
CS11212 - Spring 2022 


Data Structures &  
Introduction to Algorithms


 
Analysis of Algorithms
Searching & Sorting: Part 2

Ibrahim Albluwi



Sorting: A Fundamental Problem

Problem. Given a list of n elements, order them in non-decreasing (or ascending) order.

Common variant. Order the elements in descending order.

                                          



Sorting: A Fundamental Problem

Problem. Given a list of n elements, order them in non-decreasing (or ascending) order.

Common variant. Order the elements in descending order.

                                          
Requirement. The meaning of <, >, == for the element type must be defined. 
                       In C++, it is defined for int, double, char, string, etc., 
                       but not for user defined types (e.g. What does car1 > car2 mean?)




Sorting: A Fundamental Problem

Problem. Given a list of n elements, order them in non-decreasing (or ascending) order.

Common variant. Order the elements in descending order.

                                          
Requirement. The meaning of <, >, == for the element type must be defined. 
                       In C++, it is defined for int, double, char, string, etc., 
                       but not for user defined types (e.g. What does car1 > car2 mean?)


 Too many ways to sort! 

Bubble Sort

Selection Sort

Insertion Sort

Exchange Sort

Cocktail Sort

Stooge Sort

Shell Sort

Quicksort

Merge Sort

Heapsort

BST Sort

Cycle Sort

Timsort

Comb Sort

MSD Radix Sort

LSD Radix Sort

Bitonic Sort

Counting Sort

Bucket Sort

Bogo (Stupid) Sort

...



Sorting: A Fundamental Problem

Problem. Given a list of n elements, order them in non-decreasing (or ascending) order.

Common variant. Order the elements in descending order.

                                          
Requirement. The meaning of <, >, == for the element type must be defined. 
                       In C++, it is defined for int, double, char, string, etc., 
                       but not for user defined types (e.g. What does car1 > car2 mean?)


 Too many ways to sort! 

Bubble Sort

Selection Sort

Insertion Sort

Exchange Sort

Cocktail Sort

Stooge Sort

Shell Sort

Quicksort

Merge Sort

Heapsort

BST Sort

Cycle Sort

Timsort

Comb Sort

MSD Radix Sort

LSD Radix Sort

Bitonic Sort

Counting Sort

Bucket Sort

Bogo (Stupid) Sort

...

Inefficient, but easy to analyze! 
(covered in this course)



Sorting: A Fundamental Problem

Problem. Given a list of n elements, order them in non-decreasing (or ascending) order.

Common variant. Order the elements in descending order.

                                          
Requirement. The meaning of <, >, == for the element type must be defined. 
                       In C++, it is defined for int, double, char, string, etc., 
                       but not for user defined types (e.g. What does car1 > car2 mean?)


 Too many ways to sort! 

Bubble Sort

Selection Sort

Insertion Sort

Exchange Sort

Cocktail Sort

Stooge Sort

Shell Sort

Quicksort

Merge Sort

Heapsort

BST Sort

Cycle Sort

Timsort

Comb Sort

MSD Radix Sort

LSD Radix Sort

Bitonic Sort

Counting Sort

Bucket Sort

Bogo (Stupid) Sort

...

Efficient, but harder to analyze! 
(covered in the Algorithms course)



Sorting Warmup

Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N C B AZ ST U V



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N C B AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MN C BA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MN C BA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MNCBA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MNCBA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MNCBA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

MNCBA Z

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCBA ST U VZ

Sorting Warmup

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S

Sorting Warmup

T U VM N Z

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA SZ

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S Z

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S Z

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S Z

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S Z

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

CBA S Z

Sorting Warmup

T U VM N

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N C B AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N C B AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N B AZ

Sorting Warmup

ST U VC

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N B AZ

Sorting Warmup

ST U V

C

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M N

C

B AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NC B AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NC

B

AZ

Sorting Warmup

ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NC AZ

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NC

A

Z

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

S

T

U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST

U

VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST U

V

B

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

ST U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

S

T U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

S

T U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

M NCA Z

Sorting Warmup

S T U VB

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left.                                         



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A Z ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A Z ST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZST U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C B A ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N C BA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M N CBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Sorting Warmup

M NCBA ZS T U V

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         
Idea 2. Go through each element and insert it in its correct position relative to its left

Idea 3. Bubble Sort!



Problem. Sort a list of books alphabetically.

Restrictions. Can't place any book anywhere outside the shelf while sorting.

