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M N C B AZ ST U V

Which one is the best?
Let's count operations!



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}
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i

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

035 18 1225 31 32 4048



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Search for the  
minimum n-1 times

035 18 1225 31 32 4048



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

035 18 1225 31 32 4048

place the minimum 
in its right position

find the index of the 
minimum in a[i, n-1]



Selection Sort: Implementation

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

find the index of the 
minimum in a[i, n-1]

0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index



Selection Sort: Tracing

0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing



0 1 2 3 4 5 6 7 8 9

i j

035 18 1225 31 32 4048

min_index

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

Selection Sort: Tracing

j



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

min_index

035 18 1225 31 32 4048

place the minimum 
in its right position

Selection Sort: Tracing

j j



void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

0 1 2 3 4 5 6 7 8 9

i

min_index

0 3 5 18 1225 31 32 4048

place the minimum 
in its right position

Selection Sort: Tracing

j



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

0 3 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!

jj



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

3



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

3

j



0 1 2 3 4 5 6 7 8 9

i j

min_index

0 5 18 1225 31 32 4048

Selection Sort: Tracing

3

j

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position

No swap!



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j

0 5 18 1225 31 32 40483

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 18 1225 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

place the minimum 
in its right position



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483

void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

j



0 1 2 3 4 5 6 7 8 9

i

min_index

Selection Sort: Tracing

j

0 5 1812 25 31 32 40 483
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void selection(int a[], int n) {
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        if (i != min_index)
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    }

}

find the index of the 
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place the minimum 
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Data compares.
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Counting only comparisons 
between array elements



void selection(int a[], int n) {
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void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {
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        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)
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    }

}

find the index of the 
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place the minimum 
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Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
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∑
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Counting only movements  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void selection(int a[], int n) {

    


    for (int i = 0; i < n-1; i++) {
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            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);
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}
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Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case. One swap per iteration, a total of  swaps (=  data moves).n − 1 3(n − 1)
Best case. No swaps if the array is already sorted.

Analysis

Think! 
Can you come up with an array 
of size 6 that leads to 5 swaps?
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    for (int i = 0; i < n-1; i++) {


        int min_index = i;

        for (int j = i+1; j < n; j++)

            if (a[j] < a[min_index])

                min_index = j;


        if (i != min_index)

            swap(a[i], a[min_index]);

    }

}

find the index of the 
minimum in a[i, n-1]

place the minimum 
in its right position

Data Moves.

Data compares. The algorithm is insensitive to the arrangement of the elements in the array.


                           data compares= 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Worst case. One swap per iteration, a total of  swaps (=  data moves).n − 1 3(n − 1)

Total.  operations in the best case and the worst case.O(n2)

Best case. No swaps if the array is already sorted.

Analysis
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

Insert every element from  
the unsorted part into its  
correct position in the  
sorted part

0
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void insertion(int a[], int n) {
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void insertion(int a[], int n) {
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {
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                  j--;
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void insertion(int a[], int n) {
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;
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        a[j+1] = temp;

    }      

}
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted
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element i is found
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0
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

j

0

place the element in 
its right position

-1

temp = 2
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;
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        a[j+1] = temp;

    }      

}

sorted not sorted
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the right position of 
element i is found

j

0
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;
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        a[j+1] = temp;

    }      

}

sorted not sorted
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0
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;
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}

sorted not sorted
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j

0
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp = 2
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position

-1

temp = 2
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
element i is found

0

place the element in 
its right position
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}
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0

place the element in 
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i
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the right position of 
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}
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store element i
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0
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;

        }


        a[j+1] = temp;

    }      

}

sorted not sorted

store element i

shift the elements until 
the right position of 
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j

0
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                  j--;

        }
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}
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void insertion(int a[], int n) {

    


    for (int i = 1; i < n; i++) {

        int temp = a[i];


        int j = i-1;

        while (j >= 0 && temp < a[j]) {

                  a[j+1] = a[j];

                  j--;
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void insertion(int a[], int n) {
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        while (j >= 0 && temp < a[j]) {
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        }


        a[j+1] = temp;

    }      
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void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case.

Analysis
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   }      

}
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void insertion(int a[], int n) {
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       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}
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void insertion(int a[], int n) {
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       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}

Worst Case. Reversely sorted arrays.
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void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}
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void insertion(int a[], int n) {

    


   for (int i = 1; i < n; i++) {

       int temp = a[i];

       int j;

       for (j = i-1; j >= 0 && temp < a[j]; j--)

           a[j+1] = a[j];

       a[j+1] = temp;

   }      

}
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Insert 4: 
5  5   3   2   1
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Insert 3: 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Insert 1: 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2   3   4  4   5
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→
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1  
shif

2  
shifts

3  
shifts
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shifts

Worst Case. Reversely sorted arrays.

