
Design & Analysis  
      Algorithms

The Big-O Notation and Its Relatives

CS11313 - Fall 2021 

of

Ibrahim Albluwi



Today’s Agenda

▶ Running Time Orders of Growth. 

▶ A formal definition of Big-O 

▶ Big-O Relatives



Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an 
algorithm grows as the input size grows.   
Examples:  etc.log n, n, n2, n3, 2n,
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▶ Focus on the highest order term: 
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• Rationale: When n becomes large, time due to the lower order terms 
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- Quadratic growth is not the same as, linear or cubic growth, etc.
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▶ Order of Growth of the running time: How quickly the running time of an 
algorithm grows as the input size grows.   
Examples:  etc. 

▶ Focus on the highest order term: 

• Example:       is in the order of      . 

• Rationale: When n becomes large, time due to the lower order terms 
becomes insignificant compared to the highest order term. 

▶ Drop the coefficient of the highest order term: 

• Example:  and       are all in the order of      . 

• Rationale:  

- Quadratic growth is not the same as, linear or cubic growth, etc. 

- Algorithms have different constants when implemented, based on 
hardware, software and implementation factors.

log n, n, n2, n3, 2n,

n2 + n + log n n2

n2, 1
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Quiz # 1

Assume  is the order of growth of the running time of Bubble Sort as a 
function of the input size n. Which of the following is true about ? 

A.    

B.    

C.    

D.   All of the above. 

E.   None of the above.
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T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)
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What is 
Big-O anyway?





Big-O

Definition. Let  and  be two functions that are always positive,    is said 
to be    if and only if : 

          There are two constants  and  , such that  
             for all   

f(n) g(n) f(n)
O(g)

c no
0 ≤ f(n) ≤ c ∙ g(n) n ≥ no



Big-O

Definition. Let  and  be two functions that are always positive,    is said 
to be    if and only if : 

          There are two constants  and  , such that  
             for all   

f(n) g(n) f(n)
O(g)

c no
0 ≤ f(n) ≤ c ∙ g(n) n ≥ no

Less formally: If multiplying    by a constant makes it an upper bound   
for    after some point, then f  is  .

g(n)
f(n) O(g)
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             is    because there are    and    such that      
          for all    : 

           If  , then    for all  

f(n) = 2n + 5 g(n) = n
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Exercise # 1

A.     and   f(n) = 3n + 3 g(n) = n

For each of the following function, show that    is  .f O(g)



Solution.

A.     and   f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants  and  such that  
  for all  .

c no
0 ≤ 3n + 3 ≤ c ∙ n n ≥ no

Exercise # 1

For each of the following function, show that    is  .f O(g)



Solution.
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  for all  . 
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Solution.

A.     and   f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants  and  such that  
  for all  . 

Since           
                                   for all   
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For each of the following function, show that    is  .f O(g)



Solution.

A.     and   f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants  and  such that  
  for all  . 

Since           
                                   for all    
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If we pick   , we can show that    for all  .
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A.     and   f(n) = 3n + 3 g(n) = n
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Solution.

If we pick   , we can show that    for all  .
    for all  .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

B.     and   f(n) = n2 + 5n + 6 g(n) = n2

For each of the following function, show that    is  .f O(g)
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A.     and   f(n) = 3n + 3 g(n) = n

Solution.

If we pick   , It is clear that    for all  . 
Dividing      by  makes the equation:  

c = 1 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ n2 ≤ n3 n2 0 ≤ 1 ≤ n

C.     and   f(n) = n2 g(n) = n3

For each of the following function, show that    is  .f O(g)
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Solution.

If we pick   , we can show that    for all  .
    for all  .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

B.     and   f(n) = n2 + 5n + 6 g(n) = n2

If we pick   , we can show that    for all  . 
    for all  .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1



Back to Quiz # 1

Assume  is the order of growth of the running time of Bubble Sort as a 
function of the input size n. Which of the following is true about ? 
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D.   All of the above. 

E.   None of the above.
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T(n) = O(n3)

T(n) = O(n4)



Back to Quiz # 1

Assume  is the order of growth of the running time of Bubble Sort as a 
function of the input size n. Which of the following is true about ? 

A.    

B.    

C.    

D.   All of the above. 

E.   None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)

T(n) = 1
2 n2− 1

2 n ≤ c ∙ n2

≤ c ∙ n3

≤ c ∙ n4 for all , assuming n ≥ 1 c = 1



Quiz # 2

Assume  is the order of growth of the running time of Selection Sort as a 
function of the input size n. Which of the following best describes ? 

A.    

B.    

C.    

D.   All of the above. 

E.   None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n6)

T(n) = O(nn)



Quiz # 2

Assume  is the order of growth of the running time of Selection Sort as a 
function of the input size n. Which of the following best describes ? 

A.    

B.    

C.    

D.   All of the above. 

E.   None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n6)

T(n) = O(nn)

They are all true, but the tightest bound (and the best to use) is O(n2)



D.     and   f(n) = 2n g(n) = 3n

Exercise # 1

For each of the following function, show that    is  .f O(g)



Solution.

D.     and   f(n) = 2n g(n) = 3n

We need to show that:                          for all  .0 ≤ 2n ≤ c ∙ 3n n ≥ no

Exercise # 1

For each of the following function, show that    is  .f O(g)



Solution.

