CS1 1212 - Spring 2022
 Data Structures \&
 Introduction to Algorithms

Data Structures
Trees: Basic Operations

Ibrahim Albluwi

Tree Data Structures

Definitions and properties

- Basic Operations

Balanced binary search trees
Tree traversals

Implementation

Class Node. Both a BST node and a DLL node store a value and two pointers to other nodes.

In a BST node, the two pointers represent links to the left and right children.

In a DLL node, the two pointers represent links to the next and previous nodes.

Implementation

Class Node. Both a BST node and a DLL node store a value and two pointers to other nodes.

In a BST node, the two pointers represent links to the left and right children.

In a DLL node, the two pointers represent links to the next and previous nodes.

Class BST. Stores a pointer to the root of the tree.
A DLL class stores a pointer to the head of the list (and the tail of the list).

Recursive Search

```
template <class T>
bool BST<T>::contains(const T& val) {
    return contains(val, root);
}
template <class T>
bool BST<T>::contains(const T& val, Node<T>* n)
{
    if (n == nullptr)
        return false;
    if (n->val == val)
        return true;
    if (val > n->val)
        return contains(val, n->right);
    else
        return contains(val, n->left);
}
```

public function used by the user calls the private recursive version

Recursive Search

```
template <class T>
bool BST<T>::contains(const T& val) {
    return contains(val, root);
}
template <class T>
bool BST<T>::contains(const T& val, Node<T>* n) ___ private recursive function.
{
    if (n == nullptr)
        return false;
    if (n->val == val)
        return true;
    if (val > n->val)
        return contains(val, n->right);
    else
        return contains(val, n->left);
}
```


Recursive Search

```
template <class T>
bool BST<T>::contains(const T& val) {
    return contains(val, root);
}
template <class T>
bool BST<T>::contains(const T& val, Node<T>* n)
{
```

Base case.
val can't be present in an empty tree!

```
    if (n == nullptr)
```

 if (n == nullptr)
 return false;
 return false;
 if (n->val == val)
 if (n->val == val)
 return true;
 if (val > n->val)
 return contains(val, n->right);
 else
 return contains(val, n->left);
 }

```

\section*{Recursive Search}
```

template <class T>
bool BST<T>::contains(const T\& val) {
return contains(val, root);
}
template <class T>
bool BST<T>::contains(const T\& val, Node<T>* n)
{
if (n == nullptr)
return false;
if (n->val == val)
return true;

```
val found in the current node
```

 if (val > n->val)
 return contains(val, n->right);
 else
 return contains(val, n->left);
 }

```

\section*{Recursive Search}
```

template <class T>
bool BST<T>::contains(const T\& val) {
return contains(val, root);
}
template <class T>
bool BST<T>::contains(const T\& val, Node<T>* n)
{
if (n == nullptr)
return false;
if (n->val == val)
return true;
if (val > n->val)
return contains(val, n->right);
else
return contains(val, n->left);

```
 left subtree or in the right subtree

\section*{Iterative Search}
```

template <class T>
bool BST<T>::contains(const T\& val) {
Node<T>* curr = root;
while (curr != nullptr) {
if (curr->val == val)
return true;
if (val > curr->val)
curr = curr->right;
else
curr = curr->left;
}
return false;
}

```

\section*{Search Running Time}
```

template <class T>
bool BST<T>::contains(const T\& val) {
Node<T>* curr = root;
while (curr != nullptr) {
if (curr->val == val)
return true;
if (val > curr->val)
curr = curr->right;
else
curr = curr->left;
}
return false;
}

```

\section*{Search Running Time}
```

template <class T>
bool BST<T>::contains(const T\& val) {
Node<T>* curr = root;
while (curr != nullptr) {
if (curr->val == val)
return true;
if (val > curr->val)
curr = curr->right;
else
curr = curr->left;
}
return false;
}

```

Best Case. \(O(1)\)
If val is found at the root of the tree.
It does not matter if the tree is balanced or not.

Worst Case. \(O\) (height)
If the search proceeds to the last level in the tree.
\(O(\log n)\) if the tree is balanced. \(O(n)\) if the tree is unbalanced.

height \(=O(\log n)\)
height \(=O(n)\)

\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
        prev = curr;
        if (val == curr->val) return;
    if (val < curr->val) curr = curr \(->\) left;
    else curr = curr->right;
    \}
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

 insert 4
    ```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
        prev = curr;
        if (val == curr->val) return;
    if (val < curr->val) curr = curr->left;
    else curr = curr \(\rightarrow\) right;
\}
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

 insert 4
    ```
    prev \(\rightarrow\)


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
    - prev = curr;
        if (val == curr->val) return;
    if (val < curr->val) curr = curr->left;
    else curr = curr->right;
\}
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

insert 4

