CS11313 - Fall 2021 Design & Analysis of Algorithms

The Big-O Notation and Its Relatives Ibrahim Albluwi

Today's Agenda

- Running Time Orders of Growth.
- A formal definition of Big-O
- Big-O Relatives

Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.

Examples of Growth Rates (Review)

! constant < logarithmic < polynomial < exponential < factorial < n^n $\log_b(n)$ $n^c (c > 0)$ $c^n (c > 1)$

Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.
- Focus on the highest order term:
 - Example: $n^2 + n + \log n$ is in the order of n^2 .

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.
- Focus on the highest order term:
 - Example: $n^2 + n + \log n$ is in the order of n^2 .
 - Rationale: When *n* becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.
- Focus on the highest order term:
 - Example: $n^2 + n + \log n$ is in the order of n^2 .
 - Rationale: When *n* becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- **Drop the coefficient** of the highest order term:
 - Example: n^2 , $\frac{1}{2}n^2$ and $10n^2$ are all in the order of n^2 .

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.
- Focus on the highest order term:
 - Example: $n^2 + n + \log n$ is in the order of n^2 .
 - Rationale: When *n* becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- **Drop the coefficient** of the highest order term:
 - Example: n^2 , $\frac{1}{2}n^2$ and $10n^2$ are all in the order of n^2 .
 - Rationale:
 - Quadratic growth is not the same as, linear or cubic growth, etc.

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows. Examples: log n, n, n², n³, 2ⁿ, etc.
- Focus on the highest order term:
 - Example: $n^2 + n + \log n$ is in the order of n^2 .
 - Rationale: When *n* becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- **Drop the coefficient** of the highest order term:
 - Example: n^2 , $\frac{1}{2}n^2$ and $10n^2$ are all in the order of n^2 .
 - Rationale:
 - Quadratic growth is not the same as, linear or cubic growth, etc.
 - Algorithms have different constants when implemented, based on hardware, software and implementation factors.

Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a function of the input size *n*. Which of the following is *true* about T(n)?

- $A. T(n) = O(n^2)$
- **B.** $T(n) = O(n^3)$
- **C.** $T(n) = O(n^4)$
- **D**. All of the above.
- **E**. None of the above.

Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a function of the input size *n*. Which of the following is *true* about T(n)?

- **A.** $T(n) = O(n^2)$
- **B.** $T(n) = O(n^3)$
- **C.** $T(n) = O(n^4)$
- **D**. All of the above.
- **E.** None of the above.

What is Big-O anyway?

Main page **Contents** Current events **Random article About Wikipedia** Contact us Donate

Contribute

Help

Learn to edit **Community portal Recent changes** Upload file

Article

Talk

Big O notation

From Wikipedia, the free encyclopedia

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann,^[1] Edmund Landau,^[2] and others, collectively called Bachmann-Landau notation or asymptotic notation.

In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows.^[3] In analytic number theory, hig O notation is often used to

Search Wikipedia

Q

Not logged in Talk Contributions Create account Log in

View history

Edit

Read

Fit approximation Concepts Orders of approximation Scale analysis · Big O notation Curve fitting · False precision Significant figures

Other fundamentals

Approximation • Generalization error Taylor polynomial Scientific modelling

V.T.E

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said to be O(g) if and only if :

There are two constants *c* and n_o , such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$ **Definition.** Let f(n) and g(n) be two functions that are always positive, f(n) is said to be O(g) if and only if :

There are two constants *c* and n_o , such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$

Less formally: If multiplying g(n) by a constant makes it an upper bound for f(n) after some point, then f is O(g).

Assume f(n) = 2n + 5 and g(n) = n.

Assume f(n) = 2n + 5 and g(n) = n.

f is O(g) because there are *c* and n_o such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$:

If c = 3, then $0 \le f(n) \le 3 \cdot g(n)$ for all $n \ge 5$

Assume f(n) = 2n + 5 and g(n) = n.

f is O(g) because there are *c* and n_o such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$:

If c = 4, then $0 \le f(n) \le 4 \bullet g(n)$ for all $n \ge 2.5$

Assume f(n) = 2n + 5 and g(n) = n.

f is O(g) because there are *c* and n_o such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$:

If c = 7, then $0 \le f(n) \le 7 \bullet g(n)$ for all $n \ge 1$

Assume $f(n) = n^2 + 5n - 6$ and $g(n) = n^2$.

Assume $f(n) = n^2 + 5n - 6$ and $g(n) = n^2$.

f is O(g) because there are *c* and n_o such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$:

If c = 3, then $0 \le f(n) \le 3 \cdot g(n)$ for all $n \ge 1$

Assume $f(n) = n^2 + 5n - 6$ and $g(n) = n^2$.

f is O(g) because there are *c* and n_o such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_o$:

If c = 7, then $0 \le f(n) \le 7 \bullet g(n)$ for all $n \ge 1$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 3n + 3 \le c \bullet n$ for all $n \ge n_o$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution.

We need to show that there exist two constants c and n_o such that

 $0 \le 3n + 3 \le c \bullet n$ for all $n \ge n_o$.

Since $0 \le 3n + 3 \le 3n + 3n$ for all $n \ge 1$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution.

We need to show that there exist two constants c and n_o such that

 $0 \le 3n + 3 \le c \bullet n$ for all $n \ge n_o$.

Since $0 \le 3n + 3 \le 3n + 3n$ $0 \le 3n + 3 \le 6n$ for all $n \ge 1$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution.

