
Design & Analysis
 Algorithms

The Big-O Notation and Its Relatives

CS11313 - Fall 2021

of

Ibrahim Albluwi

Today’s Agenda

▶ Running Time Orders of Growth.

▶ A formal definition of Big-O

▶ Big-O Relatives

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.log n, n, n2, n3, 2n,

linearithmic

Examples of Growth Rates (Review)
graph by Kevin Wayne and Robert Sedgewick

order of growth
name function

constant

logarithmic

linear

quadratic

cubic

exponential

exponential

factorial

1

log(n)

n

n

n n

n2

n3

2n

3n

n!

n log(n)

go
od

fin
e

ba
d

ho
rr

ib
le

constant < logarithmic < polynomial < exponential < factorial < nn!
logb(n) nc (c > 0) cn (c > 1)

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.log n, n, n2, n3, 2n,

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.

▶ Focus on the highest order term:

• Example: is in the order of .

log n, n, n2, n3, 2n,

n2 + n + log n n2

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.

▶ Focus on the highest order term:

• Example: is in the order of .

• Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

log n, n, n2, n3, 2n,

n2 + n + log n n2

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.

▶ Focus on the highest order term:

• Example: is in the order of .

• Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

▶ Drop the coefficient of the highest order term:

• Example: and are all in the order of .

log n, n, n2, n3, 2n,

n2 + n + log n n2

n2, 1
2 n2 10n2 n2

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.

▶ Focus on the highest order term:

• Example: is in the order of .

• Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

▶ Drop the coefficient of the highest order term:

• Example: and are all in the order of .

• Rationale:

- Quadratic growth is not the same as, linear or cubic growth, etc.

log n, n, n2, n3, 2n,

n2 + n + log n n2

n2, 1
2 n2 10n2 n2

Orders of Growth (Review)

▶ Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: etc.

▶ Focus on the highest order term:

• Example: is in the order of .

• Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

▶ Drop the coefficient of the highest order term:

• Example: and are all in the order of .

• Rationale:

- Quadratic growth is not the same as, linear or cubic growth, etc.

- Algorithms have different constants when implemented, based on
hardware, software and implementation factors.

log n, n, n2, n3, 2n,

n2 + n + log n n2

n2, 1
2 n2 10n2 n2

Orders of Growth (Review)

Quiz # 1

Assume is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)

Quiz # 1

Assume is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)

What is
Big-O anyway?

Big-O

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 There are two constants and , such that
 for all

f(n) g(n) f(n)
O(g)

c no
0 ≤ f(n) ≤ c ∙ g(n) n ≥ no

Big-O

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 There are two constants and , such that
 for all

f(n) g(n) f(n)
O(g)

c no
0 ≤ f(n) ≤ c ∙ g(n) n ≥ no

Less formally: If multiplying by a constant makes it an upper bound
for after some point, then f is .

g(n)
f(n) O(g)

Example # 1

0

7

14

21

28

35

0 2 4 6 8 10 12 14 16

Assume and . f(n) = 2n + 5 g(n) = n

g(n) = n

f(n) = 2n + 5

0

7

14

21

28

35

0 2 4 6 8 10 12 14 16

3 ∙ g(n)

no = 5

g(n) = n

f(n) = 2n + 5

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = 2n + 5 g(n) = n

f O(g) c no 0 ≤ f(n) ≤ c ∙ g(n)
n ≥ no

c = 3 0 ≤ f(n) ≤ 3 ∙ g(n) n ≥ 5

Example # 1

0

7

14

21

28

35

0 2 4 6 8 10 12 14 16

4 ∙ g(n)

no = 2.5

g(n) = n

f(n) = 2n + 5

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = 2n + 5 g(n) = n

f O(g) c no 0 ≤ f(n) ≤ c ∙ g(n)
n ≥ no

c = 4 0 ≤ f(n) ≤ 4 ∙ g(n) n ≥ 2.5

Example # 1

0

7

14

21

28

35

0 2 4 6 8 10 12 14 16

7 ∙ g(n)

no = 1

g(n) = n

f(n) = 2n + 5

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = 2n + 5 g(n) = n

f O(g) c no 0 ≤ f(n) ≤ c ∙ g(n)
n ≥ no

c = 7 0 ≤ f(n) ≤ 7 ∙ g(n) n ≥ 1

Example # 1

0

100

200

300

400

500

1 2.9 4.8 6.7 8.6 10.5 12.4 14.3 16.2 18.1 20

g(n) = n2

Assume and . f(n) = n2 + 5n − 6 g(n) = n2

Example # 2

f(n) = n2 + 5n − 6

0

100

200

300

400

500

1 2.9 4.8 6.7 8.6 10.5 12.4 14.3 16.2 18.1 20

g(n) = n2

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = n2 + 5n − 6 g(n) = n2

f O(g) c no 0 ≤ f(n) ≤ c ∙ g(n)
n ≥ no

c = 3 0 ≤ f(n) ≤ 3 ∙ g(n) n ≥ 1

Example # 2

f(n) = n2 + 5n − 63 ∙ g(n)

0

100

200

300

400

500

1 2.9 4.8 6.7 8.6 10.5 12.4 14.3 16.2 18.1 20

g(n) = n2

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = n2 + 5n − 6 g(n) = n2

f O(g) c no 0 ≤ f(n) ≤ c ∙ g(n)
n ≥ no

c = 7 0 ≤ f(n) ≤ 7 ∙ g(n) n ≥ 1

Example # 2

f(n) = n2 + 5n − 67 ∙ g(n) 3 ∙ g(n)

Exercise # 1

A. and f(n) = 3n + 3 g(n) = n

For each of the following function, show that is .f O(g)

Solution.

