11313 - 2021
Design & Analysis
of Algorithms

The Big-O Notation and Its Relatives

Today’s Agenda

» Running Time Orders of Growth.
» A formal definition of Big-O
» Big-O Relatives

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Examples of Growth Rates (Review)

order of growth liilnc
name function
1024T o — S L
= '\§ N AV
constant 1 512T S S »§ ;\Q«\@ &
& \\'Q Q_/Q\ \\'{\b
g logarithmic log(n) 4 = W W
S
an /7 _
linear n 64T -
= _
.= linearithmic nlog(n)
m/ n
5 8T —
uadratic n
E E 4T
- 3
i
cubic n o o
. . logarithmic
@ exponential 2 T - ——
e . COTISIC
- exponent1al 3" I I T T | T T T 1 T T
= . size — 1K 2K 4K 8K 1024K
factorial n!

Orders of growth (log—log plot)

G constant < logarithmic < polynomial < exponential < factorial < n"

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

o Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

o Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

Drop the coefficient of the highest order term:

o Example: n?, %nz and 10n® are all in the order of n°

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

o Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

Drop the coefficient of the highest order term:

o Example: n?, %nz and 10n® are all in the order of n°

e Rationale:

- Quadratic growth is not the same as, linear or cubic growth, etc.

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an
algorithm grows as the input size grows.
Examples: logn, n, n%, n3, 2 etc.

Focus on the highest order term:

o Example:n’+n+logn isinthe order of n?

o Rationale: When n becomes large, time due to the lower order terms
becomes insignificant compared to the highest order term.

Drop the coefficient of the highest order term:

o Example: n?, %nz and 10n® are all in the order of n°

e Rationale:

- Quadratic growth is not the same as, linear or cubic growth, etc.

- Algorithms have different constants when implemented, based on
hardware, software and implementation factors.

Assume T(n) is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about T(n)?

A. T =0m?
B. T(n) =0
C. T = O0n*
D. All of the above.

E. None of the above.

Assume T(n) is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about T(n)?

[D . All of the above)

What ig
Big-O anyway?

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Article Talk

& Not logged in Talk Contributions Create account Log in

Big O notation

Read Edit

View history | Search Wikipedia ~Q

From Wikipedia, the free encyclopedia

Big O notation is a mathematical notation
that describes the limiting behavior of a
function when the argument tends towards a
particular value or infinity. Big O is a member
of a family of notations invented by Paul
Bachmann,!!! Edmund Landau,?! and others,
collectively called Bachmann—-Landau
notation or asymptotic notation.

In computer science, big O notation is used
to classify algorithms according to how their
run time or space requirements grow as the
input size grows.[3] In analytic number theory,

| P o G L T ——~ A~ T~ A e~ | L~

O()aN

Fit approximation

Concepts
Orders of approximation
Scale analysis - Big O notation
Curve fitting - False precision
Significant figures

Other fundamentals
Approximation - Generalization error
Taylor polynomial
Scientific modelling

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be O(g) if and only if :

There are two constants ¢ and 7, , such that
0<L f(n) <ceg(n) forall n>n,

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be O(g) if and only if :

There are two constants ¢ and 7, , such that
0<L f(n) <ceg(n) forall n>n,

Less formally: If multiplying g(n) by a constant makes it an upper bound
for f(n) after some point, then f is O(g) .

Example # 1

Assume f(n) =2n+5 and g(n) = n.

35

28

21

14

f(n)=2n+>3

g(n) =n

10

12

14

16

Example # 1

Assume f(n) =2n+5 and g(n) = n.

f is O(g) because there are ¢ and n, such that 0 < f(n) < c e+ g(n)
forall n>n,:

If c=3,then 0L f(n) <3eg(n) forall n>35

Example # 1

Assume f(n) =2n+5 and g(n) = n.

f is O(g) because there are ¢ and n, such that 0 < f(n) < c e+ g(n)
forall n>n,:

If c=4,then 0 < f(n) <4eg(n) forall n>2.5

f(n)=2n+>3

35 e
deg(n) .

Example # 1

Assume f(n) =2n+5 and g(n) = n.

f is O(g) because there are ¢ and n, such that 0 < f(n) < c e+ g(n)
forall n>n,:

If c=7,then 0 < f(n) <7eg(n) forall n>1

: f(n) =2n+5
35 7 o g(n)"'i

Example # 2

Assume f(n) =n’+5n—6 and g(n) = n’.