```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
prev = curr;
if (val == curr->val) return;
- if (val < curr \(->v a l\) ) curr = curr->left;
else
\} curr = curr \(->\) right;
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

insert 4

```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
    - prev = curr;
        if (val == curr->val) return;
    if (val < curr->val) curr = curr->left;
    else curr = curr->right;
\}
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

 insert 4
    ```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
prev = curr;
\(\begin{array}{ll}\text { if (val == curr->val) return; } \\ \text { if (val < curr }->v a l) & \text { curr = curr->left; } \\ \text { - else } & \text { curr = curr }->\text { right; }\end{array}\)
\}
Node<T>* node =
    new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

 insert 4
    ```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
    - prev = curr;
        if (val == curr->val) return;
if (val < curr->val) curr = curr \(\rightarrow\) left;
else
\}
    Node<T>* node =
        new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
        prev->right = node;
```

insert 4

```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;

```
    while (curr != nullptr) \{
prev = curr;
\(\begin{array}{ll}\text { if (val == curr->val) return; } \\ \text { if (val < curr }->v a l) & \text { curr = curr->left; } \\ \text { - else } & \text { curr = curr }->\text { right; }\end{array}\)
\}
Node<T>* node =
    new Node<T>(val, nullptr, nullptr);
    if (root == nullptr) root = node;
    else if (val < prev->val) prev->left = node;
    else
                                prev->right = node;
```

insert 4

```


\section*{Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;
while (curr != nullptr) {
prev = curr;
if (val == curr->val) return;
if (val < curr->val) curr = curr->left;
else curr = curr->right;
}
Node<T>* node =
new Node<T>(val, nullptr, nullptr);
if (root == nullptr) root = node;
else if (val < prev->val) prev->left = node;
else
prev->right = node;

```
```

 insert 4
    ```

node \(\rightarrow 4\)

\section*{Iterative Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;
while (curr != nullptr) {
prev = curr;
if (val == curr->val) return;
if (val < curr->val) curr = curr->left;
else curr = curr->right;
}
Node<T>* node =
new Node<T>(val, nullptr, nullptr);
if (root == nullptr) root = node;
else if (val < prev->val) prev->left = node;
- else
prev->right = node;
}

```
```

insert 4

```


\section*{Iterative Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;
while (curr != nullptr) {
prev = curr;
if (val == curr->val) return;
if (val < curr->val) curr = curr->left;
else curr = curr->right;
}
Node<T>* node =
new Node<T>(val, nullptr, nullptr);
if (root == nullptr) root = node;
else if (val < prev->val) prev->left = node;
else
prev->right = node;

```

Unbalanced Tree.
Best Case: \(\quad O(1)\)
Worst Case: \(O(n)\)


\section*{Iterative Insert}
```

template <class T>
void BST<T>::insert(const T\& val) {
Node<T>* prev;
Node<T>* curr = root;
while (curr != nullptr) {
prev = curr;
if (val == curr->val) return;
if (val < curr->val) curr = curr->left;
else curr = curr->right;
}
Node<T>* node =
new Node<T>(val, nullptr, nullptr);
if (root == nullptr) root = node;
else if (val < prev->val) prev->left = node;
else
prev->right = node;
}

```

Unbalanced Tree. Best Case: \(\quad O(1)\)
Worst Case: \(O(n)\)


Balanced Tree.
Best Case: \(\quad O(1)\)
if the value is already at the root
Worst Case: \(O(\log n)\)


Insertion always happens at the lower levels

\section*{Recursive Insert}
```

template <class T>
void BST<T>::insert(T\& val) {
root = insert(val, root);
}
template <class T>
Node<T>* BST<T>::insert(T\& val, Node<T>* node) {
if (node == nullptr)
return new Node<T>(val, nullptr, nullptr);
if (val > node->val)
node->right = insert(val, node->right);
else if (val < node->val)
node->left = insert(val, node->left);
return node;
}

```

Convince yourself that this code works!