                                          

Idea 1. Select the min and place it in its correct position, then the second min, etc.                                         

Sorting Warmup

Idea 2. Go through each element and insert it in its correct position relative to its left.                                         

Idea 3. Bubble Sort!

M N C B AZ ST U V

Which one is the best?
Let's count operations!



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

035 18 1225 31 32 4048



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Search for the  
minimum n-1 times

035 18 1225 31 32 4048



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

035 18 1225 31 32 4048

place the minimum 
in its right position

find the index of the 
minimum in a[i, n-1]



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

find the index of the 
minimum in a[i, n-1]

0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index



Selection Sort: Tracing

0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing

j



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

min_index

035 18 1225 31 32 4048

place the minimum 
in its right position

Selection Sort: Tracing

j j



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

min_index

0 3 5 18 1225 31 32 4048

place the minimum 
in its right position

Selection Sort: Tracing

j



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!

jj



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

3



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

3

j



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

3

j

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 18 1225 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

Selection Sort: Tracing

0 5 1812 25 31 32 40 483

i



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data compares.

Analysis

Counting only comparisons 
between array elements



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Analysis



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case.

Best case.

Analysis

Counting only movements  
of array elements



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case. One swap per iteration, a total of  swaps (=  data moves).n − 1 3(n − 1)
Best case. No swaps if the array is already sorted.

Analysis

Counting only movements  
of array elements



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case. One swap per iteration, a total of  swaps (=  data moves).n − 1 3(n − 1)
Best case. No swaps if the array is already sorted.

Analysis

Think! 
Can you come up with an array 
of size 6 that leads to 5 swaps?



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case. One swap per iteration, a total of  swaps (=  data moves).n − 1 3(n − 1)

Total.  operations in the best case and the worst case.O(n2)

Best case. No swaps if the array is already sorted.

Analysis



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46-1
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

Insert every element from  
the unsorted part into its  
correct position in the  
sorted part

0



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46-1
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

-1

0

temp =



Insertion Sort: Implementation

319 40

7 8 9

0 3 5 2 46-1
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

-1

shift the elements until 
the right position of 
element i is found

j

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

-1

shift the elements until 
the right position of 
element i is found

j

0 0

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

temp =

store element i

-1

shift the elements until 
the right position of 
element i is found

j

0 0



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

temp =

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

3



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 5



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 6



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1



Insertion Sort: Implementation

319 40

7 8 9

3 5 2 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 2



Insertion Sort: Implementation

319 40

7 8 9

3 5 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 2

6



Insertion Sort: Implementation

319 40

7 8 9

3 5 46
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 2

6



Insertion Sort: Implementation

319 40

7 8 9

3 5 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 2

6



Insertion Sort: Implementation

319 40

7 8 9

3 5 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp = 2

6

j



Insertion Sort: Implementation

319 40

7 8 9

3 3 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp = 2

6

j



Insertion Sort: Implementation

319 40

7 8 9

3 3 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp = 2

6

j



Insertion Sort: Implementation

319 40

7 8 9

3 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp =

2 6

j



Insertion Sort: Implementation

319 40

7 8 9

3 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 6



Insertion Sort: Implementation

319 40

7 8 9

3 45
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 6

temp = 4



Insertion Sort: Implementation

319 40

7 8 9

3 65
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 6

temp = 4



Insertion Sort: Implementation

319 40

7 8 9

3 65
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 6

temp = 4



Insertion Sort: Implementation

319 40

7 8 9

3 65
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1 2 5

temp = 4

j



Insertion Sort: Implementation

319 40

7 8 9

3 65
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1 2 5

temp = 4

j



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1 2 5

temp =

4

j



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54

temp = 9



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54

temp =



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54



Insertion Sort: Implementation

319 40

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54

temp = 40



Insertion Sort: Implementation

319

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54

temp =

40



Insertion Sort: Implementation

319

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54 40



Insertion Sort: Implementation

319

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54 40

temp = 31



Insertion Sort: Implementation

409

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54 40

temp = 31



Insertion Sort: Implementation

409

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54 40

temp = 31



Insertion Sort: Implementation

409

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1 2 54

temp =

31



Insertion Sort: Implementation

9

7 8 9

3 6
0 1 2 3 4 5 6

i

void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1 2 54 31 40



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case.

Analysis



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case. Reversely sorted arrays.

Analysis
5   4   3   2   1 



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case. Reversely sorted arrays.

1  
shif

Analysis
5   4   3   2   1 


Insert 4: 
5  5   3   2   1


4   5   3   2   1


→



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case. Reversely sorted arrays.