500

400

300

200

100

f(n)=n’>+5n—-06

g(n) = n*

2.9

4.8

6.7

8.6

10.5

12.4

14.3

16.2

18.

1

20

Example # 2

Assume f(n) =n’+5n—6 and g(n) = n’.

f is O(g) because there are ¢ and n, suchthat 0 < f(n) < cegn)
forall n>n,:

If c=3,then 0 < f(n) <3eg(n) forall n>1

500

400

300

200

100

3eg(n f(n)=n’>+5n—-06

1 2.9 4.8 6.7 8.6 10.5 12.4 14.3 16.2 18.1 20

Example # 2

Assume f(n) =n’+5n—6 and g(n) = n’.

f is O(g) because there are ¢ and n, suchthat 0 < f(n) < cegn)
forall n>n,:

If c=7,then 0 < f(n) <7eg(n) forall n>1

Tegn) 3g(n) f(n)=n’>+5n—-06
500 " ¢
400
300

200

100

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution.

We need to show that there exist two constants ¢ and n, such that
0<3n+3<cen foral n>n,.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution.

We need to show that there exist two constants ¢ and n, such that
0<3n+3<cen foral n>n,.

Since 0<3n+3<3n+3n forall n > 1

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution.
We need to show that there exist two constants ¢ and n, such that

0<3n+3<cen foral n>n,.

Since 0<3n+3<3n+3n
0<3n+3<6m forall n > 1

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution.

We need to show that there exist two constants ¢ and n, such that
0<3n+3<cen foral n>n,.

Since 0<3n+3<3n+3n
0<3n+3<6m forall n > 1

We can pick c = 6and n, = 1

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)
If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n ftorall n>1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6n forall n>1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

! !

£(n) c e g(n)

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+ 51+ 6 < 12n* forall n > 1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n°+51+6 < n’+5n>+6n> forall n>1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n°+5n+6 < n*+5n*+6n* < 12n° forall n>1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.

! !

f(n) g

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.

C. f(n) =n? and gn) =n’

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.

C. f(n) =n? and gn) =n’
Solution.
If we pick ¢ =1,Itisclearthat 0 < f(n) < ceg(n) forall n> 1.

For each of the following function, show that f is O(g).

A. f(n)=3n+3 and gn) =n
Solution (rephrased)

If we pick ¢ =9, we can show that 0 < f(n) < ceg(n) forall n > 1.
0 < 3n+3 < 3n+3n < 6L 9n forall n>1.

B. f(n)=n*+5n+6 and g(n) = n?
Solution.

If we pick ¢ = 12, we can show that 0 < n”+5n+6 < 12n* forall n > 1.
0 < n?+5n+6 < n?>+5n*+6n* < 12n* forall n>1.

C. f(n) =n? and gn) =n’
Solution.

If we pick ¢ =1,Itisclearthat 0 < f(n) < ceg(n) forall n> 1.
Dividing 0 < n? < n’ by n”? makes the equation: 0 < 1 < n

Back to Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about T(n)?

[D . All of the above)

Back to Quiz # 1

Assume T(n) is the order of growth of the running time of Bubble Sort as a
function of the input size n. Which of the following is true about T(n)?

[D . All of the above)

(\9)
(\®)

=

<

|

>

A A A
P!

S S0 S

P!
°

P!
°

=
|
N | —

N | —
w

~

foralln > 1, assuming ¢ = 1

Assume T(n) is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes T(n)?

A. T(n) = 0n?)
B. T(n)=0n%
C. Tm) =0m"
D. All of the above.

E. None of the above.

Assume T(n) is the order of growth of the running time of Selection Sort as a
function of the input size n. Which of the following best describes T(n)?

(A T=0m))

They are all true, but the tightest bound (and the best to use) is O(n?)

For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"

For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"
Solution.

We need to show that: 0 <27 co3 forall n > n,.

For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"

Solution.
We need to show that: 0 <27 co3 forall n > n,.
Divide by 2": 0 <1 < ceo (%) & forall n>n,.

For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"

Solution.
We need to show that: 0 <27 co3 forall n > n,.
Divide by 2": 0 <1 < ceo (%) & forall n>n,.