A. and f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants and such that
 for all .

c no
0 ≤ 3n + 3 ≤ c ∙ n n ≥ no

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

A. and f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants and such that
 for all .

Since for all

c no
0 ≤ 3n + 3 ≤ c ∙ n n ≥ no

0 ≤ 3n + 3 ≤ 3n + 3n n ≥ 1

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

A. and f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants and such that
 for all .

Since
 for all

c no
0 ≤ 3n + 3 ≤ c ∙ n n ≥ no

0 ≤ 3n + 3 ≤ 3n + 3n
0 ≤ 3n + 3 ≤ 6n n ≥ 1

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

A. and f(n) = 3n + 3 g(n) = n

We need to show that there exist two constants and such that
 for all .

Since
 for all

We can pick and

c no
0 ≤ 3n + 3 ≤ c ∙ n n ≥ no

0 ≤ 3n + 3 ≤ 3n + 3n
0 ≤ 3n + 3 ≤ 6n n ≥ 1

c = 6 no = 1

Exercise # 1

For each of the following function, show that is .f O(g)

Solution (rephrased)

A. and f(n) = 3n + 3 g(n) = n

If we pick , we can show that for all .c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1

Exercise # 1

For each of the following function, show that is .f O(g)

A. and f(n) = 3n + 3 g(n) = n

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n n ≥ 1

Exercise # 1

Solution (rephrased)

For each of the following function, show that is .f O(g)

A. and f(n) = 3n + 3 g(n) = n

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n n ≥ 1

Exercise # 1

Solution (rephrased)

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

f(n) c ∙ g(n)

Exercise # 1

Solution (rephrased)

For each of the following function, show that is .f O(g)

A. and f(n) = 3n + 3 g(n) = n

B. and f(n) = n2 + 5n + 6 g(n) = n2

Exercise # 1

Solution (rephrased)

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , we can show that for all .c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1

B. and f(n) = n2 + 5n + 6 g(n) = n2

Exercise # 1

Solution (rephrased)

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 n ≥ 1

Exercise # 1

Solution (rephrased)

B. and f(n) = n2 + 5n + 6 g(n) = n2

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

Exercise # 1

Solution (rephrased)

B. and f(n) = n2 + 5n + 6 g(n) = n2

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

Exercise # 1

Solution (rephrased)

B. and f(n) = n2 + 5n + 6 g(n) = n2

f(n) c ∙ g(n)

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

C. and f(n) = n2 g(n) = n3

Exercise # 1

Solution (rephrased)

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

B. and f(n) = n2 + 5n + 6 g(n) = n2

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , It is clear that for all .c = 1 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1

C. and f(n) = n2 g(n) = n3

Exercise # 1

Solution (rephrased)

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

B. and f(n) = n2 + 5n + 6 g(n) = n2

For each of the following function, show that is .f O(g)

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

A. and f(n) = 3n + 3 g(n) = n

Solution.

If we pick , It is clear that for all .
Dividing by makes the equation:

c = 1 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ n2 ≤ n3 n2 0 ≤ 1 ≤ n

C. and f(n) = n2 g(n) = n3

For each of the following function, show that is .f O(g)

Exercise # 1

Solution (rephrased)

Solution.

If we pick , we can show that for all .
 for all .

c = 12 0 ≤ n2 + 5n + 6 ≤ 12n2 n ≥ 1
0 ≤ n2 + 5n + 6 ≤ n2 + 5n2 + 6n2 ≤ 12n2 n ≥ 1

B. and f(n) = n2 + 5n + 6 g(n) = n2

If we pick , we can show that for all .
 for all .

c = 9 0 ≤ f(n) ≤ c ∙ g(n) n ≥ 1
0 ≤ 3n + 3 ≤ 3n + 3n ≤ 6n ≤ 9n n ≥ 1

Back to Quiz # 1

Assume is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)

Back to Quiz # 1

Assume is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n3)

T(n) = O(n4)

T(n) = 1
2 n2− 1

2 n ≤ c ∙ n2

≤ c ∙ n3

≤ c ∙ n4 for all , assuming n ≥ 1 c = 1

Quiz # 2

Assume is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n6)

T(n) = O(nn)

Quiz # 2

Assume is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes ?

A.

B.

C.

