 if (is_empty())

 throw string("No max in an empty tree");

 Node<T>* curr = root;

 while (curr->right != nullptr)

 curr = curr->right;

 return curr->val;

}

template <class T>

T BST<T>::get_min() const {

 if (is_empty())

 throw string("No min in an empty tree");

 Node<T>* curr = root;

 while (curr->left != nullptr)

 curr = curr->left;

 return curr->val;

}

Unbalanced Tree. 
Best Case:  
Worst Case:

O(1)
O(n)

get_min() 
best case

get_max() 
worst case

get_max() 
best case

get_min() 
worst case

Finding the Max and Min

template <class T>

T BST<T>::get_max() const {

 if (is_empty())

 throw string("No max in an empty tree");

 Node<T>* curr = root;

 while (curr->right != nullptr)

 curr = curr->right;

 return curr->val;

}

template <class T>

T BST<T>::get_min() const {

 if (is_empty())

 throw string("No min in an empty tree");

 Node<T>* curr = root;

 while (curr->left != nullptr)

 curr = curr->left;

 return curr->val;

}

Unbalanced Tree. 
Best Case:  
Worst Case:

O(1)
O(n)

Balanced Tree. O(log n)

The max and min are always at  
the lower levels.

get_min() 
best case

get_max() 
worst case

get_max() 
best case

get_min() 
worst case

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

L

B

A IF N

RJH OM

parent

node
node

parent

node

parent

G P

K

E

QD

C

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

L

B

A IF N

RJH OM

parent

nodenode

parent
node

parent

G P

K

E

QD

C NULL

Easy cases to deal with!

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right to NULL.

Case 2. If the node has one child: connect its parent's left or right to this child.

Deleting a Node

5

6

7

5

7

6

5

4

3

5

3

4

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right to NULL.

Case 2. If the node has one child: connect its parent's left or right to this child.

node

parent

connect parent->right  

connect to 
 node->left

connect parent->left  

connect to 
 node->right

connect to 
 node->left

connect to 
 node->right

Deleting a Node With 0 or 1 Children

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Deleting a Node With 0 or 1 Children

if the deleted node is
the root, update the
root pointer, not the
parent pointer

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Deleting a Node With 0 or 1 Children

if the node to be
deleted is to the
right of its
parent.

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Deleting a Node With 0 or 1 Children

if the node to be
deleted is to the
left of its parent.

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Deleting a Node With 0 or 1 Children

delete the node once
the parent and child
have been connected

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Deleting a Node With 0 or 1 Children

Convince yourself.

This code handles
correctly the case of
node being a leaf.

template<class T>

void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {

 if (node == root) {

 if (node->left == nullptr)

 root = root->right;

 else

 root = root->left;

 }

 else if (node == parent->right) {

 if (node->right != nullptr)

 parent->right = node->right;

 else

 parent->right = node->left;

 }

 else {

 if (node->right != nullptr)

 parent->left = node->right;

 else

 parent->left = node->left;

 }

 delete node;

}

Running Time.

This code runs 
in O(1)

!

!

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

L

B

A IF N

RJH OM

parent

nodenode

parent
node

parent

G P

K

E

QD

C NULL

An easy case! An easy case!

How should E be
deleted?

?

? ?

What if the node has two
children?

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

Idea. (1) Replace the node to be deleted with the  
 max in its lef subtree

5 is the max in 6's left subtree. 
5 can replace 6 and the tree would remain a BST

node to be 
deleted

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

Idea. (1) Replace the node to be deleted with the  
 max in its lef subtree or with the  
 min in its right subtree.

7 is the min in 6's right subtree. 
7 can also replace 6.

node to be 
deleted

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

Idea. (1) Replace the node to be deleted with the  
 max in its lef subtree or with the  
 min in its right subtree.

15 is the min in 14's right subtree. 
15 can replace 14 and the tree would remain a BST

node to be 
deleted

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

Idea. (1) Replace the node to be deleted with the  
 max in its lef subtree or with the  
 min in its right subtree.

13 is the max in 14's left subtree. 
13 can also replace 14.

node to be 
deleted

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left

Case 2. If the node has one child: connect its parent's left

Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

6

2

41

8

10

14

1713

7

15

53 1816

replace 6 with 5 and delete 5

5

Idea. (1) Replace the node to be deleted with the  
 max in its lef subtree or with the  
 min in its right subtree.