We can pick ¢ = | which makes the statement true for alln > 1.

For each of the following function, show that f is O(g).

D. f(n) =2" and g(n) = 3"

Solution.
We need to show that: 0 <27 co3 forall n > n,.
Divide by 2": 0 <1 < ceo (%) & forall n>n,.

We can pick ¢ = | which makes the statement true for alln > 1.

Note that we don't always need to explicitly find ¢ and n,,
It is enough to show that they exist. For example, a valid answer for the above

example would be:

Since 1 is constant and (%) " is a strictly increasing function, there

must be somec andn, > 1 suchthat 0 < 1 < ceo (%) " forall n>n,.

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.

We need to show that: 0 < An+B < cen forall n > n,

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B < An+ Bn forall n>1

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1

1

fin) cegn)

For each of the following function, show that f is O(g).

E. fn)=An+B and g(n)=n where A and B are positive integers
Solution.
We need to show that: 0 < An+B < cen forall n > n,

Because A, B and n are positive integers.
1. 0<An+8B forall n>1
2. An+ B<(A+ B)n forall n>1

Pickc=A+Bandn, =1

Big-O
Relatives

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be Q(g) if and only if :

There are two constants ¢ > Oandn, > 0,
such that 0 < cegn) < f(n) forall n>n,

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be Q(g) if and only if :

There are two constants ¢ > Oandn, > 0,
such that 0 < cegn) < f(n) forall n>n,

Less formally: If multiplying g(n) by a constant makes it a lower bound
for f(n) after some point, then f is 2(g) .

Big-{2 Example

Assume f(n) =n’+5 and g(n) = 2n* +5.

-9 2 5 — 2
100 2(n) n- 4+ fm)=n-+5

80
60
40

20

Big-{2 Example

Assume f(n) =n’+5 and g(n) = 2n* +5.

f is €(g) because there are ¢ and n, such that 0 < ceg(n) < f(n)
forall n>n,:

Ifczi,then OS%-g(n)Sf(n) forall n>1

100 g(n) =2n+5 f(n)=n*+5

80
60

40

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
20 -
-
-
-
—'_—
-
-
-
-
-
-
-
-
--
--
-
-

0 2 4 6 8 10 12 14

Big-{2 Example

Assume f(n) =n’ and g(n) = nlogn.

fn) = n?

150
120
00 g(n)=nlogn

60

30

Big-{2 Example

Assume f(n) =n’ and g(n) = nlogn.

f is €(g) because there are ¢ and n, such that 0 < ceg(n) < f(n)
forall n>n,:

If c=1,then g(n) < f(n) forall n > 1

fn) = n?

150

120
n)=nlogn

90 g(n) g

60

30

Good and Bad Uses of Big-£2

Good and Bad Uses of Big-£2

Bubble Sort is €2(1).

Good and Bad Uses of Big-£2

Bubble Sort is €2(1).
Yea right! All algorithms are (1) !

Good and Bad Uses of Big-£2

Bubble Sort is €2(1).
Yea right! All algorithms are (1) !

ke ¥

An example from the Jordanian market for the
weird use of lower bounds!
(Translation: "The mall of burned prices:

Everything is for 0.5 Dinars or more")

Good and Bad Uses of Big-£2

Bubble Sort is Q(1). Every comparison-based sorting

Yea right! All algorithms are Q(1) ! algorithm performs C2(n log n)
comparisons in the worst-case.
Interesting!

@\@ J\‘{“g)é) @ﬁl‘f@ﬁg 9%955) n?(

An example from the Jordanian market for the
weird use of lower bounds!
(Translation: "The mall of burned prices:

Everything is for 0.5 Dinars or more")

Good and Bad Uses of Big-£2

Bubble Sort is Q(1). Every comparison-based sorting
Yea right! All algorithms are Q(1) ! algorithm performs C2(n log n)
comparisons in the worst-case.
Interesting!
@ i &' ?{(" In other words. There is no use of
J \@MS (SLEVs "’% RSNV o trying to find a comparison-based

sorting algorithm whose running time

in the worst case is better than nlogn.

An example from the Jordanian market for the Stay tuned for a proofm
weird use of lower bounds! a couple of weeks from
(Translation: "The mall of burned prices: now!