We need to show that there exist two constants c and n_o such that

 $0 \le 3n + 3 \le c \bullet n$ for all $n \ge n_o$.

Since $0 \le 3n + 3 \le 3n + 3n$ $0 \le 3n + 3 \le 6n$ for all $n \ge 1$

We can pick c = 6 and $n_o = 1$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n$ for all $n \geq 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n$ for all $n \geq 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = nSolution (rephrased) If we pick c = 9, we can show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge 1$. $0 \le 3n + 3 \le 3n + 3n \le 6n \le 9n$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2 \le 12n^2$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2 \le 12n^2$ for all $n \ge 1$. f(n) $c \cdot g(n)$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \bullet g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2 \le 12n^2$ for all $n \ge 1$.

C. $f(n) = n^2$ and $g(n) = n^3$

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2 \le 12n^2$ for all $n \ge 1$.

C. $f(n) = n^2$ and $g(n) = n^3$

Solution.

If we pick c = 1, It is clear that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge 1$.

For each of the following function, show that f is O(g).

A. f(n) = 3n + 3 and g(n) = n

Solution (rephrased)

If we pick c = 9, we can show that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge 1$.

 $0 \leq 3n+3 \leq 3n+3n \leq 6n \leq 9n$ for all $n \geq 1$.

B. $f(n) = n^2 + 5n + 6$ and $g(n) = n^2$

Solution.

If we pick c = 12, we can show that $0 \le n^2 + 5n + 6 \le 12n^2$ for all $n \ge 1$. $0 \le n^2 + 5n + 6 \le n^2 + 5n^2 + 6n^2 \le 12n^2$ for all $n \ge 1$.

C. $f(n) = n^2$ and $g(n) = n^3$

Solution.

If we pick c = 1, It is clear that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge 1$. Dividing $0 \le n^2 \le n^3$ by n^2 makes the equation: $0 \le 1 \le n$

Back to Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a function of the input size *n*. Which of the following is *true* about T(n)?

- **A.** $T(n) = O(n^2)$
- **B.** $T(n) = O(n^3)$
- **C.** $T(n) = O(n^4)$
- **D**. All of the above.
- **E.** None of the above.

Back to Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a function of the input size *n*. Which of the following is *true* about T(n)?

- **A.** $T(n) = O(n^2)$
- **B.** $T(n) = O(n^3)$
- **C.** $T(n) = O(n^4)$
- **D**. All of the above.
- **E.** None of the above.

$$T(n) = \frac{1}{2}n^2 - \frac{1}{2}n \leq c \cdot n^2$$

$$\leq c \cdot n^3$$

$$\leq c \cdot n^4 \qquad \text{for all } n \geq 1, \text{ assuming } c = 1$$

Quiz # 2

Assume T(n) is the order of growth of the running time of Selection Sort as a function of the input size *n*. Which of the following best describes T(n)?

- **A.** $T(n) = O(n^2)$ **B.** $T(n) = O(n^6)$
- $C. \quad T(n) = O(n^n)$
- All of the above. D.
- None of the above. Ε.

Quiz # 2

Assume T(n) is the order of growth of the running time of Selection Sort as a function of the input size n. Which of the following *best describes* T(n)?

$$A. T(n) = O(n^2)$$

B. $T(n) = O(n^6)$

$$\mathbf{C}. \qquad T(n) = O(n^n)$$

- **D.** All of the above.
- **E.** None of the above.

They are all true, but the tightest bound (and the best to use) is $O(n^2)$

For each of the following function, show that f is O(g).

D. $f(n) = 2^n$ and $g(n) = 3^n$

For each of the following function, show that f is O(g).

D. $f(n) = 2^n$ and $g(n) = 3^n$

Solution.

We need to show that: $0 \le 2^n \le c \cdot 3^n$ for all $n \ge n_o$.

For each of the following function, show that f is O(g).

D. $f(n) = 2^n$ and $g(n) = 3^n$

Solution.

We need to show that: $0 \leq 2^n \leq c \cdot 3^n$ for all $n \geq n_o$.Divide by 2^n : $0 \leq 1 \leq c \cdot (\frac{3}{2})^n$ for all $n \geq n_o$.

For each of the following function, show that f is O(g).

D. $f(n) = 2^n$ and $g(n) = 3^n$

Solution.

We need to show that: $0 \leq 2^n \leq c \cdot 3^n$ for all $n \geq n_o$.Divide by 2^n : $0 \leq 1 \leq c \cdot (\frac{3}{2})^n$ for all $n \geq n_o$.

We can pick c = 1 which makes the statement true for all $n \ge 1$.

For each of the following function, show that f is O(g).

D. $f(n) = 2^n$ and $g(n) = 3^n$

Solution.

We need to show that: $0 \leq 2^n \leq c \cdot 3^n$ for all $n \geq n_o$.Divide by 2^n : $0 \leq 1 \leq c \cdot (\frac{3}{2})^n$ for all $n \geq n_o$.

We can pick c = 1 which makes the statement true for all $n \ge 1$.

Note that we don't always need to explicitly find c and n_o . It is enough to show that they exist. For example, a valid answer for the above example would be:

Since 1 is constant and $\left(\frac{3}{2}\right)^n$ is a strictly increasing function, there must be some c and $n_o \ge 1$ such that $0 \le 1 \le c \cdot \left(\frac{3}{2}\right)^n$ for all $n \ge n_o$.

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

Because *A*, *B* and *n* are positive integers. 1. $0 \le An + B$ for all $n \ge 1$

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

Because *A*, *B* and *n* are positive integers.