1  
shif

2  
shifts

Analysis

+

5   4   3   2   1 


Insert 4: 
5  5   3   2   1


4   5   3   2   1


Insert 3: 
4   5  5   2   1

4  4   5   2   1


3   4   5   2   1


→

→
→



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case. Reversely sorted arrays.

1  
shif

2  
shifts

3  
shifts

Analysis

+

+

5   4   3   2   1 


Insert 4: 
5  5   3   2   1


4   5   3   2   1


Insert 3: 
4   5  5   2   1

4  4   5   2   1


3   4   5   2   1


Insert 2: 
3   4   5  5   1

3   4  4   5   1

3  3   4   5   1


2   3   4   5   1


→

→
→

→
→

→



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

1  
shif

2  
shifts

3  
shifts

4  
shifts

Worst Case. Reversely sorted arrays.

Analysis

+

+

+

5   4   3   2   1 


Insert 4: 
5  5   3   2   1


4   5   3   2   1


Insert 3: 
4   5  5   2   1

4  4   5   2   1


3   4   5   2   1


Insert 2: 
3   4   5  5   1

3   4  4   5   1

3  3   4   5   1


2   3   4   5   1


Insert 1: 
2   3   4   5  5

2   3   4  4   5

2   3  3   4   5

2  2   3   4   5


1   3   4   4   5

→

→
→

→
→

→

→
→

→
→



void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

5   4   3   2   1 


Insert 4: 
5  5   3   2   1


4   5   3   2   1


Insert 3: 
4   5  5   2   1

4  4   5   2   1


3   4   5   2   1


Insert 2: 
3   4   5  5   1

3   4  4   5   1

3  3   4   5   1


2   3   4   5   1


Insert 1: 
2   3   4   5  5

2   3   4  4   5

2   3  3   4   5

2  2   3   4   5


1   3   4   4   5

→

→
→

→
→

→

→
→

→
→

1  
shif

2  
shifts

3  
shifts

4  
shifts

Worst Case. Reversely sorted arrays.

Data compares.    1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Number of shifts. 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Number of shifts 

For moving a[i] to temp and then temp to a[j+1] 

+ 2(n − 1)

Total. O(n2)

Analysis

+

+

+



Best Case. Analysis



1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

Analysis



1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

A Good Case. Partially sorted arrays

Total. O(n)

Intuition. If every element is either in its correct position or only a few steps away from it, we need 
a few data compares and moves for every element, which makes the total .O(n)

Analysis

1   2   3   5   4   6   7   10   8   9   11   13   12

Example

[Optional Info] Insertion sort performs a number of shifts that is equal to the number of 
inversions. A sorted array has 0 inversions, a partially sorted array has a number of inversions 
that is linear in the size of the array and a reversely sorted array has  inversions.1

2 n(n − 1)



1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

A Good Case. Partially sorted arrays

Total. O(n)

Intuition. If every element is either in its correct position or only a few steps away from it, we need 
a few data compares and moves for every element, which makes the total .O(n)

Analysis

Average Case. Random arrays.

Claim. Insertion sort requires for sorting a random array around half the amount of data moves 
and data compares it needs for sorting a reversely sorted array.

Intuition. If elements are random, then each element moves around half the elements to its left before 

being inserted in its position. I.e.  shifts.1
2 (1)+ 1

2 (2)+ 1
2 (3) + … + 1

2 (n − 1) = 1
4 n(n − 1)



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

j

8 2 4 520 9116



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

8 2 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

2 4 520 91

jj-1

8 16



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 9116

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 9116

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 16 91

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 16 91

jj-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 16 91

j
j-1



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 16 91

No Swaps! 
This means that the  
remaining elements  
are already sorted



Bubble Sort: Implementation

0 1 2 3 4 5 6

i

void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break;

    }      

}

compare adjacent 
elements  and swap if 
not in order

82 4 520 16 91

No Swaps! 
This means that the  
remaining elements  
are already sorted



Worst Case.

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves.

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Swap with every compare = 3 × 1
2 n(n − 1)

Total. O(n2)

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Swap with every compare = 3 × 1
2 n(n − 1)

Total. O(n2)

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Best Case.

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Swap with every compare = 3 × 1
2 n(n − 1)

Total. O(n2)

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Best Case. Sorted arrays.