Everything is for 0.5 Dinars or more")

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be ®©(g) if and only if :

fis O(g) and f is also Q(g)

Definition. Let f(n) and g(n) be two functions that are always positive, f(n) is said
to be ®©(g) if and only if :

fis O(g) and f is also Q(g)

Less formally: If multiplying g(n) by a constant makes it an upper bound
for f(n) after some point and also multiplying g(n) by another constant
makes it a lower bound for f(n) after some point, then f is O(g) .

cg(n)

f(n)

Big-O

f(n)

//Cg(n)

Big-Omega

n

c2g(n)

f(n)

c.g(n)

Big-Theta

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n
Solution.

We need to show that:
dn+ 8 = O(n)
4n + 8 = Q(n)

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n
Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n)

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n
Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

B. f(n) =log,n and gn) =log;n

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

B. f(n) =log,n and gn) =log;n

Solution. b
er:
We need to show that: Remem
_ log, n | ()
o= O 108.(2) = Tog ()
log, n

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

B. f(n) =log,n and gn) =log;n

Solution.

We need to show that:

log, n = O(EZZ) —p pick ¢ >10g,3 and n, =1
log, n = Q(1og2n)

Exercises

For each of the following functions, show that f is ©(g).

A. f(n)=4n+8 and gn) =n

Solution.

We need to show that:
dn+ 8 = O(n) » pick ¢ =12 and n, =1
4n + 8 = Q(n) » pick c=1 and n, =1

B. f(n) =log,n and gn) =log;n

Solution.

We need to show that:

log, n = O(E?Z) —p pick ¢ >10g,3 and n, =1
2
log, n :
log, n = €() ——p pick c=1 and n, =1

Exercises

Show that n’ + n is not O®n?).

Exercises

Show that n’ + n is not O®n?).

Solution.
Assume for the sake of that there exist two constants
candn, suchthat 0<n’+n<cen’ forall n>n,

Exercises

Show that n’ + n is not O®n?).

Solution.
Assume for the sake of that there exist two constants
candn, suchthat 0<n’+n<cen’ forall n>n,

Divide by n*: 0<n +% <c

Exercises

Show that n’ + n is not O®n?).

Solution.
Assume for the sake of that there exist two constants

candn, suchthat 0<n’+n<cen’ forall n>n,
Divide by n%: 0<n +—<c

This is clearly false because n + % is strictly

increasing while the right hand side is constant.

Exercises

Show that n° is not O(°).

Exercises

Show that n° is not O(°).

Solution.
Assume for the sake of that n° = Q(n?), then there exist two constants
candn,suchthat 0 <cen’<n® forall n>n,

Exercises

Show that n° is not O(°).

Solution.
Assume for the sake of that n° = Q(n?), then there exist two constants
candn,suchthat 0 <cen’<n® forall n>n,

Divide by n*: 0<cen<l

Exercises

Show that n° is not O(°).

Solution.
Assume for the sake of that n° = Q(n?), then there exist two constants

candn,suchthat 0 <cen’<n® forall n>n,
Divide by n*: 0<cen<l

This is clearly false because c e n is strictly
increasing while the right hand side is constant.

Which of the following is true about the running time of insertion sort?

A. The running time is o(n?)
B. The running time is (n)
C. The best case is ®O(n).

D. The worst case is O(n?).

E. All of the above.

Which of the following is true about the running time of insertion sort?

GE . All of the above)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1xX2X3x...Xn) < loglnXnXnX...Xn) forall n>1

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.
1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. log,(n!) =log(1 Xx2X3X... x%x(§+1)x(§+2)x . XN)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(g) + 10g(%+1) + 10g(%+2) + ... + log(n)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)
> log(%) + 10g(%+ 1) + 10g(%+2) + ... +log(n)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3 X .. X 2 X (24 1) X (242) X ... X)

=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)
log(%) + log(§+1) + 10g(%+2) + ... +log(n)
log(%) + log(g) + log(%) + ...+ log(%)

vV IV

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... + log(n)

> log(%) + log(%+1) + 10g(%+2) + ... +log(n)
> log(%) + log(%) + log(%) + ...+ log(%)
> %log(%)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)

> log(%) + log(§+1) + 10g(%+2) + ... +log(n)
> log(5) +1log(3) +log(3) +...+log(3)
> Slog(3) > S(log(n) —log(2))