\section*{Finding the Max and Min}
```

template <class T>
T BST<T>::get_max() const {
if (is_empty())
throw string("No max in an empty tree");
Node<T>* curr = root;
while (curr->right != nullptr)
curr = curr->right;
return curr->val;
}
template <class T>
T BST<T>::get_min() const {
if (is_empty())
throw string("No min in an empty tree");
Node<T>* curr = root;
while (curr->left != nullptr)
curr = curr->left;
return curr->val;
}

```

\section*{Finding the Max and Min}
```

template <class T>
T BST<T>::get_max() const {
if (is_empty())
throw string("No max in an empty tree");
Node<T>* curr = root;
while (curr->right != nullptr)
curr = curr->right;
return curr->val;
}

```
```

template <class T>

```
template <class T>
T BST<T>::get_min() const {
T BST<T>::get_min() const {
    if (is_empty())
    if (is_empty())
        throw string("No min in an empty tree");
        throw string("No min in an empty tree");
    Node<T>* curr = root;
    while (curr->left != nullptr)
        curr = curr->left;
    return curr->val;
}
```

Unbalanced Tree. Best Case: $\quad O(1)$ Worst Case: $O(n)$

Finding the Max and Min

```
template <class T>
T BST<T>::get_max() const {
    if (is_empty())
        throw string('No max in an empty tree");
    Node<T>* curr = root;
    while (curr->right != nullptr)
        curr = curr->right;
    return curr->val;
}
template <class T>
T BST<T>::get_min() const {
    if (is_empty())
        throw string("No min in an empty tree");
    Node<T>* curr = root;
    while (curr->left != nullptr)
        curr = curr->left;
    return curr->val;
}
```

Unbalanced Tree.
Best Case: $\quad O(1)$
Worst Case: $O(n)$

Balanced Tree. $O(\log n)$

The max and min are always at the lower levels.

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Easy cases to deal with!

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right to NULL.
Case 2. If the node has one child: connect its parent's left or right to this child.

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right to NULL.
Case 2. If the node has one child: connect its parent's left or right to this child.

connect to node->right

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {
    if (node == root) {
        if (node->left == nullptr)
            root = root->right;
        else
            root = root->left;
    }
    else if (node == parent->right) {
        if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
    delete node;
}
```


Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_l(Node<T>* node, Node<T>* parent) {
    if (node == root) {
    if (node-> left == nullptr)
        root = root->right;
    else
        root = root->left;
    }
    else if (node == parent->right) {
    if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
    delete node;
}
```


Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {
    if (node == root) {
    if (node-> left == nullptr)
        root = root->right;
    else
        root = root->left;
    }
    else if (node == parent->right) {
        if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
    delete node;
}
```


Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {
    if (node == root) {
    if (node-> left == nullptr)
        root = root->right;
    else
        root = root->left;
    }
    else if (node == parent->right) {
        if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
    delete node;
}
```


Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {
    if (node == root) {
        if (node-> left == nullptr)
            root = root->right;
        else
            root = root->left;
    }
    else if (node == parent->right) {
        if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
```

 delete node;
 delete the node once the parent and child have been connected

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_1(Node<T>* node, Node<T>* parent) {
    if (node == root) {
        if (node-> left == nullptr)
        root = root->right;
    else
        root = root->left;
    }
    else if (node == parent->right) {
        if (node->right != nullptr)
            parent->right = node->right;
        else
            parent->right = node->left;
    }
    else {
        if (node->right != nullptr)
            parent->left = node->right;
        else
            parent->left = node->left;
    }
    delete node;
}
```

! Convince yourself. This code handles correctly the case of node being a leaf.
! Running Time.
This code runs in $\mathrm{O}(1)$

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

An easy case!
An easy case!

What if the node has two children?

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Idea. (1) Replace the node to be deleted with the max in its left subtree

5 is the max in 6's left subtree.
5 can replace 6 and the tree would remain a BST

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Idea. (1) Replace the node to be deleted with the max in its left subtree or with the min in its right subtree.

7 is the min in 6's right subtree.
7 can also replace 6 .

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Idea. (1) Replace the node to be deleted with the max in its left subtree or with the min in its right subtree.

15 is the min in 14's right subtree.
15 can replace 14 and the tree would remain a BST

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Idea. (1) Replace the node to be deleted with the max in its left subtree or with the min in its right subtree.

13 is the max in 14's left subtree.
13 can also replace 14 .

Deleting a Node

Problem. Given a pointer to a node and a pointer to its parent, delete the node.

Case 1. If the node is a leaf node: connect its parent's left or right link to NULL.
Case 2. If the node has one child: connect its parent's left or right link to this child.
Case 3. If the node has 2 children: convert the problem to Case 1 or Case 2.

Idea. (1) Replace the node to be deleted with the max in its left subtree or with the min in its right subtree.
(2) Delete the replacement node. (guaranteed to have 0 or 1 children!)

replace 6 with 5 and delete 5

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    - Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    - Node<T>* prev = node;
        while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        - prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        - rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        - prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        - rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```

Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    remove_1(rep, prev);
}
```