 (2) Delete the replacement node. 
 (guaranteed to have 0 or 1 children!)

node to be 
deleted

Deleting a Node With 0 or 1 Children

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

6

2

41

8

10

14

1713

7

15

53 1816

node

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep

prevtemplate<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep
prev

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep

prev

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep prev

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

41

8

10

14

1713

7

15

53 1816

node

rep

prev

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

6

2

1

8

10

14

1713

7

15

53 1816

node

rep

prev4

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

5

2

1

8

10

14

1713

7

15

53 1816

node

rep

prev4

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node With 0 or 1 Children

5

2

1

8

10

14

1713

7

15

3 1816

node

4

NULL

template<class T>

void BST<T>::remove_2(Node<T>* node) {

 Node<T>* rep = node->left;

 Node<T>* prev = node;

 while (rep->right != nullptr) {

 prev = rep;

 rep = rep->right;

 }

 node->val = rep->val;

 remove_1(rep, prev);

}

Deleting a Node

finds the node with
the given val and
deletes it.

template<class T>

bool BST<T>::remove(const T& val) {

 Node<T>* prev = nullptr;

 Node<T>* curr = root;

 while (curr != nullptr && curr->val != val) {

 prev = curr;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 if (curr == nullptr)

 return false;

 if (curr->left != nullptr && curr->right != nullptr)

 remove_2(curr);

 else

 remove_1(curr, prev);

 return true;

}

Deleting a Node

search for the node
with the given val

template<class T>

bool BST<T>::remove(const T& val) {

 Node<T>* prev = nullptr;

 Node<T>* curr = root;

 while (curr != nullptr && curr->val != val) {

 prev = curr;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 if (curr == nullptr)

 return false;

 if (curr->left != nullptr && curr->right != nullptr)

 remove_2(curr);

 else

 remove_1(curr, prev);

 return true;

}

Deleting a Node

no node in the tree
contains val

template<class T>

bool BST<T>::remove(const T& val) {

 Node<T>* prev = nullptr;

 Node<T>* curr = root;

 while (curr != nullptr && curr->val != val) {

 prev = curr;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 if (curr == nullptr)

 return false;

 if (curr->left != nullptr && curr->right != nullptr)

 remove_2(curr);

 else

 remove_1(curr, prev);

 return true;

}

Deleting a Node

handle the case of 0/1
children and the case of
2 children separately

template<class T>

bool BST<T>::remove(const T& val) {

 Node<T>* prev = nullptr;

 Node<T>* curr = root;

 while (curr != nullptr && curr->val != val) {

 prev = curr;

 if (val > curr->val)

 curr = curr->right;

 else

 curr = curr->left;

 }

 if (curr == nullptr)

 return false;

 if (curr->left != nullptr && curr->right != nullptr)

 remove_2(curr);

 else

 remove_1(curr, prev);

 return true;

}

Running Time of Deleting a Node

Best Case:  
 to find the node to be deleted + to delete = O(1) O(1) O(1)

Worst Case:  
 to find the node to be deleted or  
 to delete or both.

O(h)
O(h)

Example of a worst case

node to 
be deleted

Example of a worst case

node to 
be deleted

replacement

Example of a best case

node to 
be deleted

Running Time of Deleting a Node

Best Case:  
 to find the node to be deleted + to delete = O(1) O(1) O(1)

Example of a worst case

node to 
be deleted

Worst Case:  
 to find the node to be deleted or  
 to delete or both.

O(h)
O(h)

Example of a worst case

node to 
be deleted

replacement

Example of a best case

node to 
be deleted

Note that this best case does not happen if
the tree is balanced.

Running Time of Deleting a Node

Best Case:  
 to find the node to be deleted + to delete = O(1) O(1) O(1)

Example of a worst case

node to 
be deleted

Worst Case:  
 to find the node to be deleted or  
 to delete or both.

O(h)
O(h)

Example of a worst case

node to 
be deleted

replacement

Example of a best case

node to 
be deleted

Note that this best case does not happen if
the tree is balanced.

If the tree is balanced: 
if O(h) to search, then O(1) to delete

Running Time of Deleting a Node

Best Case:  
 to find the node to be deleted + to delete = O(1) O(1) O(1)

Example of a worst case

node to 
be deleted

Worst Case:  
 to find the node to be deleted or  
 to delete or both.

O(h)
O(h)

Example of a worst case

node to 
be deleted

replacement

Example of a best case

node to 
be deleted

Note that this best case does not happen if
the tree is balanced.