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)

> log(%) + log(§+1) + 10g(%+2) + ... +log(n)
> log(%) + log(%) + log(%) + ...+ log(%)
> %log(%) > %(log(n) —log(2)) > %(log(n) — 1)

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + 10g(%+2) + ... +log(n)

> log(%) + log(§+1) + 10g(%+2) + ... +log(n)
> log(%) + log(%) + log(%) + ...+ log(%)
> %log(%) > %(10?:’(”) —log(2)) = %(log(n) - 1) > %(log(n)—% log(n))

forall n > 16

Exercises

Stirling's Approximation states that:
log,(n!) = nlog,n—nlog,e+rlog,n

Show that log,(n!) = ®@(nlogn) without using Stirling's Approximation.

Solution.

1. log(1Xx2X3x...Xn) < loglnXnXnX...Xn) forall n>1
log(l1 Xx2x3X%x...xn) < log(n") forall n>1
log(l X2x3X...xn) < nlog(n) forall n>1

Therefore log,(n!) = O(nlogn) because 0 < log(n!) < lenlogn forall n>1

2. Togy(n!) = log(1 X 2X 3% ... X 2 X (24 1) X (24+2) X ... X n)
=log(1) + log(2) + log(3) + ... + log(%) + 10g(%+1) + log(%+2) + ... +log(n)

> log(%) + log(%+1) + log(%+2) + ... +log(n)
> log(%) + log(%) + log(%) + ...+ log(%)
> $log(3) > Flog(n) —log(2)) > F(log(n) — 1) > F(log(n)—7 log(n)

Therefore log,(n!) = Q(nlogn) because 0 < % enlogn <log(n!) forall n>16

Optional Example

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.

1. 12422432+ ... +n? <

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.

1. 12422432+ ... +1n% < n2+n?+n*+... +n? for all n > 1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

Therefore, 17 + 2>+ 3%+ ... +n?

I
O
~
S

W
~

Optional Examples

n
We know that Z i can be computed using the formula: 103 + 1n? + In

3 2 6
=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

Therefore, 17 + 2>+ 3%+ ... +n?

I
O
~
S
W
~

2, BRI R (A2 e e

Optional Examples

n
We know that Z i can be computed using the formula: 103 + 1n? + In

3 2 6
=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

Therefore, 17 + 2>+ 3%+ ... +n?

I
O
~
S
W
~

Lo BB L P R R (2 A e
> G+ G+’ + G+ + ... +n? forall n> 1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

Therefore, 17 + 2>+ 3%+ ... +n?

I
O
~
S
W
~

Lo BB L P R R (2 A e
G+ G+’ + G+ + ... +n? forall n > 1
G+ +GP +. + G for all n > 1

AV "

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

I
O
~
S
W
~

Therefore, 17 + 2>+ 3%+ ... +n?

Lo BB L P R R (2 A e

> 5+ GHD)*+ (G+2)° + ... +n° forall n> 1
> EP+EP +EP .+ (2 forall n > 1
Z%x(%)z for all n > 1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

I
O
~
S
W
~

Therefore, 17 + 2>+ 3%+ ... +n?

Lo BB L P R R (2 A e

> 5+ GHD)*+ (G+2)° + ... +n° forall n> 1
n\? n\2 n\2 ny\2
2
Z%x(%)zzgx% forall n>1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

I
O
~
S
W
~

Therefore, 17 + 2>+ 3%+ ... +n?

Lo BB L P R R (2 A e

> 5+ GHD)*+ (G+2)° + ... +n° forall n> 1
n\? n\2 n\2 ny\2
2 3
Z%x(%)zzgx%z% forall n>1

Optional Examples

n
We know that Z i can be computed using the formula: %n3 + %nz + %n
i=0

Show that Z i = O(n’) without using the above formula.
i=0

Solution.
1. 12422432+ ... +n?2 < n2+n?+n%+... +n? forall n> 1
124224+3%2+ ... +n? < nxn? forall n > 1

I
O
~
S
W
~

Therefore, 17 + 2>+ 3%+ ... +n?