Deleting a Node With 0 or 1 Children

```
template<class T>
void BST<T>::remove_2(Node<T>* node) {
    Node<T>* rep = node->left;
    Node<T>* prev = node;
    while (rep->right != nullptr) {
        prev = rep;
        rep = rep->right;
    }
    node->val = rep->val;
    - remove_1(rep, prev);
}
```


Deleting a Node

```
template<class T>
bool BST<T>::remove(const T& val) {
    Node<T>* prev = nullptr;
    Node<T>* curr = root;
    while (curr != nullptr && curr->val != val) {
        prev = curr;
        if (val > curr->val)
        curr = curr->right;
        else
        curr = curr->left;
    }
    if (curr == nullptr)
        return false;
    if (curr->left != nullptr && curr->right != nullptr)
        remove_2(curr);
    else
        remove_1(curr, prev);
    return true;
}
```


Deleting a Node

```
template<class T>
bool BST<T>::remove(const T& val) {
    Node<T>* prev = nullptr;
    Node<T>* curr = root;
    while (curr != nullptr && curr>>val != val) {
    prev = curr;
    if (val > curr->val)
        curr = curr->right;
    else
        curr = curr->left;
    }
    if (curr == nullptr)
        return false;
    if (curr->left != nullptr && curr->right != nullptr)
        remove_2(curr);
    else
        remove_1(curr, prev);
    return true;
}
```


Deleting a Node

```
template<class T>
bool BST<T>::remove(const T& val) {
    Node<T>* prev = nullptr;
    Node<T>* curr = root;
    while (curr != nullptr && curr>>val != val) {
        prev = curr;
        if (val > curr->val)
        curr = curr->right;
    else
        curr = curr->left;
    }
    if (curr == nullptr)
        return false;
```

no node in the tree contains val

```
    if (curr-> left != nullptr && curr->right != nullptr)
        remove_2(curr);
    else
        remove_1(curr, prev);
    return true;
}
```


Deleting a Node

```
template<class T>
bool BST<T>::remove(const T& val) {
    Node<T>* prev = nullptr;
    Node<T>* curr = root;
    while (curr != nullptr && curr->val != val) {
        prev = curr;
    if (val > curr->val)
        curr = curr->right;
    else
        curr = curr->left;
    }
    if (curr == nullptr)
        return false;
    if (curr->left != nullptr && curr->right != nullptr)
        remove_2(curr);
    else
        remove_1(curr, prev);
    return true;
}
```


Running Time of Deleting a Node

Best Case:

$O(1)$ to find the node to be deleted $+O(1)$ to delete $=O(1)$
Worst Case:
$O(h)$ to find the node to be deleted or
$O(h)$ to delete or both.

Example of a worst case

Example of a worst case

Example of a best case

Running Time of Deleting a Node

Best Case:

$O(1)$ to find the node to be deleted $+O(1)$ to delete $=O(1)$
Worst Case:
$O(h)$ to find the node to be deleted or
$O(h)$ to delete or both.

Note that this best case does not happen if the tree is balanced.

Running Time of Deleting a Node

Best Case:

$O(1)$ to find the node to be deleted $+O(1)$ to delete $=O(1)$
Worst Case:
$O(h)$ to find the node to be deleted or
$O(h)$ to delete or both.

Note that this best case does not happen if the tree is balanced.

If the tree is balanced:
if $\mathrm{O}(h)$ to search, then $\mathrm{O}(1)$ to delete

Running Time of Deleting a Node

Best Case:
$O(1)$ to find the node to be deleted $+O(1)$ to delete $=O(1)$
Worst Case:
$O(h)$ to find the node to be deleted or
$O(h)$ to delete or both.

Note that this best case does not happen if the tree is balanced.

If the tree is balanced:
if $\mathrm{O}(h)$ to search, then $\mathrm{O}(1)$ to delete
if $\mathrm{O}(1)$ to search, then $\mathrm{O}(h)$ to delete

Tree Data Structures

Definitions and properties
Basic operations

- Balanced binary search trees

Tree traversals

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
insert the median

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

etc.
See the exercises for the code

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Math skipped! See the Design \& Analysis of Algorithms course!

A BST built from 256 random keys.
(image by Sedgwick and Wayne)

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Solution 1. If the tree becomes misbalanced after an insert or delete operation, rebuild the whole tree using one of the above solutions!

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Solution 1. If the tree becomes misbalanced after an insert or delete operation, rebuild the whole tree using one of the above solutions!