If the tree is balanced: 
if O(h) to search, then O(1) to delete 
if O(1) to search, then O(h) to delete

replacement

Tree Data Structures

Definitions and properties

Basic operations

Balanced binary search trees

Tree traversals

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7

insert the median

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7

113

insert the medians  
of the two halves

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7

113

etc.

1 5 9 13

See the exercises for the code

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

A BST built from 256 random keys. 
(image by Sedgwick and Wayne)

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

A BST built from 256 random keys. 
(image by Sedgwick and Wayne)

Math skipped! 
See the Design & 
Analysis of  
Algorithms course!

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Solution 1. If the tree becomes misbalanced after  
 an insert or delete operation, rebuild  
 the whole tree using one of the above  
 solutions!

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Solution 1. If the tree becomes misbalanced after  
 an insert or delete operation, rebuild  
 the whole tree using one of the above  
 solutions!

Waste of Time!

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 2. Shuffle the elements randomly and then insert them! 
 The expected hight of the tree is O(log n)

Solution 1. Sort the elements, and insert the median, then recursively do the same in the 
 left and right halves.

Solution 1. If the tree becomes misbalanced after  
 an insert or delete operation, rebuild  
 the whole tree using one of the above  
 solutions!

Waste of Time!

Solution 2. Rebalance only the affected part of the tree using rotations!

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Self-Balancing BSTs: Tree Rotations

5

3

8

Self-Balancing BSTs: Tree Rotations

5

3

8

bf=0

bf=1

bf=2
Not balanced! 
Left heavy and left
child is left heavy

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

bf=1

bf=2

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

5

3 8
bf=1

bf=2

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

5

3 8

5

63

8

9

42

bf=1

bf=2

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

5

3 8

5

63

bf=0

8

9

42
bf=0

bf=0

bf=0

bf=0

bf=1

bf=2
Not balanced! 
Left heavy and left
child is left heavy

bf=1

bf=2

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

5

3 8

5

63

bf=0

8

9

42

bf=0

Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=1

bf=2

bf=1

bf=2

Self-Balancing BSTs: Tree Rotations

5

3

8
Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

bf=0

5

3 8

5

63

bf=0

8

9

42

bf=0

Not balanced! 
Left heavy and left
child is left heavy

Rotate  
Right

5

6

3 8

942

bf=1

bf=2

bf=1

bf=2

Exercise: Right Rotation

B

A

D E

C

X

bf=1

bf=2

bf=0 bf=0

bf=0

Not balanced! 
Left heavy and left
child is left heavy

Task: Perform a right rotation.

Exercise: Right Rotation

B

A

D E

C

X

bf=0 bf=0

bf=0

Not balanced! 
Left heavy and left
child is left heavy

Task: Perform a right rotation.

B

AD

E C

X

X->left = B; 
A->left = B->right; 
B->right = A;

bf=1

bf=2

2

74

3

5

86

Self-Balancing BSTs: Left Rotations

bf=0 bf=0

bf=0

bf=0

bf=0

bf=-1

bf=-2
Not balanced! 
Right heavy and right
child is right heavy

Self-Balancing BSTs: Left Rotations

2

74

3

5

86

bf=0

bf=0

Not balanced! 
Right heavy and right
child is right heavy

Self-Balancing BSTs: Left Rotations

Rotate  
Lef

2

74

3

5

86

bf=-1

bf=-2

bf=0

bf=0

Not balanced! 
Right heavy and right
child is right heavy

Self-Balancing BSTs: Left Rotations

Rotate  
Lef

2

74

3

5

86

2

7

4

3

5

86

bf=-1

bf=-2

Exercise: Left Rotation

B

A

D E

C

X

bf=0 bf=0

bf=0

Not balanced! 
Right heavy and right
child is right heavy

Task: Perform a lef rotation.

bf=-1

bf=-2

Exercise: Left Rotation

B

A

D E

C

X

bf=0 bf=0

bf=0

Not balanced! 
Right heavy and right
child is right heavy

Task: Perform a lef rotation.