2. P42+ AP+ CH 12+ G2+ 1
3P+ G+ + (G+2)% + ... +n? forall n> 1
GP+G? +G? 4.+ (3P forall nx1

AVARN Y

nn2 g nnt o on
sz(z) > X 23 forall n>1

Therefore, 17+ 22+ 3%+ ... +n? = Qn>)

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example
Relation
f=0(g) f<g If f = O(n?), examples for fcould be:

f=o(g) f<g If f = o(n?), examples for fcould be:

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example
Relation
f=0(g) f<g If f = O(n?), examples for fcould be:

n%, 3n*+n, 5Sn—1, Tnlogn + 3n, \/;

_ If f = o(n?), examples for fcould be:
=08 F<s n'®, Sn—1, Tnlogn+ 5n, \/Z

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example
Relation
f=0(g) f<g If f = O(n?), examples for fcould be:

n%, 3n*+n, 5Sn—1, Tnlogn + 3n, \/;

_ If f = o(n?), examples for fcould be:
=08 F<s n'®, Sn—1, Tnlogn+ 5n, \/Z

f=Q(g) f>g If f = Q(n?), examples for fcould be:

f = w(g) F>g If f = w(n?), examples for fcould be:

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example
Relation
f=0(g) f<g If f = O(n?), examples for fcould be:
B n%, 3n° +n, 5n—1,7nlogn+5n,\/;
_ If f = o(n?), examples for fcould be:
=08 F<s n'®, Sn—1, Tnlogn+ 5n, \/Z
B If f = Q(n?), examples for fcould be:
f — Q(g) fZ g I’l2, 3”2 +n, 5n3, 77/15, ”n

B If f = w(n?), examples for fcould be:
J=o0(g) f>8 n20L 200" 5p3 TnS, 2n

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Notation Order of Growth Example

Relation
=0 fox =00 eampl i
f-s fex Mg ouh ol o feoudie
/= fze R
f=w(g) f>g If f ;g;fnjl)é fg{ga;rfpl;; 3f,or 7j; (;(,)ulzcll1 be:
f=0(g) f=g If f = ©(n?), examples for fcould be:

n*, 3n%, Sn*—n, Tn*+nlogn+ 100

Assume that a function f is known to be o(n?) and also known to be Q(log n),
which of the following functions can f possibly be?

A. n" F. n\/g K. logn

B. 2" G. n'! L. logn

C. n’ H. nlogn M. log(logn)
D. n’logn I. n M. 100

Assume that a function f is known to be o(n?) and also known to be Q(log n),
which of the following functions can f possibly be?

[Fom/n) [K. log?n)
(ot [L.ologn |
[H. nlogn]
G
v)

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.

2

3n° vs n

3”2 VS n 3n2 VS 1n

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.

3n? vs n?

3n? = O(n?)
3n?% = Q(n?)
3n’% = O(n?)
3n? # o(n?)

3n? # w(n?)

3n? vs n 3n° vs n

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.

3n’ vs n? 3n? vs n’ 3n3 vs n?
3n? = O(n?) 3n? = O(n”)

3n?% = Q(n?) 3n? # Q(n°)

3n’% = O(n?) 3n? # O(n°)

3n? # o(n?) 3n? = o(n”)

3n? # w(n?) 3n? # w(n’)

Small-o and Small-w

Informal Definition. f is said to be o(g) if it grows strictly slower than g.

Informal Definition. f is said to be w(g) if it grows strictly faster than g.

Examples.

3n’ vs n? 3n? vs n’ 3n° vs n®
3n? = O(n?) 3n? = O(n”) 3n° # O(n?)
3n?% = Q(n?) 3n? # Q(n°) 3n° = Q(n?)
3n’% = O(n?) 3n? # O(n°) 3n° # O(n?)
3n? # o(n?) 3n? = o(n?) 3n° # o(n?)
3n? # w(n?) 3n? # w(n’) 3n° = w(n?)

Consider f(n) = O(g(n)). Which of the following is definitely true?

A. f=0()
B. f=o0(g)
C. g=Q(f)

D. g=w(f)

Consider f(n) = O(g(n)). Which of the following is definitely true?

