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The Big-O Notation and Its Relatives



Today’s Agenda

» Running Time Orders of Growth.
» A formal definition of Big-O
» Big-O Relatives



Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.
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Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

o Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

Drop the coefficient of the highest order term:

o Example: n?, %nz and 10n®  are all in the order of  n°

e Rationale:

- Quadratic growth is not the same as, linear or cubic growth, etc.

- Algorithms have different constants when implemented, based on
hardware, software and implementation factors.



Assume T(n) is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about T(n)?

A. T =0m?
B. T(n) =0
C. T = O0n*
D.  All of the above.

E. None of the above.
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Big O notation is a mathematical notation
that describes the limiting behavior of a
function when the argument tends towards a
particular value or infinity. Big O is a member
of a family of notations invented by Paul
Bachmann,!!! Edmund Landau,?! and others,
collectively called Bachmann—-Landau
notation or asymptotic notation.

In computer science, big O notation is used
to classify algorithms according to how their
run time or space requirements grow as the
input size grows.[3] In analytic number theory,
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Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be O(g) if and only if :

There are two constants ¢ and 7, , such that
0<L f(n) <ceg(n) forall n>n,



Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be O(g) if and only if :

There are two constants ¢ and 7, , such that
0<L f(n) <ceg(n) forall n>n,

Less formally: If multiplying g(n) by a constant makes it an upper bound
for f(n) after some point, then f is O(g) .
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Assume f(n) =2n+5 and g(n) = n.

f is O(g) because there are ¢ and n, such that 0 < f(n) < c e+ g(n)
forall n>n,:

If c=4,then 0 < f(n) <4eg(n) forall n>2.5

f(n)=2n+>3

35 e
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Example # 1

Assume f(n) =2n+5 and g(n) = n.

f is O(g) because there are ¢ and n, such that 0 < f(n) < c e+ g(n)
forall n>n,:

If c=7,then 0 < f(n) <7eg(n) forall n>1

: f(n) =2n+5
35 7 o g(n)"'i




Example # 2

Assume f(n) =n’+5n—6 and g(n) = n’.
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Assume f(n) =n’+5n—6 and g(n) = n’.

f is O(g) because there are ¢ and n, suchthat 0 < f(n) < cegn)
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution.

We need to show that there exist two constants ¢ and n, such that
0<3n+3<cen foral n>n,.

Since 0<3n+3<3n+3n
0<3n+3<6m forall n > 1

We can pick c = 6and n, = 1
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.
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Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.
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Solution.
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.
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For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.

C. f(n) =n? and gn) =n’
Solution.

If we pick ¢ =1,Itisclearthat 0 < f(n) < ceg(n) forall n> 1.
Dividing 0 < n? < n’ by n”? makes the equation: 0 < 1 < n
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Assume T(n) is the order of growth of the running time of Bubble Sort as a
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Assume T(n) is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes T(n)?

A.  T(n) = 0n?)
B. T(n)=0n%
C. Tm) =0m"
D.  All of the above.

E. None of the above.



Assume T(n) is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes T(n)?

(A T=0m) )

They are all true, but the tightest bound (and the best to use) is O(n?)
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For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"

Solution.
We need to show that: 0 <27 co3 forall n > n,.
Divide by 2": 0 <1 < ceo (%) & forall n>n,.

We can pick ¢ = | which makes the statement true for alln > 1.

Note that we don't always need to explicitly find ¢ and n,,
It is enough to show that they exist. For example, a valid answer for the above

example would be:

Since 1 is constant and (%) " is a strictly increasing function, there

must be somec andn, > 1 suchthat 0 < 1 < ceo (%) " forall n>n,.
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For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1




For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1

1

fin)  cegn)




For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1

Pickc=A+Bandn, =1



Big-O
Relatives
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Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be Q(g) if and only if :

There are two constants ¢ > Oandn, > 0,
such that 0 < cegn) < f(n) forall n>n,

Less formally: If multiplying g(n) by a constant makes it a lower bound
for f(n) after some point, then f is 2(g) .