Only one iteration of the outer loop (0 swaps and  data compares) = n − 1 O(n)

Analysis



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC
Worst

DMDC DMDC
Random Data



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC

O(n) O(1)

O(n)
Sorted Arrays 
assuming the 

swapped flag is used

Worst
DMDC

O(n2)
Reversely Sorted 

Arrays

Random Data
DMDC

O(n2)

3
4 n(n − 1)1

2 n(n − 1)

Sorted Arrays Reversely Sorted 
Arrays

O(n2)

1
4 n(n − 1)1

4 n(n − 1)

O(n)

O(n) O(n)

O(n)

O(n) O(n)

O(n2)

O(n2) O(n2) O(n2)

1
2 n(n − 1) O(n)

O(n2)

O(n)

No general answer.

It depends on when 

the swapped flag 
remains false

O(n2) O(n2)

O(n2)O(n2)

O(n2)O(n2)O(1)O(n2) O(n)

shifts

Sorted Arrays



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC

O(n) O(1)

O(n)
Sorted Arrays 




Worst
DMDC

O(n2)
Reversely Sorted 

Arrays

Random Data
DMDC

O(n2)

1
2 n(n − 1)

Sorted Arrays Reversely Sorted 
Arrays

O(n)

O(n) O(n)

O(n)

O(n) O(n)

O(n2)

O(n2) O(n2)

1
2 n(n − 1) O(n)

O(n2)

O(n)

No general answer.

It depends on when 

the swapped flag 
remains false

The overall running time for all of these algorithms is 
asymptotically the same in the worst case

O(n2)

O(1)O(n2) O(n2) O(n)

O(n2) O(n2)

O(n2)O(n2)

3
4 n(n − 1)

O(n2)

Sorted Arrays

O(n2)

1
4 n(n − 1)1

4 n(n − 1)

shift



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC

O(n) O(1)

O(n)
Sorted Arrays 




Worst
DMDC

O(n2)
Reversely Sorted 

Arrays

Random Data
DMDC

O(n2)

1
2 n(n − 1)

Sorted Arrays Reversely Sorted 
Arrays

O(n)

O(n) O(n)

O(n)

O(n) O(n)

O(n2)

O(n2) O(n2)

1
2 n(n − 1) O(n)

O(n2)

O(n)

No general answer.

It depends on when 

the swapped flag 
remains false

Insertion Sort is expected to be a  
bit more efficient on random data

O(n2)

O(1)O(n2) O(n2) O(n)

O(n2) O(n2)

O(n2)O(n2)

3
4 n(n − 1)

O(n2)

Sorted Arrays

O(n2)

1
4 n(n − 1)1

4 n(n − 1)

shifts



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC

O(n) O(1)

O(n)
Sorted Arrays 




Worst
DMDC

O(n2)
Reversely Sorted 

Arrays

Random Data
DMDC

O(n2)

1
2 n(n − 1)

Sorted Arrays Reversely Sorted 
Arrays

O(n)

O(n) O(n)

O(n)

O(n) O(n)

O(n2)

O(n2) O(n2)

1
2 n(n − 1) O(n)

O(n2)

O(n)

No general answer.

It depends on when 

the swapped flag 
remains false

Selection Sort is the only algorithm that does a linear 
number of data moves in the worst case.

O(n2)

O(1)O(n2) O(n2) O(n)

O(n2) O(n2)

O(n2)O(n2)

3
4 n(n − 1)

O(n2)

Sorted Arrays

O(n2)

1
4 n(n − 1)1

4 n(n − 1)

shift



Bu
bb

le
In

se
rt

io
n

Se
le

ct
io

n
Partially Sorted

DMDC
Best

DMDC

O(n) O(1)

O(n)
Sorted Arrays 




Worst
DMDC

O(n2)
Reversely Sorted 

Arrays

Random Data
DMDC

O(n2)

1
2 n(n − 1)

Sorted Arrays Reversely Sorted 
Arrays

O(n)

O(n) O(n)

O(n)

O(n) O(n)

O(n2)

O(n2) O(n2)

1
2 n(n − 1) O(n)

O(n2)

O(n)

No general answer.

It depends on when 

the swapped flag 
remains false

Insertion Sort is the winner  
on partially sorted data

O(n2)

O(1)O(n2) O(n2) O(n)

O(n2) O(n2)

O(n2)O(n2)

3
4 n(n − 1)

O(n2)

Sorted Arrays

O(n2)

1
4 n(n − 1)1

4 n(n − 1)

shift



Advanced Exercises



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does selection sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 1



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does selection sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Answer. Selection sort always does    data compares if the array is of size n, 

regardless of how the elements are ordered in the array. 