D. All of the above.

E. None of the above.

T(n)
T(n)

T(n) = O(n2)

T(n) = O(n6)

T(n) = O(nn)

They are all true, but the tightest bound (and the best to use) is O(n2)

D. and f(n) = 2n g(n) = 3n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

D. and f(n) = 2n g(n) = 3n

We need to show that: for all .0 ≤ 2n ≤ c ∙ 3n n ≥ no

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

D. and f(n) = 2n g(n) = 3n

We need to show that: for all .

Divide by : for all .

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ (3
2) n n ≥ no

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

D. and f(n) = 2n g(n) = 3n

We need to show that: for all .

Divide by : for all .

We can pick which makes the statement true for all .

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ (3
2) n n ≥ no

c = 1 n ≥ 1

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

D. and f(n) = 2n g(n) = 3n

We need to show that: for all .

Divide by : for all .

We can pick which makes the statement true for all .

0 ≤ 2n ≤ c ∙ 3n n ≥ no

2n 0 ≤ 1 ≤ c ∙ (3
2) n n ≥ no

c = 1 n ≥ 1

Exercise # 1

For each of the following function, show that is .f O(g)

Note that we don't always need to explicitly find and .
It is enough to show that they exist. For example, a valid answer for the above
example would be:

 Since 1 is constant and is a strictly increasing function, there

 must be some and such that for all .

c no

(3
2) n

c no ≥ 1 0 ≤ 1 ≤ c ∙ (3
2) n n ≥ no

!

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .0 ≤ An + B ≤ c ∙ n n ≥ no

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .

Because A, B and n are positive integers.
1. for all

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .

Because A, B and n are positive integers.
1. for all
2. for all

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ An + Bn n ≥ 1

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .

Because A, B and n are positive integers.
1. for all
2. for all

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .

Because A, B and n are positive integers.
1. for all
2. for all

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1

f(n) c ∙ g(n)

E. and where A and B are positive integersf(n) = An + B g(n) = n

Exercise # 1

For each of the following function, show that is .f O(g)

Solution.

We need to show that: for all .

Because A, B and n are positive integers.
1. for all
2. for all

Pick and

0 ≤ An + B ≤ c ∙ n n ≥ no

0 ≤ An + B n ≥ 1
An + B ≤ (A + B)n n ≥ 1

c = A + B no = 1

Big-O
Relatives

Big-Ω

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 There are two constants and ,
 such that for all

f(n) g(n) f(n)
Ω(g)

c > 0 no ≥ 0
0 ≤ c ∙ g(n) ≤ f(n) n ≥ no

Less formally: If multiplying by a constant makes it a lower bound
for after some point, then f is .

g(n)
f(n) Ω(g)

Big-Ω

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 There are two constants and ,
 such that for all

f(n) g(n) f(n)
Ω(g)

c > 0 no ≥ 0
0 ≤ c ∙ g(n) ≤ f(n) n ≥ no

0

20

40

60

80

100

0 2 4 6 8 10 12 14

Assume and . f(n) = n2 + 5 g(n) = 2n2 + 5

f(n) = n2 + 5g(n) = 2n2 + 5

Big- ExampleΩ

0

20

40

60

80

100

0 2 4 6 8 10 12 14

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = n2 + 5 g(n) = 2n2 + 5

f Ω(g) c no 0 ≤ c ∙ g(n) ≤ f(n)
n ≥ no

c = 1
4 0 ≤ 1

4 ∙ g(n) ≤ f(n) n ≥ 1

f(n) = n2 + 5g(n) = 2n2 + 5

1
4 g(n)

Big- ExampleΩ

0

30

60

90

120

150

2 4 6 8 10 12 14 16 18 20

Assume and . f(n) = n2 g(n) = n log n

f(n) = n2

g(n) = n log n

Big- ExampleΩ

0

30

60

90

120

150

2 4 6 8 10 12 14 16 18 20

Assume and .

 is because there are and such that
 for all :

 If , then for all

f(n) = n2 g(n) = n log n

f Ω(g) c no 0 ≤ c ∙ g(n) ≤ f(n)
n ≥ no

c = 1 g(n) ≤ f(n) n ≥ 1

f(n) = n2

g(n) = n log n

Big- ExampleΩ

Good and Bad Uses of Big-Ω

Good and Bad Uses of Big-Ω

Bubble Sort is .Ω(1)

Good and Bad Uses of Big-Ω

Bubble Sort is .
Yea right! All algorithms are ‼

Ω(1)
Ω(1)

Good and Bad Uses of Big-Ω

Bubble Sort is .
Yea right! All algorithms are ‼

Ω(1)
Ω(1)

An example from the Jordanian market for the
weird use of lower bounds!

(Translation: "The mall of burned prices:
Everything is for 0.5 Dinars or more")

Good and Bad Uses of Big-Ω

Bubble Sort is .
Yea right! All algorithms are ‼

Ω(1)
Ω(1)

Every comparison-based sorting
algorithm performs
comparisons in the worst-case.
Interesting!