1. $0 \le An + B$ for all $n \ge 1$ 2. $An + B \le An + Bn$ for all $n \ge 1$

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

Because *A*, *B* and *n* are positive integers.

1. $0 \le An + B$ for all $n \ge 1$ 2. $An + B \le (A + B)n$ for all $n \ge 1$

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

Because *A*, *B* and *n* are positive integers.

 $f(n) \quad c \cdot g(n)$

1. $0 \le An + B$ for all $n \ge 1$ 2. $An + B \le (A + B)n$ for all $n \ge 1$

For each of the following function, show that f is O(g).

E. f(n) = An + B and g(n) = n where *A* and *B* are positive integers Solution.

We need to show that: $0 \le An + B \le c \bullet n$ for all $n \ge n_o$.

Because *A*, *B* and *n* are positive integers.

1. $0 \le An + B$ for all $n \ge 1$ 2. $An + B \le (A + B)n$ for all $n \ge 1$

Pick c = A + B and $n_o = 1$

Big-O Relatives

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said to be $\Omega(g)$ if and only if :

There are two constants c > 0 and $n_o \ge 0$, such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_o$ **Definition.** Let f(n) and g(n) be two functions that are always positive, f(n) is said to be $\Omega(g)$ if and only if :

There are two constants c > 0 and $n_o \ge 0$, such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_o$

Less formally: If multiplying g(n) by a constant makes it a lower bound for f(n) after some point, then f is $\Omega(g)$.

Assume $f(n) = n^2 + 5$ and $g(n) = 2n^2 + 5$.

Assume $f(n) = n^2 + 5$ and $g(n) = 2n^2 + 5$.

f is $\Omega(g)$ because there are *c* and n_o such that $0 \le c \bullet g(n) \le f(n)$ for all $n \ge n_o$:

If $c = \frac{1}{4}$, then $0 \le \frac{1}{4} \bullet g(n) \le f(n)$ for all $n \ge 1$

Assume $f(n) = n^2$ and $g(n) = n \log n$.

Assume $f(n) = n^2$ and $g(n) = n \log n$.

f is $\Omega(g)$ because there are *c* and n_o such that $0 \le c \bullet g(n) \le f(n)$ for all $n \ge n_o$:

Bubble Sort is $\Omega(1)$.

Bubble Sort is $\Omega(1)$.

Yea right! All algorithms are $\Omega(1)$!!

Bubble Sort is $\Omega(1)$.

Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds! (Translation: "The mall of burned prices: Everything is for 0.5 Dinars <u>or more</u>")

Bubble Sort is $\Omega(1)$.

Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds! (Translation: "The mall of burned prices: Everything is for 0.5 Dinars <u>or more</u>") Every comparison-based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst-case. Interesting!

Bubble Sort is $\Omega(1)$.

Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds! (Translation: "The mall of burned prices: Everything is for 0.5 Dinars <u>or more</u>") Every comparison-based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst-case. Interesting!

In other words. There is no use of trying to find a comparison-based sorting algorithm whose running time in the worst case is *better than* $n \log n$.

> Stay tuned for a proof in a couple of weeks from now!

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said to be $\Theta(g)$ if and only if :

f is O(g) and f is also $\Omega(g)$

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said to be $\Theta(g)$ if and only if :

f is O(g) and f is also $\Omega(g)$

Less formally: If multiplying g(n) by a constant makes it an upper bound for f(n) after some point and also multiplying g(n) by another constant makes it a lower bound for f(n) after some point, then f is $\Theta(g)$.

For each of the following functions, show that f is $\Theta(g)$.

A. f(n) = 4n + 8 and g(n) = n

For each of the following functions, show that f is $\Theta(g)$.

A.
$$f(n) = 4n + 8$$
 and $g(n) = n$

Solution.

$$4n + 8 = O(n)$$
$$4n + 8 = \Omega(n)$$

For each of the following functions, show that f is $\Theta(g)$.

A. f(n) = 4n + 8 and g(n) = nSolution.

$$4n + 8 = O(n) \qquad \qquad \text{pick } c = 12 \text{ and } n_o = 1$$
$$4n + 8 = \Omega(n)$$

For each of the following functions, show that f is $\Theta(g)$.

A. f(n) = 4n + 8 and g(n) = nSolution.

$$4n + 8 = O(n) \qquad \longrightarrow \qquad \text{pick } c = 12 \text{ and } n_o = 1$$
$$4n + 8 = \Omega(n) \qquad \longrightarrow \qquad \text{pick } c = 1 \text{ and } n_o = 1$$

For each of the following functions, show that f is $\Theta(g)$.

A. f(n) = 4n + 8 and g(n) = n

Solution.

We need to show that:

 $4n + 8 = O(n) \qquad \longrightarrow \qquad \text{pick } c = 12 \text{ and } n_o = 1$ $4n + 8 = \Omega(n) \qquad \longrightarrow \qquad \text{pick } c = 1 \text{ and } n_o = 1$

B. $f(n) = \log_2 n$ and $g(n) = \log_3 n$

For each of the following functions, show that f is $\Theta(g)$.