A.
B.
- g=Qf) = f=0()
[C. g =Q(f)) g =w(f) = f=o(g)

D.

e Reflexivity. f =? O(f)
f =2 Q)
f =2 0()
f =2 o(f)
f =7 o(f)

o Reflexivity. f = O(f)

f = 0(f)
= Q)
[# o(f)

f# o(f)

o Reflexivity. f is O(f)

o Constants. If fis®(g) and ¢ > 0, thencef is O(g).

o Reflexivity. f is O(f).

o Constants. If fis®(g) and ¢ > 0, thencef is O(g).
Example: 4n* 4+ 5 is ©(n?) and 4 X (4n*+5) is also O(n?).

o Reflexivity. f is O(f).

o Constants. If fis®(g) and ¢ > 0, thencef is O(g).
Example: 4n* 4+ 5 is ©(n?) and 4 X (4n*+5) is also O(n?).

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).

o Transitivity. If f is O(g) and g is O(h) then f is O(h).

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).

o Transitivity. If f is O(g) and g is O(h) then f is O(h).

A h

h is an upper bound
for both g and f

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).

o Transitivity. If f is O(g) and g is O(h) then f is O(h).

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).
o Transitivity. If f is ®(g) and gis ©(h) then f is O(h).

o Sums. If f,is O(g) and f, is O(g,), then f; +f5is... ?

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).
o Transitivity. If f is ®(g) and gis ©(h) then f is O(h).

o Sums. If f;is O(g) and f, is ©O(g,), then f, + f; is O(max{g, g }).
Example: If fi(n) is ®(n?) and fo(n) is O(n’) then f, +f is O°).

o Reflexivity. f is O(f).
o Constants. If fis®(g) and ¢ > 0, thencef is O(g).
o Transitivity. If f is ®(g) and gis ©(h) then f is O(h).

o Sums. If f;is O(g) and f, is ©O(g,), then f, + f; is O(max{g, g }).
Example: If fi(n) is ®(n?) and fo(n) is O(n’) then f, +f is O°).

® Don't say: "My algorithm is O(n?)"

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

Explanation. An algorithm is not a function, its running time is.

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

Explanation. O(n?) describes all the functions whose order of growth is n’ or
less (e.g. log(n), \/Z, n, nlog(n), etc.)

Saying that the running time is at least one of these functions means that the
running time could be anything!

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

® Avoid saying: "The worst case running time of Bubble Sort is O(nz)"

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

® Avoid saying: "The worst case running time of Bubble Sort is O(nz)"

Say: "The worst case running time of Bubble Sort is ®(n?)"

Explanation. O(n?) means: in the order of n? or less
®(n?) means: in the order of n”

® Don't say: "My algorithm is O(n?)"

Say: "The running time of my algorithm" is O(n?) or "My algorithm runs in on?)".

® Don't say: "Your algorithm runs in at least O(n?)"

Say: "Your algorithm runs in (n?)" or "Your algorithm runs in at least ®(n?)"

® Avoid saying: "The worst case running time of Bubble Sort is O(nz)"

Say: "The worst case running time of Bubble Sort is ®(n?)"

O(g(n)) is a set of functions, but computer scientists often abuse

G the notation by writing f(n) = O(g(n)) instead of f(n) € O(g(n)).

Alternative Definitions

| . J(n)
l M
i e)

= (then

Alternative Definitions

if lim f(_n)

= 0 then f=o0(g)
n—co (1)

Alternative Definitions

if lim 1) = 0 then f=o0(g)
n—co g(n)
if 0 < lim 1) < then

n—oco g(n)

Alternative Definitions

if lim 1) = 0 then f=o0(g)
n—co g(n)
if 0 < lim) < 00 then f=0()

n—oco g(n)

Alternative Definitions

if lim 1) = 0 then f=o0(g)
n—oo g(n)

if 0 < lim) < 00 then f=0()
n—oo g(n)

if lim) = o0 then

n—oo g(n)

Alternative Definitions

if lim 1) = 0 then f=o0(g)
n—co g(n)

if 0 < lim) < 00 then f=0()
n—oco g(n)

if lim 1) = 0 then f=w(g)

n—oo g(n)

Alternative Definitions

if lim f(_n) = 0 then f=o0(g)
n— 00 g(n)

if 0 < lim) < 00 then f=0()
n— 00 g(l’l

if 1 1) = 0 then f=w(g)
n—oo g(n)

if 0 <1l) < o© then

Alternative Definitions

if lim 1) = 0 then f=o0(g)
n—oo g(n)

if 0 < lim) < 00 then f=0()
n— 00 g(l’l

if 1 1) = 0 then f=w(g)
n—co (1)

if 0 <1 fn) < o© then J=Q(g)

Alternative Definitions

if lim f(_n) = 0 then f=o0(g)
n— 00 g(n)

if 0 < lim) < 00 then f=0()
n— 00 g(l’l

if 1 1) = 0 then f=w(g)
n—oo g(n)

if 0 <h) < o© then f=Q(g)
n— 00 g(l’l

0 <timi? < o then = 0(g)

Optional Example

Show that log,(n) X log,(n) = O(n)

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

. log,(n)
We need to show that: 0 < Imm < 00

n—oo n

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.