Data compares.    1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Number of shifts. 1 + 2 + 3 + … + (n − 1) =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Number of shifts 

For moving a[i] to temp and then temp to a[j+1] 

+ 2(n − 1)

Total. O(n2)

Analysis

+

+

+
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1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

Analysis



1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

A Good Case. Partially sorted arrays

Total. O(n)

Intuition. If every element is either in its correct position or only a few steps away from it, we need 
a few data compares and moves for every element, which makes the total .O(n)

Analysis

1   2   3   5   4   6   7   10   8   9   11   13   12

Example

[Optional Info] Insertion sort performs a number of shifts that is equal to the number of 
inversions. A sorted array has 0 inversions, a partially sorted array has a number of inversions 
that is linear in the size of the array and a reversely sorted array has  inversions.1

2 n(n − 1)
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1   2   3   4   5


1   2   3   4   5

Best Case. Sorted arrays.

Data compares.  (each element is compared to the one to its left)n − 1
Number of shifts. 0 (all elements are in their place)

Data moves. Number of shifts 

For moving a[i] to temp and then back to its place.

+ 2(n − 1)

Total. O(n)

A Good Case. Partially sorted arrays

Total. O(n)

Intuition. If every element is either in its correct position or only a few steps away from it, we need 
a few data compares and moves for every element, which makes the total .O(n)

Analysis

Average Case. Random arrays.

Claim. Insertion sort requires for sorting a random array around half the amount of data moves 
and data compares it needs for sorting a reversely sorted array.

Intuition. If elements are random, then each element moves around half the elements to its left before 

being inserted in its position. I.e.  shifts.1
2 (1)+ 1

2 (2)+ 1
2 (3) + … + 1

2 (n − 1) = 1
4 n(n − 1)



Bubble Sort: Implementation
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void bubble(int a[], int n) {

    


    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }


        if (!swapped)  
            break; 

    }      

}

compare adjacent 
elements  and swap if 
not in order

j
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Worst Case.

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves.

void bubble(int a[], int n) {
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        bool swapped = false;

        for (int j = n-1; j > i; j--) {
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    }      
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n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Swap with every compare = 3 × 1
2 n(n − 1)

Total. O(n2)
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        }

        if (!swapped)  
            break; 

    }      

}

Analysis



Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
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                swap(a[j], a[j-1]); 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            }

        }

        if (!swapped)  
            break; 

    }      

}

Best Case.
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Worst Case. Reversely sorted arrays.

Data compares. (n − 1) + (n − 2) + … + 3 + 2 + 1 =
n−1

∑
i=1

i = 1
2 n(n − 1)

Data moves. Swap with every compare = 3 × 1
2 n(n − 1)

Total. O(n2)

void bubble(int a[], int n) {

    for (int i = 0;  i < n-1;  i++) {

        bool swapped = false;

        for (int j = n-1; j > i; j--) {

            if (a[j] < a[j-1]) {   

                swap(a[j], a[j-1]); 
                swapped = true; 
            }

        }

        if (!swapped)  
            break; 

    }      

}

Best Case. Sorted arrays.

Only one iteration of the outer loop (0 swaps and  data compares) = n − 1 O(n)

Analysis
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Advanced Exercises



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does selection sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 1



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does selection sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Answer. Selection sort always does    data compares if the array is of size n, 

regardless of how the elements are ordered in the array. 


The size of the array is . Therefore, selection sort performs   

   data compares.

1
2 n(n − 1)

2m 1
2 2m(2m − 1)

= m(2m − 1) = 2m2 − m

Exercise # 1



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 2



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

2m − 2
2m − 4
2m − 6

Answer.

Exercise # 2
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...

The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).

2m − 2
2m − 4
2m − 6

Answer.
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The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).


The total is:         

2m − 2
2m − 4
2m − 6

0 + 2 + 4 + 6 + … + (2m − 6) + (2m − 4) + (2m − 2)

Answer.
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Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many swaps does bubble sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

The 1st  pass swaps the right-most 1 with    elements.

The 2nd pass swaps the right-most 2 with    elements.

The 3rd  pass swaps the right-most 3 with    elements.

...

The right-most 6 is swapped with 4 elements. 
The right-most 7 is swapped with 2 elements.  
The right-most 8 is swapped with 0 elements. All the remaining elements  
will not need extra swaps for them to get to their positions  
(swaps from the previous passes of the algorithm get them to their positions).