Big-{2 Example

Assume f(n) =n’+5 and g(n) = 2n* +5.
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Big-{2 Example

Assume f(n) =n’+5 and g(n) = 2n* +5.

f is €(g) because there are ¢ and n, such that 0 < ceg(n) < f(n)
forall n>n,:

Ifczi,then OS%-g(n)Sf(n) forall n>1
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Big-{2 Example

Assume f(n) =n’ and g(n) = nlogn.

fn) = n?
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Big-{2 Example

Assume f(n) =n’ and g(n) = nlogn.

f is €(g) because there are ¢ and n, such that 0 < ceg(n) < f(n)
forall n>n,:

If c=1,then g(n) < f(n) forall n > 1

fn) = n?

150

120
n)=nlogn

90 g(n) g

60

30
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Good and Bad Uses of Big-£2

Bubble Sort is Q(1). Every comparison-based sorting

Yea right! All algorithms are Q(1) ! algorithm performs C2(n log n)
comparisons in the worst-case.
Interesting!
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Good and Bad Uses of Big-£2

Bubble Sort is Q(1). Every comparison-based sorting
Yea right! All algorithms are Q(1) ! algorithm performs C2(n log n)
comparisons in the worst-case.
Interesting!
@ i &' ?{(" In other words. There is no use of
J \@MS (SLEVs "’% RSNV o trying to find a comparison-based

sorting algorithm whose running time

in the worst case is better than nlogn.

An example from the Jordanian market for the Stay tuned for a proofm
weird use of lower bounds! a couple of weeks from
(Translation: "The mall of burned prices: now!

Everything is for 0.5 Dinars or more")
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to be ®©(g) if and only if :

fis O(g) and f is also Q(g)



Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be ®©(g) if and only if :

fis O(g) and f is also Q(g)

Less formally: If multiplying g(n) by a constant makes it an upper bound
for f(n) after some point and also multiplying g(n) by another constant
makes it a lower bound for f(n) after some point, then f is O(g) .
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A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

B. f(n) =log,n and gn) =log;n



Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
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We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1
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Solution.
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Divide by n%: 0<n +—<c

This is clearly false because n + % is strictly

increasing while the right hand side is constant.
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Show that n° is not O(°).

Solution.
Assume for the sake of that n° = Q(n?), then there exist two constants

candn,suchthat 0 <cen’<n® forall n>n,
Divide by n*: 0<cen<l

This is clearly false because c e n is strictly
increasing while the right hand side is constant.



Which of the following is true about the running time of insertion sort?

A. The running time is o(n?)
B.  The running time is (n)
C.  The best case is ®O(n).

D.  The worst case is O(n?).

E. All of the above.
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Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n
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log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3 X .. X 2 X (24 1) X (242) X ... X )

=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)
log(%) + log(§+1) + 10g(%+2) + ... +log(n)
log(%) + log(g) + log(%) + ...+ log(%)

vV IV



Exercises

Stirling's Approximation states that:
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Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
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1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
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Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)

> log(%) + log(§+1) + 10g(%+2) + ... +log(n)
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forall n > 16



Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + log(%+2) + ... +log(n)

> log(%) + log(%+1) + log(%+2) + ... +log(n)
> log(%) + log(%) + log(%) + ...+ log(%)
> $log(3) > Flog(n) —log(2)) > F(log(n) — 1) > F(log(n)—7 log(n)

Therefore log,(n!) = Q(nlogn) because 0 < % enlogn <log(n!) forall n>16
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Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example
Relation
f=0(g) f<g If f = O(n?), examples for fcould be:
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Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example

Relation
=0 fox =00 eampl i
f-s fex Mg ouh ol o feoudie
/= fze R
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Assume that a function f is known to be o(n?) and also known to be Q(log n),
which of the following functions can f possibly be?

A. n" F. n\/g K. logn

B. 2" G. n'! L. logn

C. n’ H. nlogn M. log(logn)
D. n’logn I. n M. 100
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Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.
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3n? = O(n?) 3n? = O(n”)
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3n’% = O(n?) 3n? # O(n°)
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Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.