A.
$$f(n) = 4n + 8$$
 and $g(n) = n$
Solution.

We need to show that:

$$4n + 8 = O(n) \qquad \longrightarrow \qquad \text{pick } c = 12 \text{ and } n_o = 1$$
$$4n + 8 = \Omega(n) \qquad \longrightarrow \qquad \text{pick } c = 1 \text{ and } n_o = 1$$

B.
$$f(n) = \log_2 n$$
 and $g(n) = \log_3 n$

Solution.

$$\log_2 n = O(\frac{\log_2 n}{\log_2 3})$$
$$\log_2 n = \Omega(\frac{\log_2 n}{\log_2 3})$$

For each of the following functions, show that f is $\Theta(g)$.

A.
$$f(n) = 4n + 8$$
 and $g(n) = n$

Solution.

We need to show that:

$$4n + 8 = O(n) \qquad \longrightarrow \qquad \text{pick } c = 12 \text{ and } n_o = 1$$
$$4n + 8 = \Omega(n) \qquad \longrightarrow \qquad \text{pick } c = 1 \text{ and } n_o = 1$$

B.
$$f(n) = \log_2 n$$
 and $g(n) = \log_3 n$

Solution.

$$\log_2 n = O(\frac{\log_2 n}{\log_2 3}) \qquad \qquad \text{pick } c \ge \log_2 3 \text{ and } n_o = 1$$
$$\log_2 n = \Omega(\frac{\log_2 n}{\log_2 3})$$

For each of the following functions, show that f is $\Theta(g)$.

A.
$$f(n) = 4n + 8$$
 and $g(n) = n$

Solution.

We need to show that:

$$4n + 8 = O(n) \qquad \longrightarrow \qquad \text{pick } c = 12 \text{ and } n_o = 1$$
$$4n + 8 = \Omega(n) \qquad \longrightarrow \qquad \text{pick } c = 1 \text{ and } n_o = 1$$

B.
$$f(n) = \log_2 n$$
 and $g(n) = \log_3 n$

Solution.

$$\log_2 n = O(\frac{\log_2 n}{\log_2 3}) \qquad \qquad \text{pick } c \ge \log_2 3 \text{ and } n_o = 1$$

$$\log_2 n = \Omega(\frac{\log_2 n}{\log_2 3}) \qquad \qquad \text{pick } c = 1 \qquad \text{and } n_o = 1$$

Show that $n^3 + n$ is **not** $O(n^2)$.

Show that $n^3 + n$ is **not** $O(n^2)$.

Solution.

Assume for the sake of contradiction that there exist two constants c and n_o such that $0 \le n^3 + n \le c \cdot n^2$ for all $n \ge n_o$.

Show that $n^3 + n$ is **not** $O(n^2)$.

Solution.

Assume for the sake of contradiction that there exist two constants c and n_o such that $0 \le n^3 + n \le c \cdot n^2$ for all $n \ge n_o$.

Divide by n^2 : $0 \le n + \frac{1}{n} \le c$

Show that $n^3 + n$ is **not** $O(n^2)$.

Solution.

Assume for the sake of contradiction that there exist two constants c and n_o such that $0 \le n^3 + n \le c \cdot n^2$ for all $n \ge n_o$. Divide by n^2 : $0 \le n + \frac{1}{n} \le c$ This is clearly false because $n + \frac{1}{n}$ is strictly increasing while the right hand side is constant.

Show that n^2 is **not** $\Theta(n^3)$.

Show that n^2 is **not** $\Theta(n^3)$.

Solution.

Assume for the sake of contradiction that $n^2 = \Omega(n^3)$, then there exist two constants c and n_o such that $0 \le c \cdot n^3 \le n^2$ for all $n \ge n_o$.

Show that n^2 is **not** $\Theta(n^3)$.

Solution.

Assume for the sake of contradiction that $n^2 = \Omega(n^3)$, then there exist two constants c and n_o such that $0 \le c \cdot n^3 \le n^2$ for all $n \ge n_o$.

Divide by n^2 : $0 \le c \bullet n \le 1$

Show that n^2 is **not** $\Theta(n^3)$.

Solution.

Assume for the sake of contradiction that $n^2 = \Omega(n^3)$, then there exist two constants c and n_o such that $0 \le c \cdot n^3 \le n^2$ for all $n \ge n_o$.

Divide by n^2 : $0 \le c \bullet n \le 1$

This is clearly false because $c \bullet n$ is strictly increasing while the right hand side is constant.

Quiz # 3

Which of the following is true about the running time of **insertion sort**?

- A. The running time is $O(n^2)$
- **B.** The running time is $\Omega(n)$
- **C**. The best case is $\Theta(n)$.
- **D**. The worst case is $\Theta(n^2)$.
- **E**. All of the above.

Quiz # 3

Which of the following is true about the running time of **insertion sort**?

- A. The running time is $O(n^2)$
- **B.** The running time is $\Omega(n)$
- **C.** The best case is $\Theta(n)$.
- **D.** The worst case is $\Theta(n^2)$.