The total is:           

                   

                       swaps

2m − 2
2m − 4
2m − 6

0 + 2 + 4 + 6 + … + (2m − 6) + (2m − 4) + (2m − 2)
= 2(0 + 1 + 2 + 3 + … + (m − 3) + (m − 2) + (m − 1))
= 2( 1

2 m(m − 1)) = m(m − 1) = m2 − m

Answer.

Exercise # 2



Quiz 3

Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.

Answer.

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

Answer.
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Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

          The total is:     1    +  3    +  5    +  ...  + 2m-1  
               =      (0+1) + (2+1) + (4+1) +  ...  + 2m-2+1  
               = m +   0    +  2    +  4    +  ...  + 2m-2  
               = m + 2(0    +  1    +  2    +  ...  +  m-1)  
               = m + m(m-1) = m2

Answer.

Exercise # 3



Q. Consider an organ-pipe array made of two equal halves of size m each,  
       where elements increase then decrease:


How many data compares does insertion sort perform if run on such an array of size  ?2m

1  2  3  4  5  6  7  8  8  7  6  5  4  3  2  1
m m

First half:       m-1 compares. Each element is compared to the one to its left.


Second half:  The  8  is compared to the    8                                 to its left   (1 compare).

                        The  7  is compared to the    7, 8, 8                   to its left   (3 compares).

                        The  6  is compared to the    6, 7, 7, 8, 8    to its left   (5 compares).

                         ...

                        Finally, the 1 is compared to all the remaining  2m-1  elements.

          The total is:     1    +  3    +  5    +  ...  + 2m-1  
               =      (0+1) + (2+1) + (4+1) +  ...  + 2m-2+1  
               = m +   0    +  2    +  4    +  ...  + 2m-2  
               = m + 2(0    +  1    +  2    +  ...  +  m-1)  
               = m + m(m-1) = m2

Adding the compares from the first half, we get a total of   compares.m2 + m − 1

Answer.

Exercise # 3



Q. Assume that  selection sort  knows how to find the minimum in a range of size m 
       in    comparisons only. What would be the order of growth of the running time 
       of selection sort if run on an array of size n ?

log2 m

A. O(n2 log n)

B. O(n log n)

C. O(n log m)

D. It is impossible to find the  
       minimum in logarithmic time.

selection-sort(a[], n):


  for every i from 0 to n-1:


      find the minimum from i to n-1


        place the minimum at index i 

Exercise # 4



Q. Assume that  selection sort  knows how to find the minimum in a range of size m 
       in    comparisons only. What would be the order of growth of the running time 
       of selection sort if run on an array of size n ?

log2 m

A. O(n2 log n)

B. O(n log n)

C. O(n log m)

D. It is impossible to find the  
       minimum in logarithmic time.

selection-sort(a[], n):


  for every i from 0 to n-1:


      find the minimum from i to n-1


        place the minimum at index i 

Exercise # 4

log2(n − 1) + log2(n − 2) + log2(n − 3) + … + log2(3) + log2(2) + log2(1)

≤ log2(n!) = O(n log n)

Total = 



A. No.

B. Affects the actual running  
       time but not the  
       asymptotic running time.

C. Affects both the actual and     
       asymptotic running times.

insertion-sort(a[], n):


  for every i from 1 to n-1:


    insert a[i] in the range 0 to i-1 
    using linear search and shifts

Exercise # 5

binary-insertion-sort(a[], n):


  for every i from 1 to n-1:


    pos = binary_search(a, a[i], 0, i-1) 
    insert(a, a[i], pos, i-1)

Q. Assume that  insertion sort  uses binary search to find the insertion position in the 
       sorted portion of the array. Does this affect the worst case running time of the  
       algorithm?



Q. Assume that  insertion sort  uses binary search to find the insertion position in the 
       sorted portion of the array. Does this affect the worst case running time of the  
       algorithm?

A. No.

B. Affects the actual running  
       time but not the  
       asymptotic running time.

C. Affects both the actual and     
       asymptotic running times.

insertion-sort(a[], n):


  for every i from 1 to n-1:


    insert a[i] in the range 0 to i-1 
    using linear search and shifts

Exercise # 5

binary-insertion-sort(a[], n):


  for every i from 1 to n-1:


    pos = binary_search(a, a[i], 0, i-1) 
    insert(a, a[i], pos, i-1)

Number of data compares becomes:  
Number of data moves remains 


Total =   instead of  

O(lg(1) + lg(2) + lg(3) + … + lg(n − 1)) = O(n log n)
O(n2)

O(n log n) + O(n2) = O(n2) O(n2) + O(n2) = O(n2)