The size of the array is . Therefore, selection sort performs   

   data compares.

1
2 n(n − 1)

2m 1
2 2m(2m − 1)

= m(2m − 1) = 2m2 − m

Exercise # 1



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 2



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

2m − 2
2m − 4
2m − 6

Answer.

Exercise # 2



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

...

The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).

2m − 2
2m − 4
2m − 6

Answer.

Exercise # 2



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

...

The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).


The total is:         

2m − 2
2m − 4
2m − 6

0 + 2 + 4 + 6 + … + (2m − 6) + (2m − 4) + (2m − 2)

Answer.

Exercise # 2



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

...

The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).


The total is:           

                   

                       swaps

2m − 2
2m − 4
2m − 6

0 + 2 + 4 + 6 + … + (2m − 6) + (2m − 4) + (2m − 2)
= 2(0 + 1 + 2 + 3 + … + (m − 3) + (m − 2) + (m − 1))
= 2( 1

2 m(m − 1)) = m(m − 1) = m2 − m

Answer.

Exercise # 2



Quiz 3

Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.

Answer.

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

Answer.

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

          The total is:     1    +  3    +  5    +  ...  + 2m-1  
               =      (0+1) + (2+1) + (4+1) +  ...  + 2m-2+1  
               = m +   0    +  2    +  4    +  ...  + 2m-2  
               = m + 2(0    +  1    +  2    +  ...  +  m-1)  
               = m + m(m-1) = m2

Answer.

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

          The total is:     1    +  3    +  5    +  ...  + 2m-1  
               =      (0+1) + (2+1) + (4+1) +  ...  + 2m-2+1  
               = m +   0    +  2    +  4    +  ...  + 2m-2  
               = m + 2(0    +  1    +  2    +  ...  +  m-1)  
               = m + m(m-1) = m2

Adding the compares from the first half, we get a total of   compares.m2 + m − 1

Answer.

Exercise # 3



Q. Assume that  selection sort  knows how to find the minimum in a range of size m 
       in    comparisons only. What would be the order of growth of the running time 
       of selection sort if run on an array of size n ?

log2 m

A. O(n2 log n)

B. O(n log n)

C. O(n log m)

D. It is impossible to find the  
       minimum in logarithmic time.

selection-sort(a[], n):


  for every i from 0 to n-1:


      find the minimum from i to n-1


        place the minimum at index i 

Exercise # 4



Q. Assume that  selection sort  knows how to find the minimum in a range of size m 
       in    comparisons only. What would be the order of growth of the running time 
       of selection sort if run on an array of size n ?

log2 m

A. O(n2 log n)

B. O(n log n)

C. O(n log m)

D. It is impossible to find the  
       minimum in logarithmic time.

selection-sort(a[], n):


  for every i from 0 to n-1:


      find the minimum from i to n-1


        place the minimum at index i 

Exercise # 4

log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(3) + log2(2) + log2(1)

≤ log2(n!) = O(n log n)

Total = 



A. No.

B. Affects the actual running  
       time but not the  
       asymptotic running time.

C. Affects both the actual and     
       asymptotic running times.

insertion-sort(a[], n):


  for every i from 1 to n-1:


    insert a[i] in the range 0 to i-1 
    using linear search and shifts

Exercise # 5

binary-insertion-sort(a[], n):


  for every i from 1 to n-1:


    pos = binary_search(a, a[i], 0, i-1) 
    insert(a, a[i], pos, i-1)

Q. Assume that  insertion sort  uses binary search to find the insertion position in the 
       sorted portion of the array. Does this affect the worst case running time of the  
       algorithm?



Q. Assume that  insertion sort  uses binary search to find the insertion position in the 
       sorted portion of the array. Does this affect the worst case running time of the  
       algorithm?

A. No.

B. Affects the actual running  
       time but not the  
       asymptotic running time.

C. Affects both the actual and     
       asymptotic running times.

insertion-sort(a[], n):


  for every i from 1 to n-1:


    insert a[i] in the range 0 to i-1 
    using linear search and shifts

Exercise # 5

binary-insertion-sort(a[], n):


  for every i from 1 to n-1:


    pos = binary_search(a, a[i], 0, i-1) 
    insert(a, a[i], pos, i-1)

Number of data compares becomes:  
Number of data moves remains 


Total =   instead of  

O(lg(1) + lg(2) + lg(3) + … + lg(n − 1)) = O(n log n)
O(n2)

O(n log n) + O(n2) = O(n2) O(n2) + O(n2) = O(n2)