This is equivalent to showing that log,(n) = O(\/Z)

. log,(n)
We need to show that: 0 < lim <
n—oo n
log, (1) :
0g,(n
Using L'Hopital's rule: lim =2 = lim "';nz
s n n— o0

flz) _ . (@) 24/n

lim —— i ——
—c glxz) T g(z)

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.

This is equivalent to showing that log,(n) = O(\/Z)

. logy(n)
We need to show that: 0 < Imm < o
n—o0 n
log,(n) 1
09,(n -
Using L'Hopital's rule: lim =2 — lim 2=ln2
flz) - fi(z) 2\/n

lim —— lim ———.

n—oco neln?2

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.

This is equivalent to showing that log,(n) = O(\/Z)

. logy(n)
We need to show that: 0 < Imm <
n—0 n
log, () 1
09,(n -
Using L'Hopital's rule: lim &2 gy
o flz) . (=) 24/n
lim —— lim ———.
r—e g(xz) = g'(x)
. 2/n 24/n
= |im = Iim

n—co 1 e In2 =00 \/ny/n o In2

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

. logy(n)
We need to show that: 0 < Imm <
n—0 n
log, () 1
09,(n -
Using L'Hopital's rule: lim &2 gy
o flz) . (=) 24/n
lim —— lim ———.
r—e g(xz) = g'(x)
. 2/n 2\/n
= |im = lim

n—oo 1 eln?2 n—>oo\/ﬁ neln?2

, 2
= lim = 0
”*w\/ﬁoln2

Optional Example

Show that log,(n) X log,(n) = O(n)

Solution.
This is equivalent to showing that log,(n) = O(\/Z)

. 10g2(n)
We need to show that: 0 < Imm <
n—0 n
log, () 1
09,(n -
Using L'Hopital's rule: lim &2 — lim & 11n2
n—oo n n— Qo0
. fle) . fi=) 24/n
lim —— lim ———.
e glxz) T g'(x)
. 2/n 2\/n
= |im — = lim
n—oo N e In 11— 00 .1 2
Remember. log®n = o(n%) Vnyneln
where ¢ > 0 and d > 0 are constants. o)

= lim = 0
”*w\/ﬁoln2

Optional Example

Prove by induction that 2" = O(n!)

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

Ii. Assuming that 0 m m! is true for some m > 4,

<
2 < (m+1)! is also true.

IA A

we will show that 0

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

Ii. Assuming that 0 m m! is true for some m > 4,

< m!
2 < (m+1)! is also true.

IA A

we will show that 0

IA

Rewriting the equation: 0 2162 < (m+1)em!

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

om ! is true for some m > 4,

Ii. Assuming that 0 < m!
2 < (m+1)! is also true.

IA A

we will show that 0

IA

Rewriting the equation: 0 2162 < (m+1)em!

This is clearly true, since 2! < (m + 1) since m > 4 and

we know trom the induction hypothesis that 2" < m!

Optional Example

Prove by induction that 2" = O(n!)

Solution.

We need to show that there exist two constants ¢ and 7, such that
0 < 2" < cen! forall n > n,

Assume ¢ = 1

i. Whenn =4, 2" = 16 while n! = 24. Theretfore, the inequality holds tor n = 4.

om ! is true for some m > 4,

Ii. Assuming that 0 < m!
2 < (m+1)! is also true.

IA A

we will show that 0

IA

Rewriting the equation: 0 2162 < (m+1)em!

This is clearly true, since 2! < (m + 1) since m > 4 and

we know trom the induction hypothesis that 2" < m!

Therefore, 0 < 2" < cen! forall n > n, istrueif we pick ¢ =1and n, = 4.