Ω(n log n)

An example from the Jordanian market for the
weird use of lower bounds!

(Translation: "The mall of burned prices:
Everything is for 0.5 Dinars or more")

Good and Bad Uses of Big-Ω

Bubble Sort is .
Yea right! All algorithms are ‼

Ω(1)
Ω(1)

Every comparison-based sorting
algorithm performs
comparisons in the worst-case.
Interesting!

Ω(n log n)

In other words. There is no use of
trying to find a comparison-based
sorting algorithm whose running time
in the worst case is better than .n log n

Stay tuned for a proof in
a couple of weeks from

now!

An example from the Jordanian market for the
weird use of lower bounds!

(Translation: "The mall of burned prices:
Everything is for 0.5 Dinars or more")

Big-Θ

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 is and is also

f(n) g(n) f(n)
Θ(g)

f O(g) f Ω(g)

Big-Θ

Definition. Let and be two functions that are always positive, is said
to be if and only if :

 is and is also

f(n) g(n) f(n)
Θ(g)

f O(g) f Ω(g)

Less formally: If multiplying by a constant makes it an upper bound
for after some point and also multiplying by another constant
makes it a lower bound for after some point, then f is .

g(n)
f(n) g(n)

f(n) Θ(g)

Big-Θ

Big-O

Big-Omega

Big-Theta

For each of the following functions, show that is .f Θ(g)

Exercises

A. and f(n) = 4n + 8 g(n) = n

We need to show that:

4n + 8 = O(n)
4n + 8 = Ω(n)

A. and f(n) = 4n + 8 g(n) = n
Solution.

Exercises

For each of the following functions, show that is .f Θ(g)

We need to show that:
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n)

A. and f(n) = 4n + 8 g(n) = n
Solution.

Exercises

For each of the following functions, show that is .f Θ(g)

We need to show that:
 pick and
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n) c = 1 no = 1

A. and f(n) = 4n + 8 g(n) = n
Solution.

Exercises

For each of the following functions, show that is .f Θ(g)

A. and f(n) = 4n + 8 g(n) = n
Solution.

We need to show that:
 pick and
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n) c = 1 no = 1

B. and f(n) = log2 n g(n) = log3 n

Exercises

For each of the following functions, show that is .f Θ(g)

A. and f(n) = 4n + 8 g(n) = n
Solution.

We need to show that:
 pick and
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n) c = 1 no = 1

B. and f(n) = log2 n g(n) = log3 n

Solution.

We need to show that:

log2 n = O(log2 n
log2 3)

log2 n = Ω(log2 n
log2 3)

Exercises

Remember:

For each of the following functions, show that is .f Θ(g)

A. and f(n) = 4n + 8 g(n) = n
Solution.

We need to show that:
 pick and
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n) c = 1 no = 1

B. and f(n) = log2 n g(n) = log3 n

Solution.

We need to show that:

 pick and

log2 n = O(log2 n
log2 3) c ≥ log2 3 no = 1

log2 n = Ω(log2 n
log2 3)

Exercises

For each of the following functions, show that is .f Θ(g)

A. and f(n) = 4n + 8 g(n) = n
Solution.

We need to show that:
 pick and
 pick and

4n + 8 = O(n) c = 12 no = 1
4n + 8 = Ω(n) c = 1 no = 1

B. and f(n) = log2 n g(n) = log3 n

Solution.

We need to show that:

 pick and

 pick and

log2 n = O(log2 n
log2 3) c ≥ log2 3 no = 1

log2 n = Ω(log2 n
log2 3) c = 1 no = 1

Exercises

For each of the following functions, show that is .f Θ(g)

Exercises

Show that is not .n3 + n O(n2)

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that there exist two constants
c and such that for all .

n3 + n O(n2)

no 0 ≤ n3 + n ≤ c ∙ n2 n ≥ no

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that there exist two constants
c and such that for all .

Divide by :

n3 + n O(n2)

no 0 ≤ n3 + n ≤ c ∙ n2 n ≥ no

n2 0 ≤ n + 1
n ≤ c

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that there exist two constants
c and such that for all .

Divide by :

This is clearly false because is strictly

increasing while the right hand side is constant.

n3 + n O(n2)

no 0 ≤ n3 + n ≤ c ∙ n2 n ≥ no

n2 0 ≤ n + 1
n ≤ c

n + 1
n

Exercises

Show that is not . n2 Θ(n3)

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that , then there exist two constants
c and such that for all .

n2 Θ(n3)

n2 = Ω(n3)
no 0 ≤ c ∙ n3 ≤ n2 n ≥ no

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that , then there exist two constants
c and such that for all .

Divide by :

n2 Θ(n3)

n2 = Ω(n3)
no 0 ≤ c ∙ n3 ≤ n2 n ≥ no

n2 0 ≤ c ∙ n ≤ 1

Exercises

Show that is not .

Solution.
Assume for the sake of contradiction that , then there exist two constants
c and such that for all .