E. All of the above.

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

Therefore $\log_2(n!) = O(n \log n)$ because $0 \le \log(n!) \le 1 \cdot n \log n$ for all $n \ge 1$

2. $\log_2(n!) = \log(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times \ldots \times n)$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

Therefore $\log_2(n!) = O(n \log n)$ because $0 \le \log(n!) \le 1 \cdot n \log n$ for all $n \ge 1$

2. $\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2} + 1) \times (\frac{n}{2} + 2) \times ... \times n)$ = $\log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2} + 1) + \log(\frac{n}{2} + 2) + ... + \log(n)$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

Therefore $\log_2(n!) = O(n \log n)$ because $0 \le \log(n!) \le 1 \cdot n \log n$ for all $n \ge 1$

2. $\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$ = $\log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$ $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2} + 1) \times (\frac{n}{2} + 2) \times ... \times n)$$

 $= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2} + 1) + \log(\frac{n}{2} + 2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2} + 1) + \log(\frac{n}{2} + 2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2})$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$$

 $= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2})$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2})$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$$

 $= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \ldots + \log(\frac{n}{2})$
 $\ge \log(\frac{n}{2}) \log(\frac{n}{2}) \ge \frac{n}{2}(\log(n) - \log(2))$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_{2}(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$$
$$= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$$
$$\geq \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$$
$$\geq \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \ldots + \log(\frac{n}{2})$$
$$\geq \frac{n}{2} \log(\frac{n}{2}) \geq \frac{n}{2} (\log(n) - \log(2)) \geq \frac{n}{2} (\log(n) - 1)$$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$$

 $= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + ... + \log(\frac{n}{2})$
 $\ge \frac{n}{2} \log(\frac{n}{2}) \ge \frac{n}{2} (\log(n) - \log(2)) \ge \frac{n}{2} (\log(n) - 1) \ge \frac{n}{2} (\log(n) - \frac{1}{4} \log(n))$
for all $n \ge 16$

Stirling's Approximation states that:

 $\log_2(n!) = n \log_2 n - n \log_2 e + r \log_2 n$ (r is a positive constant)

Show that $\log_2(n!) = \Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1.
$$\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n \times n \times n \times ... \times n)$$
for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq \log(n^n)$ for all $n \geq 1$ $\log(1 \times 2 \times 3 \times ... \times n) \leq n \log(n)$ for all $n \geq 1$

2.
$$\log_2(n!) = \log(1 \times 2 \times 3 \times ... \times \frac{n}{2} \times (\frac{n}{2}+1) \times (\frac{n}{2}+2) \times ... \times n)$$

 $= \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}+1) + \log(\frac{n}{2}+2) + ... + \log(n)$
 $\ge \log(1) + \log(2) + \log(3) + ... + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + \log(\frac{n}{2}) + ... + \log(\frac{n}{2})$
 $\ge \frac{n}{2} \log(\frac{n}{2}) \ge \frac{n}{2} (\log(n) - \log(2)) \ge \frac{n}{2} (\log(n) - 1) \ge \frac{n}{2} (\log(n) - \frac{1}{4} \log(n))$
Therefore $\log_2(n!) = \Omega(n \log n)$ because $0 \le \frac{3}{8} \bullet n \log n \le \log(n!)$ for all $n \ge 16$

Optional Example

Optional Examples

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

Solution.

1. $1^2 + 2^2 + 3^2 + \ldots + n^2 \leq$

Optional Examples

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

Solution.

1.
$$1^2 + 2^2 + 3^2 + \dots + n^2 \leq n^2 + n^2 + n^2 + \dots + n^2$$
 for all $n \geq 1$

Optional Examples

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

Solution.

1.
$$1^2 + 2^2 + 3^2 + \dots + n^2 \le n^2 + n^2 + n^2 + \dots + n^2$$
 for all $n \ge 1$
 $1^2 + 2^2 + 3^2 + \dots + n^2 \le n \times n^2$ for all $n \ge 1$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2} + 1)^2 + (\frac{n}{2} + 2)^2 + \dots + n^2$$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2} + 1)^2 + (\frac{n}{2} + 2)^2 + \dots + n^2$$

$$\geq 1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2} + 1)^2 + (\frac{n}{2} + 2)^2 + \dots + n^2 \quad \text{for all } n \geq 1$$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2} + 1)^2 + (\frac{n}{2} + 2)^2 + \dots + n^2$$

$$\geq 1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2} + 1)^2 + (\frac{n}{2} + 2)^2 + \dots + n^2 \qquad \text{for all } n \geq 1$$

$$\geq 1^2 + 2^2 + 3^2 + \dots + (\frac{n}{2})^2 + (\frac{n}{2})^2 \qquad + (\frac{n}{2})^2 \qquad + \dots + (\frac{n}{2})^2 \qquad \text{for all } n \geq 1$$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$
 for all $n \geq 1$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + \dots + (\frac{n}{2})^{2}$$
 for all $n \geq 1$

$$\geq \frac{n}{2} \times (\frac{n}{2})^{2}$$
 for all $n \geq 1$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$
 for all $n \geq 1$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + \dots + (\frac{n}{2})^{2}$$
 for all $n \geq 1$

$$\geq \frac{n}{2} \times (\frac{n}{2})^{2} \geq \frac{n}{2} \times \frac{n^{2}}{4}$$
 for all $n \geq 1$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$
 for all $n \geq 1$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + \dots + (\frac{n}{2})^{2}$$
 for all $n \geq 1$

$$\geq \frac{n}{2} \times (\frac{n}{2})^{2} \geq \frac{n}{2} \times \frac{n^{2}}{4} \geq \frac{n^{3}}{8}$$
 for all $n \geq 1$

We know that
$$\sum_{i=0}^{n} i^2$$
 can be computed using the formula: $\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$
Show that $\sum_{i=0}^{n} i^2 = \Theta(n^3)$ without using the above formula.