D.     and   f(n) = 2n g(n) = 3n

We need to show that:                          for all  . 

Divide by :                                     for all  .

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ ( 3
2 ) n n ≥ no

Exercise # 1

For each of the following function, show that    is  .f O(g)



Solution.

D.     and   f(n) = 2n g(n) = 3n

We need to show that:                          for all  . 

Divide by :                                     for all  . 

We can pick  which makes the statement true for all . 

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ ( 3
2 ) n n ≥ no

c = 1 n ≥ 1

Exercise # 1

For each of the following function, show that    is  .f O(g)



Solution.

D.     and   f(n) = 2n g(n) = 3n

We need to show that:                          for all  . 

Divide by :                                     for all  . 

We can pick  which makes the statement true for all . 

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ ( 3
2 ) n n ≥ no

c = 1 n ≥ 1

Exercise # 1

For each of the following function, show that    is  .f O(g)

Note that we don't always need to explicitly find  and .  
It is enough to show that they exist. For example, a valid answer for the above 
example would be: 

         Since 1 is constant and     is a strictly increasing function, there  

         must be some  and   such that    for all   .

c no

( 3
2 ) n

c no ≥ 1 0 ≤ 1 ≤ c ∙ ( 3
2 ) n n ≥ no

!



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  .0 ≤ An + B ≤ c ∙ n n ≥ no



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  . 

Because A, B and n are positive integers. 
1.                                 for all   

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  . 

Because A, B and n are positive integers. 
1.                                 for all    
2.                      for all   

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ An + Bn n ≥ 1



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  . 

Because A, B and n are positive integers. 
1.                                 for all    
2.                     for all   

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  . 

Because A, B and n are positive integers. 
1.                                 for all    
2.                     for all   

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1

f(n) c ∙ g(n)



E.     and                where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that    is  .f O(g)

Solution.

We need to show that:                          for all  . 

Because A, B and n are positive integers. 
1.                                 for all    
2.                     for all    

Pick  and 

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1

c = A + B no = 1



Big-O  
Relatives



Big-Ω

Definition. Let  and  be two functions that are always positive,    is said 
to be    if and only if : 

          There are two constants  and  ,  
          such that     for all   

f(n) g(n) f(n)
Ω(g)

c > 0 no ≥ 0
0 ≤ c ∙ g(n) ≤ f(n) n ≥ no



Less formally: If multiplying    by a constant makes it a lower bound   
for    after some point, then f  is  .

g(n)
f(n) Ω(g)

Big-Ω

Definition. Let  and  be two functions that are always positive,    is said 
to be    if and only if : 

          There are two constants  and  ,  
          such that     for all   

f(n) g(n) f(n)
Ω(g)

c > 0 no ≥ 0
0 ≤ c ∙ g(n) ≤ f(n) n ≥ no
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          for all    : 
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Yea right! All algorithms are  ‼
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Definition. Let  and  be two functions that are always positive,    is said 
to be    if and only if : 

            is    and    is also  
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Assume that a function f  is known to be  and also known to be , 
which of the following functions can f  possibly be? 
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Consider  . Which of the following is definitely true?  
Choose all that applies. 

A.    

B.    

C.    

D.   

f(n) = O(g(n))

f = Θ(g)

f = o(g)

g = Ω( f )

g = ω( f )

Quiz # 5

 g = Ω( f ) ⟺ f = O(g)
g = ω( f ) ⟺ f = o(g)

we don't know if  f = Ω(g)

f and g could be of the same order!

f and g could be of the same order!
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Properties

• Reflexivity.  f   is  . 

• Constants.  If f  is   and  ,  then   is  . 

• Transitivity.  If     is   and   is   then    is . 
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قل ولا تقل

Don't say: "My algorithm is " 

Say: "The running time of my algorithm" is  or "My algorithm runs in ". 

Don't say: "Your algorithm runs in at least " 

Say: "Your algorithm runs in " or "Your algorithm runs in at least " 

Explanation.  describes all the functions whose order of growth is  or  
less (e.g. , etc.)  
Saying that the running time is at least one of these functions means that the 
running time could be anything! 
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قل ولا تقل

Don't say: "My algorithm is " 

Say: "The running time of my algorithm" is  or "My algorithm runs in ". 

Don't say: "Your algorithm runs in at least " 

Say: "Your algorithm runs in " or "Your algorithm runs in at least " 
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قل ولا تقل

Don't say: "My algorithm is " 

Say: "The running time of my algorithm" is  or "My algorithm runs in ". 

Don't say: "Your algorithm runs in at least " 

Say: "Your algorithm runs in " or "Your algorithm runs in at least " 

Avoid saying: "The worst case running time of Bubble Sort is " 

Say: "The worst case running time of Bubble Sort is "

O(n2)
O(n2) O(n2)

O(n2)
Ω(n2) Θ(n2)

O(n2)
Θ(n2)

  is a set of functions, but computer scientists often abuse 
the notation by writing    instead of   .
O(g(n))

f(n) = O(g(n)) f(n) ∈ O(g(n))!
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where    and    are constants.

logc n = o(nd)
c > 0 d > 0
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