Divide by :

This is clearly false because is strictly
increasing while the right hand side is constant.

n2 Θ(n3)

n2 = Ω(n3)
no 0 ≤ c ∙ n3 ≤ n2 n ≥ no

n2 0 ≤ c ∙ n ≤ 1

c ∙ n

Which of the following is true about the running time of insertion sort?

A. The running time is

B. The running time is

C. The best case is .

D. The worst case is .

E. All of the above.

O(n2)

Ω(n)

Θ(n)

Θ(n2)

Quiz # 3

Which of the following is true about the running time of insertion sort?

A. The running time is

B. The running time is

C. The best case is .

D. The worst case is .

E. All of the above.

O(n2)

Ω(n)

Θ(n)

Θ(n2)

Quiz # 3

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)
≥ n

2 log(n
2)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)
≥ n

2 log(n
2) ≥ n

2 (log(n) − log(2))

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)
≥ n

2 log(n
2) ≥ n

2 (log(n) − log(2)) ≥ n
2 (log(n) − 1)

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

 Therefore because for all

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)

≥ n
2 log(n

2) ≥ n
2 (log(n) − log(2)) ≥ n

2 (log(n) − 1) ≥ n
2 (log(n)− 1

4 log(n))

log2(n!) = Ω(n log n) 0 ≤ 3
8 ∙ n log n ≤ log(n!) n ≥ 16

Exercises

Stirling's Approximation states that:

 (r is a positive constant)log2(n!) = n log2 n − n log2 e + r log2 n

Show that without using Stirling's Approximation.log2(n!) = Θ(n log n)

Solution.

1. for all
 for all
 for all

 Therefore because for all

log(1 × 2 × 3 × … × n) ≤ log(n × n × n × … × n) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ log(nn) n ≥ 1
log(1 × 2 × 3 × … × n) ≤ n log(n) n ≥ 1

log2(n!) = O(n log n) 0 ≤ log(n!) ≤ 1 ∙ n log n n ≥ 1

2.

 Therefore because for all

log2(n!) = log(1 × 2 × 3 × … × n
2 × (n

2 +1) × (n
2 +2) × … × n)

= log(1) + log(2) + log(3) + … + log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2 +1) + log(n
2 +2) + … + log(n)

≥ log(1) + log(2) + log(3) + …+ log(n
2) + log(n

2) + log(n
2) + … + log(n

2)

≥ n
2 log(n

2) ≥ n
2 (log(n) − log(2)) ≥ n

2 (log(n) − 1) ≥ n
2 (log(n)− 1

4 log(n))

log2(n!) = Ω(n log n) 0 ≤ 3
8 ∙ n log n ≤ log(n!) n ≥ 16

Optional Example

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. 12 + 22 + 32 + … + n2 ≤

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all 12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3) pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

 for all

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2)2 + (n
2)2 + … + (n

2)2 n ≥ 1

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

 for all

 for all

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2)2 + (n
2)2 + … + (n

2)2 n ≥ 1

≥ n
2 × (n

2)2 ≥ n
2 × n2

4 ≥ n3

8 n ≥ 1

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

 for all

 for all

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2)2 + (n
2)2 + … + (n

2)2 n ≥ 1

≥ n
2 × (n

2)2 ≥ n
2 × n2

4 n ≥ 1

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

 for all

 for all

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2)2 + (n
2)2 + … + (n

2)2 n ≥ 1

≥ n
2 × (n

2)2 ≥ n
2 × n2

4 ≥ n3

8 n ≥ 1

pick and c = 1 no = 1

Optional Examples

We know that can be computed using the formula:

Show that without using the above formula.

n

∑
i=0

i2 1
3 n3 + 1

2 n2 + 1
6 n

n

∑
i=0

i2 = Θ(n3)

Solution.

1. for all
 for all
 Therefore,

12 + 22 + 32 + … + n2 ≤ n2 + n2 + n2 + … + n2 n ≥ 1
12 + 22 + 32 + … + n2 ≤ n × n2 n ≥ 1

12 + 22 + 32 + … + n2 = O(n3)

2.

 for all

 for all

 for all

 Therefore,

12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2 +1)2 + (n
2 +2)2 + … + n2 n ≥ 1

≥ 12 + 22 + 32 + … + (n
2)2 + (n

2)2 + (n
2)2 + … + (n

2)2 n ≥ 1

≥ n
2 × (n

2)2 ≥ n
2 × n2

4 ≥ n3

8 n ≥ 1

12 + 22 + 32 + … + n2 = Ω(n3)

pick and c = 1 no = 1

pick and c = 1
8 no = 1

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Notation Order of Growth
 Relation

Example

f = O(g) f ≤ g If , examples for f could be: f = O(n2)

If , examples for f could be: f = o(n2)f = o(g) f < g

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Notation Order of Growth
 Relation

Example

f = O(g) f ≤ g If , examples for f could be: f = O(n2)
n2, 3n2 + n, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = o(n2)
n1.9, 5n − 1, 7n log n + 5n, nf = o(g) f < g