1.
$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n^{2} + n^{2} + n^{2} + \dots + n^{2}$$
 for all $n \geq 1$
 $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} \leq n \times n^{2}$ for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = O(n^{3})$ pick $c = 1$ and $n_{o} = 1$

2.
$$1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2} + 1)^{2} + (\frac{n}{2} + 2)^{2} + \dots + n^{2}$$
 for all $n \geq 1$

$$\geq 1^{2} + 2^{2} + 3^{2} + \dots + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + (\frac{n}{2})^{2} + \dots + (\frac{n}{2})^{2}$$
 for all $n \geq 1$

$$\geq \frac{n}{2} \times (\frac{n}{2})^{2} \geq \frac{n}{2} \times \frac{n^{2}}{4} \geq \frac{n^{3}}{8}$$
 for all $n \geq 1$
Therefore, $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \Omega(n^{3})$ pick $c = \frac{1}{8}$ and $n_{o} = 1$

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be:
f = o(g)	<i>f</i> < <i>g</i>	If $f = o(n^2)$, examples for f could be:

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
f = o(g)	<i>f</i> < <i>g</i>	If $f = o(n^2)$, examples for f could be: $n^{1.9}$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
f = o(g)	<i>f</i> < <i>g</i>	If $f = o(n^2)$, examples for f could be: $n^{1.9}$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
$f = \Omega(g)$	$f \ge g$	If $f = \Omega(n^2)$, examples for f could be:
$f = \omega(g)$	f > g	If $f = \omega(n^2)$, examples for <i>f</i> could be:

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
f = o(g)	<i>f</i> < <i>g</i>	If $f = o(n^2)$, examples for f could be: $n^{1.9}$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
$f = \Omega(g)$	$f \ge g$	If $f = \Omega(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n^3$, $7n^5$, 2^n
$f = \omega(g)$	f > g	If $f = \omega(n^2)$, examples for f could be: $n^{2.01}$, $n^2 \log n$, $5n^3$, $7n^5$, 2^n

Notation	Order of Growth Relation	Example
f = O(g)	$f \leq g$	If $f = O(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
f = o(g)	<i>f</i> < <i>g</i>	If $f = o(n^2)$, examples for f could be: $n^{1.9}$, $5n - 1$, $7n \log n + 5n$, \sqrt{n}
$f = \Omega(g)$	$f \ge g$	If $f = \Omega(n^2)$, examples for f could be: n^2 , $3n^2 + n$, $5n^3$, $7n^5$, 2^n
$f = \omega(g)$	f > g	If $f = \omega(n^2)$, examples for f could be: $n^{2.01}$, $n^2 \log n$, $5n^3$, $7n^5$, 2^n
$f = \Theta(g)$	f = g	If $f = \Theta(n^2)$, examples for f could be: n^2 , $3n^2$, $5n^2 - n$, $7n^2 + n\log n + 100$

Quiz # 4

Assume that a function f is known to be $o(n^2)$ and also known to be $\Omega(\log n)$, which of the following functions can f possibly be? Choose all that applies.

A. n^n	F. $n\sqrt{n}$	K. $\log^2 n$
B. 2 ⁿ	G. $n^{1.1}$	L . log <i>n</i>
C. <i>n</i> ³	H. $n \log n$	M. $\log(\log n)$
D. $n^2 \log n$	I. <i>n</i>	M. 100
E. <i>n</i> ²	J. \sqrt{n}	

Quiz # 4

Assume that a function f is known to be $o(n^2)$ and also known to be $\Omega(\log n)$, which of the following functions can f possibly be? Choose all that applies.

Informal Definition. f is said to be o(g) if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

$3n^2$ vs n^2 $3n^2$ vs n^3	$3n^3$ vs n^2
---------------------------------	-----------------

Small-*o* and Small-*w*

Informal Definition. f is said to be o(g) if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

$3n^2$ vs n^2	$3n^2$ vs n^3	$3n^3$ vs n^2
$3n^2 = O(n^2)$		
$3n^2 = \Omega(n^2)$		
$3n^2 = \Theta(n^2)$		
$3n^2 \neq o(n^2)$		
$3n^2\neq\omega(n^2)$		

Small-*o* and Small-*w*

Informal Definition. f is said to be o(g) if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

$3n^2$ vs n^2	$3n^2$ vs n^3	$3n^3$ vs n^2
$3n^2 = O(n^2)$	$3n^2 = \mathcal{O}(n^3)$	
$3n^2 = \Omega(n^2)$	$3n^2 \neq \Omega(n^3)$	
$3n^2 = \Theta(n^2)$	$3n^2 \neq \Theta(n^3)$	
$3n^2 \neq o(n^2)$	$3n^2 = \mathrm{o}(n^3)$	
$3n^2 \neq \omega(n^2)$	$3n^2 \neq \omega(n^3)$	

Small-*o* and Small-*w*

Informal Definition. f is said to be o(g) if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

$3n^2$ vs n^2	$3n^2$ vs n^3	$3n^3$ vs n^2
$3n^2 = O(n^2)$	$3n^2 = \mathcal{O}(n^3)$	$3n^3 \neq O(n^2)$
$3n^2 = \Omega(n^2)$	$3n^2 \neq \Omega(n^3)$	$3n^3 = \Omega(n^2)$
$3n^2 = \Theta(n^2)$	$3n^2 \neq \Theta(n^3)$	$3n^3 \neq \Theta(n^2)$
$3n^2 \neq o(n^2)$	$3n^2 = \mathrm{o}(n^3)$	$3n^3 \neq o(n^2)$
$3n^2 \neq \omega(n^2)$	$3n^2 \neq \omega(n^3)$	$3n^3 = \omega(n^2)$

Quiz # 5

Consider f(n) = O(g(n)). Which of the following is definitely true? Choose all that applies.