X->left = B; 
A->right = B->left; 
B->left = A;

X

B

D

EA

C

bf=-1

bf=-2

4

3

5

Self-Balancing BSTs: Double Rotations

4

3

5

Self-Balancing BSTs: Double Rotations

bf=1

bf=-2
Not balanced! 
Right heavy and right
child is lef heavy

bf=0

4

3

5

Self-Balancing BSTs: Double Rotations

Not balanced! 
Right heavy and right
child is lef heavy

2

1bf=0

bf=1

bf=-2

4

3

5

Self-Balancing BSTs: Double Rotations

1

2

3

41

5

4

3

5

Self-Balancing BSTs: Double Rotations

1

2 5

3

41 2

4

3

5

4

3

5

Self-Balancing BSTs: Double Rotations

1

2 5

3

41 2

4

3

5

2

85

3

7

64

4

3

5

Self-Balancing BSTs: Double Rotations

1

2 5

3

41 2

4

3

5

Not balanced! 
Right heavy and right
child is lef heavy

2

85

3

7

64

bf=1

bf=-2

bf=0

bf=0

bf=0 bf=0

bf=0

Self-Balancing BSTs: Double Rotations

2

85

3

7

64

2

1

4

3

5

1

2 5

3

41 2

4

3

5

bf=1

bf=-2

Self-Balancing BSTs: Double Rotations

2

85

3

7

64

2

1

1

4

3

5

1

2 5

3

41 2

4

3

5

2

74

3

5

86

Self-Balancing BSTs: Double Rotations

2

85

3

7

64

2

1

1

4

3

5

1

2 5

3

41 2

4

3

5

2

74

3

5

86

2 2

7

4

3

5

86

C

A

D E

B

X

bf=0 bf=0

bf=0

Not balanced! 
Right heavy and right
child is left heavy

Task: Perform a double rotation.

bf=1

bf=-2

F G

Exercise: Double Rotation

C

A

D E

B

X

Not balanced! 
Right heavy and right
child is left heavy

Task: Perform a double rotation.

F G

1

C

A

DB

X

F

G E

1

Exercise: Double Rotation

bf=1

bf=-2

Exercise: Double Rotation

A

E

B

X

Not balanced! 
Right heavy and right
child is left heavy

Task: Perform a double rotation.

F G

C

A

DB

X

F

G E

2
1

2

CA

D

B

X

F G E

C

D
1

bf=1

bf=-2

Exercise: Double Rotation

Task: Balance the tree

5

61

7

8

30

bf=-1

bf=2

bf=2

bf=-1

bf=0 bf=0

bf=0 9

42bf=0 bf=0

bf=0

Exercise: Double Rotation

Task: Balance the tree

5

61

7

8

30

bf=2

bf=-1

bf=0 bf=0

bf=0 9

42bf=0 bf=0

Start with lowest  
misbalanced subtree

Exercise: Double Rotation

Task: Balance the tree

5

61

30

bf=2

bf=-1

42

Start with lowest  
misbalanced subtree

1

2

7

8

9

Exercise: Double Rotation

Task: Balance the tree

5

61

30

bf=2

bf=-1

42

Start with lowest  
misbalanced subtree

1

2

1

5

63

7

8

41

bf=-2

bf=-1 9

20

7

8

9

Exercise: Double Rotation

Task: Balance the tree

5

61

30

bf=2

bf=-1

42

Start with lowest  
misbalanced subtree

1

2

1

5

63

7

8

41

bf=-2

bf=-1 9

20 2

2

5

6

3

7

8

4

1 9

20

7

8

9

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5

3

5

6

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

3

5

6

left rotation

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

7

3

5

6

3

5

6

left rotation

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

7

3

5

6

7

8

3

5

6

3

5

6

left rotation

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

3

5

6

left rotation

3

5

6

7

3

5

6

7

8

left rotation

3

5

7

86

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

3

5

6

left rotation

3

5

6

7

3

5

6

7

8

left rotation

3

5

7

86

3

5

7

86

8

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

3

5

6

left rotation

3

5

6

7

3

5

6

7

8

left rotation

3

5

7

86

3

5

7

86

8

5

7

8

963

left rotation

AVL Trees

After every insertion (or deletion):

• Check the balance factors of the nodes on the insertion (or deletion) path  
from the lowest to the highest in the tree.

• Perform the appropriate rotation on every subtree that is not balanced.

Example. 3 5 6 7 8 9 4 1 2

3 3

5 3

5

6

3

5

6

left rotation

3

5

6

7

3

5

6

7

8

left rotation

3

5

7

86

3

5

7

86

8

5

7

8

963

left rotation

5

7

8

963

4

Tree Data Structures

Definitions and properties

Basic operations

Balanced binary search trees

Tree traversals