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Notation Order of Growth
 Relation

Example

f = O(g) f ≤ g

f = Ω(g) f ≥ g

f = ω(g) f > g

If , examples for f could be: f = O(n2)
n2, 3n2 + n, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = o(n2)
n1.9, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = Ω(n2)

If , examples for f could be: f = ω(n2)

f = o(g) f < g

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Notation Order of Growth
 Relation

Example

f = O(g) f ≤ g

f = Ω(g) f ≥ g

f = ω(g) f > g

If , examples for f could be: f = O(n2)
n2, 3n2 + n, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = o(n2)
n1.9, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = Ω(n2)
n2, 3n2 + n, 5n3, 7n5, 2n

If , examples for f could be: f = ω(n2)
n2.01, n2 log n, 5n3, 7n5, 2n

f = o(g) f < g

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Notation Order of Growth
 Relation

Example

f = O(g) f ≤ g

f = Ω(g) f ≥ g

f = ω(g) f > g

If , examples for f could be: f = O(n2)
n2, 3n2 + n, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = o(n2)
n1.9, 5n − 1, 7n log n + 5n, n

If , examples for f could be: f = Ω(n2)
n2, 3n2 + n, 5n3, 7n5, 2n

If , examples for f could be: f = ω(n2)
n2.01, n2 log n, 5n3, 7n5, 2n

f = o(g) f < g

f = Θ(g) f = g If , examples for f could be: f = Θ(n2)
n2, 3n2, 5n2 − n, 7n2 + n log n + 100

Assume that a function f is known to be and also known to be ,
which of the following functions can f possibly be?
Choose all that applies.

o(n2) Ω(log n)

Quiz # 4

A.

B.

C.

D.

E.

nn

2n

n3

n2 log n

n2

F.

G.

H.

I.

J.

n n

n1.1

n log n

n

n

K.

L.

M.

M. 100

log2 n

log n

log(log n)

Assume that a function f is known to be and also known to be ,
which of the following functions can f possibly be?
Choose all that applies.

o(n2) Ω(log n)

Quiz # 4

A.

B.

C.

D.

E.

nn

2n

n3

n2 log n

n2

F.

G.

H.

I.

J.

n n

n1.1

n log n

n

n

K.

L.

M.

M. 100

log2 n

log n

log(log n)

Small- and Small-o ω

Examples.

 vs 3n2 n2

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

 vs 3n2 n3 vs 3n3 n2

Small- and Small-o ω

Examples.

 vs 3n2 n2 vs 3n2 n3

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

 vs 3n3 n2

 = O()

 = Ω()

 = Θ()

 ≠ o()

 ≠ ω()

3n2 n2

3n2 n2

3n2 n2

3n2 n2

3n2 n2

Small- and Small-o ω

Examples.

 vs 3n2 n2

 = O()

 ≠ Ω()

 ≠ Θ()

 = o()

 ≠ ω()

3n2 n3

3n2 n3

3n2 n3

3n2 n3

3n2 n3

 vs 3n2 n3

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

 vs 3n3 n2

 = O()

 = Ω()

 = Θ()

 ≠ o()

 ≠ ω()

3n2 n2

3n2 n2

3n2 n2

3n2 n2

3n2 n2

Small- and Small-o ω

Informal Definition. is said to be if it grows strictly slower than .

Informal Definition. is said to be if it grows strictly faster than .

f o(g) g

f ω(g) g

Examples.

 vs 3n2 n2 vs 3n3 n2

 = O()

 ≠ Ω()

 ≠ Θ()

 = o()

 ≠ ω()

3n2 n3

3n2 n3

3n2 n3

3n2 n3

3n2 n3

 ≠ O()

 = Ω()

 ≠ Θ()

 ≠ o()

 = ω()

3n3 n2

3n3 n2

3n3 n2

3n3 n2

3n3 n2

 vs 3n2 n3

 = O()

 = Ω()

 = Θ()

 ≠ o()

 ≠ ω()

3n2 n2

3n2 n2

3n2 n2

3n2 n2

3n2 n2

Consider . Which of the following is definitely true?
Choose all that applies.

A.

B.

C.

D.

f(n) = O(g(n))

f = Θ(g)

f = o(g)

g = Ω(f)

g = ω(f)

Quiz # 5

Consider . Which of the following is definitely true?
Choose all that applies.

A.

B.

C.

D.

f(n) = O(g(n))

f = Θ(g)

f = o(g)

g = Ω(f)

g = ω(f)

Quiz # 5

 g = Ω(f) ⟺ f = O(g)
g = ω(f) ⟺ f = o(g)

we don't know if f = Ω(g)

f and g could be of the same order!

f and g could be of the same order!

Properties

• Reflexivity. f =?
 f =?
 f =?
 f =?
 f =?