A.
$$f = \Theta(g)$$

B.
$$f = o(g)$$

C.
$$g = \Omega(f)$$

D.
$$g = \omega(f)$$

Quiz # 5

Consider f(n) = O(g(n)). Which of the following is definitely true? Choose all that applies.

A.
$$f = \Theta(g)$$
 we don't know if $f = \Omega(g)$
B. $f = o(g)$ f and g could be of the same order!
C. $g = \Omega(f)$ $g = \Omega(f) \Leftrightarrow f = O(g)$
 $g = \omega(f) \Leftrightarrow f = o(g)$
D. $g = \omega(f)$ f and g could be of the same order!

• Reflexivity. f = ? O(f) $f = ? \Omega(f)$ $f = ? \Theta(f)$ $f = ? \omega(f)$ f = ? o(f)

• Reflexivity.
$$f = \Theta(f)$$

 $f = O(f)$
 $f = \Omega(f)$
 $f \neq \omega(f)$
 $f \neq o(f)$

- Reflexivity. f is $\Theta(f)$ and O(f) and $\Omega(f)$ but not o(f) or $\omega(f)$
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$. Example: $4n^2 + 5$ is $\Theta(n^2)$ and $4 \times (4n^2 + 5)$ is also $\Theta(n^2)$.

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$. Example: $4n^2 + 5$ is $\Theta(n^2)$ and $4 \times (4n^2 + 5)$ is also $\Theta(n^2)$. Similarly: If f is O(g) and c > 0, then $c \bullet f$ is O(g). If f is $\Omega(g)$ and c > 0, then $c \bullet f$ is $\Omega(g)$. If f is o(g) and c > 0, then $c \bullet f$ is o(g). If f is $\omega(g)$ and c > 0, then $c \bullet f$ is $\omega(g)$.

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is O(g) and g is O(h) then f is O(h).

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is O(g) and g is O(h) then f is O(h).

h is an upper bound for both g and f

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is O(g) and g is O(h) then f is O(h). Similarly: If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$. If f is $\Omega(g)$ and g is $\Omega(h)$ then f is $\Omega(h)$. If f is o(g) and g is o(h) then f is o(h). If f is $\omega(g)$ and g is $\omega(h)$ then f is $\omega(h)$.

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_1 is $\Theta(g_1)$ and f_2 is $\Theta(g_2)$, then $f_1 + f_2$ is ...?

- Reflexivity. f is $\Theta(f)$.
- Constants. If *f* is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_1 is $\Theta(g_1)$ and f_2 is $\Theta(g_2)$, then $f_1 + f_2$ is $\Theta(\max\{g_1, g_2\})$. Example: If $f_1(n)$ is $\Theta(n^2)$ and $f_2(n)$ is $\Theta(n^3)$ then $f_1 + f_2$ is $\Theta(n^3)$.

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and c > 0, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_1 is $\Theta(g_1)$ and f_2 is $\Theta(g_2)$, then $f_1 + f_2$ is $\Theta(\max\{g_1, g_2\})$. Example: If $f_1(n)$ is $\Theta(n^2)$ and $f_2(n)$ is $\Theta(n^3)$ then $f_1 + f_2$ is $\Theta(n^3)$. Similarly: If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$. If f_1 is $\Omega(g_1)$ and f_2 is $\Omega(g_2)$, then $f_1 + f_2$ is $\Omega(\max\{g_1, g_2\})$.

قل ولا تقل

قل ولا تقل

• **Don't say:** "My algorithm is $O(n^2)$ "

قل ولا تقل

Don't say: "My algorithm is $O(n^2)$ "

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

Explanation. An algorithm is not a function, its running time is.

قل ولا تقل

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

• Don't say: "Your algorithm runs in at least $O(n^2)$ "

قل ولا تقل

Don't say: "My algorithm is $O(n^2)$ "

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

Don't say: "Your algorithm runs in at least $O(n^2)$ "

Say: "Your algorithm runs in $\Omega(n^2)$ " or "Your algorithm runs in at least $\Theta(n^2)$ "

Explanation. $O(n^2)$ describes all the functions whose order of growth is n^2 or less (e.g. $\log(n)$, \sqrt{n} , n, $n \log(n)$, etc.) Saying that the running time is *at least* one of these functions means that the running time could be anything!

قل ولا تقل

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

- Don't say: "Your algorithm runs in at least $O(n^2)$ " Say: "Your algorithm runs in $\Omega(n^2)$ " or "Your algorithm runs in at least $\Theta(n^2)$ "
- Avoid saying: "The worst case running time of Bubble Sort is $O(n^2)$ "

قل ولا تقل

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

- Don't say: "Your algorithm runs in at least $O(n^2)$ " Say: "Your algorithm runs in $\Omega(n^2)$ " or "Your algorithm runs in at least $\Theta(n^2)$ "
- Avoid saying: "The worst case running time of Bubble Sort is $O(n^2)$ " Say: "The worst case running time of Bubble Sort is $\Theta(n^2)$ "

Explanation. $O(n^2)$ means: in the order of n^2 <u>or less</u> $\Theta(n^2)$ means: in the order of n^2

قل ولا تقل

Say: "The running time of my algorithm" is $O(n^2)$ or "My algorithm runs in $O(n^2)$ ".

- Don't say: "Your algorithm runs in at least $O(n^2)$ " Say: "Your algorithm runs in $\Omega(n^2)$ " or "Your algorithm runs in at least $\Theta(n^2)$ "
- Avoid saying: "The worst case running time of Bubble Sort is $O(n^2)$ " Say: "The worst case running time of Bubble Sort is $\Theta(n^2)$ "

O(g(n)) is a set of functions, but computer scientists often *abuse* the notation by writing f(n) = O(g(n)) instead of $f(n) \in O(g(n))$.