Waste of Time!

Balanced Binary Search Trees

Problem. Given n elements, how can we construct a balanced BST?

Solution 1. Sort the elements, and insert the median, then recursively do the same in the left and right halves.

Solution 2. Shuffle the elements randomly and then insert them! The expected hight of the tree is $O(\log n)$

Problem. How can we guarantee the tree is balanced after any insertion or deletion?

Solution 1. If the tree becomes misbalanced after an insert or delete operation, rebuild the whole tree using one of the above solutions!

Waste of Time!

Solution 2. Rebalance only the affected part of the tree using rotations!

Self-Balancing BSTs: Tree Rotations

Self-Balancing BSTs: Tree Rotations

Exercise: Right Rotation

Not balanced!
Left heavy and left
child is left heavy

Task: Perform a right rotation.

Exercise: Right Rotation

Not balanced!
Left heavy and left
child is left heavy
Task: Perform a right rotation.

$$
\begin{aligned}
& \text { X-> left }=B ; \\
& \text { A-> left }=B->\text { right; } \\
& B->\text { right }=A ;
\end{aligned}
$$

Self-Balancing BSTs: Left Rotations

Self-Balancing BSTs: Left Rotations

Self-Balancing BSTs: Left Rotations

Self-Balancing BSTs: Left Rotations

Exercise: Left Rotation

Not balanced!
Right heavy and right
child is right heavy
Task: Perform a left rotation.

Exercise: Left Rotation

Not balanced!
Right heavy and right
child is right heavy
Task: Perform a left rotation.

$$
\begin{aligned}
& \text { X-> left }=B ; \\
& \text { A->right = B-> left; } \\
& \text { B-> left = A; }
\end{aligned}
$$

Self-Balancing BSTs: Double Rotations

Self-Balancing BSTs: Double Rotations

Self-Balancing BSTs: Double Rotations

$$
\underset{\theta}{\dot{\theta} \dot{\theta}} \rightarrow \dot{\theta}_{0}
$$

$$
\underset{\theta}{\theta_{\theta} \theta_{0}} \rightarrow \theta_{0} \rightarrow \theta
$$

$$
\begin{aligned}
& \stackrel{\theta_{0}}{\theta_{6}} \rightarrow \theta_{0} \rightarrow \theta_{0}^{\circ}
\end{aligned}
$$

Self-Balancing BSTs: Double Rotations

Not balanced!

$$
\begin{aligned}
& \stackrel{\theta_{0}}{\theta_{6}} \rightarrow \theta_{0}^{0} \rightarrow \theta_{0} \\
& \text {-8 } \\
& \text {-0 } 0 \\
& 006
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\theta_{0}}{\partial \theta_{0}} \rightarrow \theta_{\theta} \rightarrow \theta_{0}^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\theta_{6}}{\theta_{0}} \rightarrow \theta_{\theta} \rightarrow \theta_{0}^{\circ}
\end{aligned}
$$

Exercise: Double Rotation

Not balanced!
Right heavy and right
child is left heavy

Task: Perform a double rotation.

Exercise: Double Rotation

Not balanced!
Right heavy and right
child is left heavy

Task: Perform a double rotation.

Exercise: Double Rotation

> Not balanced!
> Right heavy and right
> child is left heavy

Task: Perform a double rotation.

Exercise: Double Rotation

Task: Balance the tree

Exercise: Double Rotation

Task: Balance the tree

Start with lowest
misbalanced subtree

Exercise: Double Rotation

Task: Balance the tree

Start with lowest
misbalanced subtree

Exercise: Double Rotation

Task: Balance the tree

Start with lowest
misbalanced subtree

Exercise: Double Rotation

Task: Balance the tree

Start with lowest misbalanced subtree

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.
3

| 5 | 6 | 7 | 8 | 9 | 4 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(3)

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.
35
(3) \rightarrow (3)

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.
3
56
6
7
89
4
1
2
(3) 3 (3) (3)

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.

$$
3
$$

5
6
7
8

4

2

left rotation

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.
3

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.
Example.

left rotation

left rotation

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.

| Example. | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 4 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

left rotation

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.

| Example. | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 4 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

left rotation

AVL Trees

After every insertion (or deletion):

- Check the balance factors of the nodes on the insertion (or deletion) path from the lowest to the highest in the tree.
- Perform the appropriate rotation on every subtree that is not balanced.

| Example. | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{4}$ | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tree Data Structures

Definitions and properties
Basic operations

- Balanced binary search trees

Tree traversals