O(f)
Ω(f)
Θ(f)
ω(f)
o(f)

Properties

• Reflexivity. f =
 f =
 f =
 f ≠
 f ≠

Θ(f)
O(f)
Ω(f)
ω(f)
o(f)

Properties

• Reflexivity. f is and and but not or

• Constants. If f is and , then is .

Θ(f) O(f) Ω(f) o(f) ω(f)

Θ(g) c > 0 c ∙ f Θ(g)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

Example: .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)
4n2 + 5 is Θ(n2) and 4 × (4n2 + 5) is also Θ(n2)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

Example: .

Similarly: If f is and , then is .

 If f is and , then is .

 If f is and , then is .

 If f is and , then is .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)
4n2 + 5 is Θ(n2) and 4 × (4n2 + 5) is also Θ(n2)

O(g) c > 0 c ∙ f O(g)
Ω(g) c > 0 c ∙ f Ω(g)
o(g) c > 0 c ∙ f o(g)
ω(g) c > 0 c ∙ f ω(g)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f O(g) g O(h) f O(h)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f O(g) g O(h) f O(h)

f

g

h

h is an upper bound
for both g and f

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

Similarly: If is and is then is .

 If is and is then is .

 If is and is then is .

 If is and is then is .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f O(g) g O(h) f O(h)
f Θ(g) g Θ(h) f Θ(h)
f Ω(g) g Ω(h) f Ω(h)
f o(g) g o(h) f o(h)
f ω(g) g ω(h) f ω(h)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

• Sums. If is and is , then is … ?

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f Θ(g) g Θ(h) f Θ(h)

f1 Θ(g1) f2 Θ(g2) f1 + f2

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

• Sums. If is and is , then is .

Example: If then .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f Θ(g) g Θ(h) f Θ(h)

f1 Θ(g1) f2 Θ(g2) f1 + f2 Θ(max{g1, g2})
f1(n) is Θ(n2) and f2(n) is Θ(n3) f1 + f2 is Θ(n3)

Properties

• Reflexivity. f is .

• Constants. If f is and , then is .

• Transitivity. If is and is then is .

• Sums. If is and is , then is .

Example: If then .

Similarly: If is and is , then is .

 If is and is , then is .

Θ(f)

Θ(g) c > 0 c ∙ f Θ(g)

f Θ(g) g Θ(h) f Θ(h)

f1 Θ(g1) f2 Θ(g2) f1 + f2 Θ(max{g1, g2})
f1(n) is Θ(n2) and f2(n) is Θ(n3) f1 + f2 is Θ(n3)
f1 O(g1) f2 O(g2) f1 + f2 O(max{g1, g2})
f1 Ω(g1) f2 Ω(g2) f1 + f2 Ω(max{g1, g2})

قل ولا تقل

قل ولا تقل

Don't say: "My algorithm is " O(n2)

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Explanation. An algorithm is not a function, its running time is.

O(n2)
O(n2) O(n2)

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Don't say: "Your algorithm runs in at least "

O(n2)
O(n2) O(n2)

O(n2)

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Don't say: "Your algorithm runs in at least "

Say: "Your algorithm runs in " or "Your algorithm runs in at least "

Explanation. describes all the functions whose order of growth is or
less (e.g. , etc.)
Saying that the running time is at least one of these functions means that the
running time could be anything!

O(n2)
O(n2) O(n2)

O(n2)
Ω(n2) Θ(n2)

O(n2) n2

log(n), n, n, n log(n)

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Don't say: "Your algorithm runs in at least "

Say: "Your algorithm runs in " or "Your algorithm runs in at least "

Avoid saying: "The worst case running time of Bubble Sort is "

O(n2)
O(n2) O(n2)

O(n2)
Ω(n2) Θ(n2)

O(n2)

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Don't say: "Your algorithm runs in at least "

Say: "Your algorithm runs in " or "Your algorithm runs in at least "

Avoid saying: "The worst case running time of Bubble Sort is "

Say: "The worst case running time of Bubble Sort is "

Explanation. means: in the order of or less
 means: in the order of

O(n2)
O(n2) O(n2)

O(n2)
Ω(n2) Θ(n2)

O(n2)
Θ(n2)

O(n2) n2

Θ(n2) n2

قل ولا تقل

Don't say: "My algorithm is "

Say: "The running time of my algorithm" is or "My algorithm runs in ".

Don't say: "Your algorithm runs in at least "

Say: "Your algorithm runs in " or "Your algorithm runs in at least "

Avoid saying: "The worst case running time of Bubble Sort is "

Say: "The worst case running time of Bubble Sort is "

O(n2)
O(n2) O(n2)

O(n2)
Ω(n2) Θ(n2)

O(n2)
Θ(n2)

 is a set of functions, but computer scientists often abuse
the notation by writing instead of .
O(g(n))

f(n) = O(g(n)) f(n) ∈ O(g(n))!