3n’ vs n? 3n? vs n’ 3n° vs n®
3n? = O(n?) 3n? = O(n”) 3n° # O(n?)
3n?% = Q(n?) 3n? # Q(n°) 3n° = Q(n?)
3n’% = O(n?) 3n? # O(n°) 3n° # O(n?)
3n? # o(n?) 3n? = o(n?) 3n° # o(n?)
3n? # w(n?) 3n? # w(n’) 3n° = w(n?)



Consider f(n) = O(g(n)). Which of the following is definitely true?

A.  f=0()
B. f=o0(g)
C. g=Q(f)

D. g=w(f)



Consider f(n) = O(g(n)). Which of the following is definitely true?

A.
B.
- g=Qf) = f=0()
[C. g =Q(f) ) g =w(f) = f=o(g)

D.
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f =2 Q)
f =2 0()
f =2 o(f)
f =7 o(f)
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= Q)
[ # o(f)

f# o(f)
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Example:  If fi(n) is ®(n?) and fo(n) is O(n’) then f, +f is O°).






® Don't say: "My algorithm is O(n?)"



® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

Explanation. An algorithm is not a function, its running time is.



® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"



® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"
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less (e.g. log(n), \/Z, n, nlog(n), etc.)

Saying that the running time is at least one of these functions means that the
running time could be anything!
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® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

® Avoid saying: "The worst case running time of Bubble Sort is O(nz)"

Say: "The worst case running time of Bubble Sort is ®(n?)"

Explanation. O(n?) means: in the order of n? or less
®(n?) means: in the order of n”



® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

® Avoid saying: "The worst case running time of Bubble Sort is O(nz)"

Say: "The worst case running time of Bubble Sort is ®(n?)"

O(g(n)) is a set of functions, but computer scientists often abuse

G the notation by writing f(n) = O(g(n)) instead of f(n) € O(g(n)).
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if lim 1) = 0 then f=o0(g)
n—oo g(n)

if 0 < lim ) < 00 then f=0()
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Alternative Definitions

if lim f(_n) = 0 then f=o0(g)
n— 00 g(n)

if 0 < lim ) < 00 then f=0()
n— 00 g(l’l

if 1 1) = 0 then f=w(g)
n—oo g(n)

if 0 <h ) < o© then f=Q(g)
n— 00 g(l’l

0 <timi? < o then = 0(g)
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. logy(n)
We need to show that: 0 < Imm < o
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Solution.

This is equivalent to showing that log,(n) = O(\/Z)

. logy(n)
We need to show that: 0 < Imm <
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Using L'Hopital's rule: lim &2 gy
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Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

. logy(n)
We need to show that: 0 < Imm <
n—0 n
log, () 1
09,(n -
Using L'Hopital's rule: lim &2 gy
o flz) . (=) 24/n
lim —— lim ———.
r—e g(xz) = g'(x)
. 2/n 2\/n
= |im = lim

n—oo 1 eln?2 n—>oo\/ﬁ neln?2

, 2
= lim = 0
”*w\/ﬁoln2




Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

. 10g2(n)
We need to show that: 0 < Imm <
n—0 n
log, () 1
09,(n -
Using L'Hopital's rule: lim &2 — lim & 11n2
n—oo n n— Qo0
. fle) . fi=) 24/n
lim —— lim ———.
e glxz) T g'(x)
. 2/n 2\/n
= |im — = lim
n—oo N e In 11— 00 .1 2
Remember. log®n = o(n%) Vnyneln
where ¢ > 0 and d > 0 are constants. o)

= lim = 0
”*w\/ﬁoln2
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Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

om ! is true for some m > 4,

Ii. Assuming that 0 < m!
2 < (m+1)! is also true.

IA A

we will show that 0

IA

Rewriting the equation: 0 2162 < (m+1)em!

This is clearly true, since 2! < (m + 1) since m > 4 and

we know trom the induction hypothesis that 2" < m!

Therefore, 0 < 2" < cen! forall n > n, istrueif we pick ¢ =1and n, = 4.