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 then

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 then $f = o(g)$ $f(n) < g(n)$

order of growth relationship

f(n) < g(n)

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \quad then \quad f = o(g)$$

if
$$0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \quad then$$

$$if \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad then \qquad f = o(g) \qquad f(n) < g(n)$$
$$if \qquad 0 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \qquad then \qquad f = O(g) \qquad f(n) \leq g(n)$$

$$if \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad then \qquad f = o(g) \qquad f(n) < g(n)$$

$$if \qquad 0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \qquad then \qquad f = O(g) \qquad f(n) \le g(n)$$

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
 then

$$\begin{array}{lll} if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 & then & f = o(g) & f(n) < g(n) \\ \\ if & 0 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty & then & f = O(g) & f(n) \leq g(n) \\ \\ \\ if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty & then & f = \omega(g) & f(n) > g(n) \end{array}$$

$$\begin{array}{lll} if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 & then & f = o(g) & f(n) < g(n) \\ \\ if & 0 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty & then & f = O(g) & f(n) \leq g(n) \\ \\ \\ if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty & then & f = \omega(g) & f(n) > g(n) \\ \\ \\ if & 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq \infty & then & \end{array}$$

if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
then $f = o(g)$ $f(n) < g(n)$ if $0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$ then $f = O(g)$ $f(n) \le g(n)$ if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
then $f = \omega(g)$ $f(n) > g(n)$ if $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \le \infty$ then $f = \Omega(g)$ $f(n) > = g(n)$

$$\begin{array}{lll} if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 & then & f = o(g) & f(n) < g(n) \\ \\ if & 0 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty & then & f = O(g) & f(n) \leq g(n) \\ \\ \\ if & \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty & then & f = \omega(g) & f(n) > g(n) \\ \\ \\ if & 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq \infty & then & f = \Omega(g) & f(n) \geq g(n) \\ \\ \\ \\ if & 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty & then & f = \Theta(g) & f(n) = g(n) \\ \end{array}$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \leq \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \le \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2\sqrt{n}}}$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \le \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{n \cdot \ln 2}$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \le \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{n \cdot \ln 2} = \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n}\sqrt{n} \cdot \ln 2}$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \le \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

$$\lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{n \cdot \ln 2} = \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n}\sqrt{n} \cdot \ln 2}$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{n} \cdot \ln 2} = 0$$

Show that $\log_2(n) \times \log_2(n) = O(n)$

Solution.

 $\lim_{x \to a}$

This is equivalent to showing that $\log_2(n) = O(\sqrt{n})$

We need to show that:

$$0 \le \lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} < \infty$$

Using L'Hôpital's rule:

$$rac{f(x)}{g(x)} = \lim_{x
ightarrow c} rac{f'(x)}{g'(x)}.$$

$$\lim_{n \to \infty} \frac{\log_2(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2\sqrt{n}}}$$

Remember. $\log^c n = o(n^d)$ where c > 0 and d > 0 are constants.

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{n \cdot \ln 2} = \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n}\sqrt{n} \cdot \ln 2}$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{n} \cdot \ln 2} = 0$$

Prove by induction that $2^n = O(n!)$

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

i. When n = 4, $2^n = 16$ while n! = 24. Therefore, the inequality holds for n = 4.

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

- i. When n = 4, $2^n = 16$ while n! = 24. Therefore, the inequality holds for n = 4.
- ii. Assuming that $0 \le 2^m \le m!$ is true for some $m \ge 4$,we will show that $0 \le 2^{m+1} \le (m+1)!$ is also true.

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

- i. When n = 4, $2^n = 16$ while n! = 24. Therefore, the inequality holds for n = 4.
- ii. Assuming that $0 \le 2^m \le m!$ is true for some $m \ge 4$,we will show that $0 \le 2^{m+1} \le (m+1)!$ is also true.

Rewriting the equation: $0 \le 2^1 \cdot 2^m \le (m+1) \cdot m!$

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

- i. When n = 4, $2^n = 16$ while n! = 24. Therefore, the inequality holds for n = 4.
- ii. Assuming that $0 \le 2^m \le m!$ is true for some $m \ge 4$,we will show that $0 \le 2^{m+1} \le (m+1)!$ is also true.

Rewriting the equation: $0 \le 2^1 \cdot 2^m \le (m+1) \cdot m!$

This is clearly true, since $2^1 \le (m + 1)$ since $m \ge 4$ and we know from the induction hypothesis that $2^m \le m!$

Prove by induction that $2^n = O(n!)$

Solution.

We need to show that there exist two constants *c* and n_o such that $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$.

Assume c = 1

- i. When n = 4, $2^n = 16$ while n! = 24. Therefore, the inequality holds for n = 4.
- ii. Assuming that $0 \le 2^m \le m!$ is true for some $m \ge 4$,we will show that $0 \le 2^{m+1} \le (m+1)!$ is also true.

Rewriting the equation: $0 \le 2^1 \cdot 2^m \le (m+1) \cdot m!$

This is clearly true, since $2^1 \le (m + 1)$ since $m \ge 4$ and we know from the induction hypothesis that $2^m \le m!$

Therefore, $0 \le 2^n \le c \cdot n!$ for all $n \ge n_o$ is true if we pick c = 1 and $n_o = 4$.