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then lim
n→∞

f(n)
g(n)

= ∞

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then lim
n→∞

f(n)
g(n)

= ∞ f = ω(g)

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

f(n) > g(n)

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then lim
n→∞

f(n)
g(n)

= ∞ f = ω(g)

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

f(n) > g(n)

 if then 0 < lim
n→∞

f(n)
g(n)

≤ ∞

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then lim
n→∞

f(n)
g(n)

= ∞ f = ω(g)

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

f(n) > g(n)

 if then 0 < lim
n→∞

f(n)
g(n)

≤ ∞ f = Ω(g) f(n) > = g(n)

Alternative Definitions

 if then lim
n→∞

f(n)
g(n)

= 0 f = o(g) f(n) < g(n)

order of growth
relationship

 if then lim
n→∞

f(n)
g(n)

= ∞ f = ω(g)

f(n) ≤ g(n) if then 0 ≤ lim
n→∞

f(n)
g(n)

< ∞ f = O(g)

f(n) > g(n)

 if then 0 < lim
n→∞

f(n)
g(n)

≤ ∞ f = Ω(g) f(n) ≥ g(n)

 if then 0 < lim
n→∞

f(n)
g(n)

< ∞ f = Θ(g) f(n) = g(n)

Optional Example

Show that log2(n) × log2(n) = O(n)

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that: 0 ≤ lim
n→∞

log2(n)

n
< ∞

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that:

Using L'Hôpital's rule:

0 ≤ lim
n→∞

log2(n)

n
< ∞

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ∙ ln 2

1

2 n

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that:

Using L'Hôpital's rule:

0 ≤ lim
n→∞

log2(n)

n
< ∞

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ∙ ln 2

1

2 n

= lim
n→∞

2 n
n ∙ ln 2

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that:

Using L'Hôpital's rule:

0 ≤ lim
n→∞

log2(n)

n
< ∞

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ∙ ln 2

1

2 n

= lim
n→∞

2 n
n ∙ ln 2

= lim
n→∞

2 n

n n ∙ ln 2

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that:

Using L'Hôpital's rule:

0 ≤ lim
n→∞

log2(n)

n
< ∞

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ∙ ln 2

1

2 n

= lim
n→∞

2 n
n ∙ ln 2

= lim
n→∞

2 n

n n ∙ ln 2

= lim
n→∞

2

n ∙ ln 2
= 0

Optional Example

Show that log2(n) × log2(n) = O(n)

Solution.

This is equivalent to showing that log2(n) = O(n)

We need to show that:

Using L'Hôpital's rule:

0 ≤ lim
n→∞

log2(n)

n
< ∞

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ∙ ln 2

1

2 n

= lim
n→∞

2 n
n ∙ ln 2

= lim
n→∞

2 n

n n ∙ ln 2

= lim
n→∞

2

n ∙ ln 2
= 0

Remember.
where and are constants.

logc n = o(nd)
c > 0 d > 0

Optional Example

Prove by induction that 2n = O(n!)

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

i. When while . Therefore, the inequality holds for .

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

n = 4, 2n = 16 n! = 24 n = 4

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

i. When while . Therefore, the inequality holds for .

ii. Assuming that is true for some ,
 we will show that is also true.

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

n = 4, 2n = 16 n! = 24 n = 4

0 ≤ 2m ≤ m! m ≥ 4
0 ≤ 2m+1 ≤ (m + 1)!

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

i. When while . Therefore, the inequality holds for .

ii. Assuming that is true for some ,
 we will show that is also true.

 Rewriting the equation:

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

n = 4, 2n = 16 n! = 24 n = 4

0 ≤ 2m ≤ m! m ≥ 4
0 ≤ 2m+1 ≤ (m + 1)!

0 ≤ 21 ∙ 2m ≤ (m + 1) ∙ m!

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

i. When while . Therefore, the inequality holds for .

ii. Assuming that is true for some ,
 we will show that is also true.

 Rewriting the equation:

 This is clearly true, since since and
 we know from the induction hypothesis that

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

n = 4, 2n = 16 n! = 24 n = 4

0 ≤ 2m ≤ m! m ≥ 4
0 ≤ 2m+1 ≤ (m + 1)!

0 ≤ 21 ∙ 2m ≤ (m + 1) ∙ m!

21 ≤ (m + 1) m ≥ 4
2m ≤ m!

Optional Example

Prove by induction that 2n = O(n!)

Solution.

We need to show that there exist two constants and such that
 for all .

Assume

i. When while . Therefore, the inequality holds for .

ii. Assuming that is true for some ,
 we will show that is also true.

 Rewriting the equation:

 This is clearly true, since since and
 we know from the induction hypothesis that

Therefore, for all is true if we pick and .

c no
0 ≤ 2n ≤ c ∙ n! n ≥ no

c = 1

n = 4, 2n = 16 n! = 24 n = 4

0 ≤ 2m ≤ m! m ≥ 4
0 ≤ 2m+1 ≤ (m + 1)!

0 ≤ 21 ∙ 2m ≤ (m + 1) ∙ m!

21 ≤ (m + 1) m ≥ 4
2m ≤ m!

0 ≤ 2n ≤ c ∙ n! n ≥ no c = 1 no = 4

