CS11313 - Fall 2021

Design \& Analysis of Algorithms

The Big-O Notation and Its Relatives
Ibrahim Albluwi

Today's Agenda

- Running Time Orders of Growth.
- A formal definition of $\operatorname{Big}-O$
- Big-O Relatives

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.

Examples of Growth Rates (Review)

(!) constant < logarithmic < polynomial < exponential < factorial < n^{n} $\log _{b}(n) \quad n^{c}(c>0) \quad c^{n}(c>1)$

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.

Orders of Growth (Review)

Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.

Focus on the highest order term:

- Example: $n^{2}+n+\log n$ is in the order of n^{2}.

Orders of Growth (Review)

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.
- Focus on the highest order term:
- Example: $n^{2}+n+\log n \quad$ is in the order of n^{2}.
- Rationale: When n becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.

Orders of Growth (Review)

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.
- Focus on the highest order term:
- Example: $n^{2}+n+\log n \quad$ is in the order of n^{2}.
- Rationale: When n becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- Drop the coefficient of the highest order term:
- Example: $n^{2}, \frac{1}{2} n^{2}$ and $10 n^{2}$ are all in the order of n^{2}.

Orders of Growth (Review)

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.
- Focus on the highest order term:
- Example: $n^{2}+n+\log n \quad$ is in the order of $\quad n^{2}$.
- Rationale: When n becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- Drop the coefficient of the highest order term:
- Example: $n^{2}, \frac{1}{2} n^{2}$ and $10 n^{2}$ are all in the order of n^{2}.
- Rationale:
- Quadratic growth is not the same as, linear or cubic growth, etc.

Orders of Growth (Review)

- Order of Growth of the running time: How quickly the running time of an algorithm grows as the input size grows.
Examples: $\log n, n, n^{2}, n^{3}, 2^{n}$, etc.
- Focus on the highest order term:
- Example: $n^{2}+n+\log n \quad$ is in the order of n^{2}.
- Rationale: When n becomes large, time due to the lower order terms becomes insignificant compared to the highest order term.
- Drop the coefficient of the highest order term:
- Example: $n^{2}, \frac{1}{2} n^{2}$ and $10 n^{2}$ are all in the order of n^{2}.
- Rationale:
- Quadratic growth is not the same as, linear or cubic growth, etc.
- Algorithms have different constants when implemented, based on hardware, software and implementation factors.

Quiz \# 1

Assume $T(n)$ is the order of growth of the running time of Bubble Sort as a function of the input size n. Which of the following is true about $T(n)$?
A. $\quad T(n)=O\left(n^{2}\right)$
B. $\quad T(n)=O\left(n^{3}\right)$
C. $\quad T(n)=O\left(n^{4}\right)$
D. All of the above.
E. None of the above.

Quiz \# 1

Assume $T(n)$ is the order of growth of the running time of Bubble Sort as a function of the input size n. Which of the following is true about $T(n)$?

$$
\begin{array}{ll}
\text { A. } & T(n)=O\left(n^{2}\right) \\
\text { B. } & T(n)=O\left(n^{3}\right) \\
\text { C. } & T(n)=O\left(n^{4}\right) \\
\text { D. } & \text { All of the above. } \\
\text { E. } & \text { None of the above. }
\end{array}
$$

What is Big-O anyway?

WikipediA

The Free Encyclopedia

Main page

Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file

8 Not logged in Talk Contributions Create account Log in

Article Talk
Read Edit View history
Search Wikipedia Q

Big O notation

From Wikipedia, the free encyclopedia
Big \mathbf{O} notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, ${ }^{[1]}$ Edmund Landau, ${ }^{[2]}$ and others, collectively called Bachmann-Landau notation or asymptotic notation.

In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. ${ }^{[3]}$ In analytic number theory,
O()$, \sim$
Fit approximation
Concepts
Orders of approximation
Scale analysis \cdot Big O notation
Curve fitting \cdot False precision
Significant figures
Other fundamentals
Approximation \cdot Generalization error
Taylor polynomial
Scientific modelling

Big-O

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $O(g)$ if and only if :

There are two constants c and n_{o}, such that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq n_{o}$

Big-O

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $O(g)$ if and only if :

There are two constants c and n_{o}, such that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq n_{o}$

Less formally: If multiplying $g(n)$ by a constant makes it an upper bound for $f(n)$ after some point, then f is $O(g)$.

Example \# 1

Assume $f(n)=2 n+5$ and $g(n)=n$.

Example \# 1

Assume $f(n)=2 n+5$ and $g(n)=n$.
f is $O(g)$ because there are c and n_{o} such that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=3 \text {, then } 0 \leq f(n) \leq 3 \bullet g(n) \text { for all } n \geq 5
$$

Example \# 1

Assume $f(n)=2 n+5$ and $g(n)=n$.
f is $O(g)$ because there are c and n_{o} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=4 \text {, then } 0 \leq f(n) \leq 4 \bullet g(n) \text { for all } n \geq 2.5
$$

Example \# 1

Assume $f(n)=2 n+5$ and $g(n)=n$.
f is $O(g)$ because there are c and n_{o} such that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=7 \text {, then } 0 \leq f(n) \leq 7 \bullet g(n) \text { for all } n \geq 1
$$

Example \# 2

Assume $f(n)=n^{2}+5 n-6$ and $g(n)=n^{2}$.

Example \# 2

Assume $f(n)=n^{2}+5 n-6$ and $g(n)=n^{2}$.
f is $O(g)$ because there are c and n_{o} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=3 \text {, then } 0 \leq f(n) \leq 3 \bullet g(n) \text { for all } n \geq 1
$$

Example \# 2

Assume $f(n)=n^{2}+5 n-6$ and $g(n)=n^{2}$.
f is $O(g)$ because there are c and n_{o} such that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=7 \text {, then } 0 \leq f(n) \leq 7 \bullet g(n) \text { for all } n \geq 1
$$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 3 n+3 \leq c \bullet n$ for all $n \geq n_{o}$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 3 n+3 \leq c \bullet n$ for all $n \geq n_{o}$.
Since $\quad 0 \leq 3 n+3 \leq 3 n+3 n \quad$ for all $n \geq 1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution.
We need to show that there exist two constants c and n_{o} such that
$0 \leq 3 n+3 \leq c \cdot n$ for all $n \geq n_{o}$.
Since $\quad 0 \leq 3 n+3 \leq 3 n+3 n$

$$
0 \leq 3 n+3 \leq 6 n \quad \text { for all } n \geq 1
$$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution.
We need to show that there exist two constants c and n_{o} such that
$0 \leq 3 n+3 \leq c \bullet n$ for all $n \geq n_{o}$.
Since $\quad 0 \leq 3 n+3 \leq 3 n+3 n$

$$
0 \leq 3 n+3 \leq 6 n \quad \text { for all } n \geq 1
$$

We can pick $c=6$ and $n_{o}=1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq \frac{3 n+3}{\prod_{f(n)}} \leq 3 n+3 n \leq 6 n \leq \frac{9 n}{\uparrow}$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq n^{2}+5 n+6 \leq n^{2}+5 n^{2}+6 n^{2}$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq n^{2}+5 n+6 \leq n^{2}+5 n^{2}+6 n^{2} \leq 12 n^{2}$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq \frac{n^{2}+5 n+6}{\varphi} \leq n^{2}+5 n^{2}+6 n^{2} \leq \frac{12 n^{2}}{\uparrow}$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq n^{2}+5 n+6 \leq n^{2}+5 n^{2}+6 n^{2} \leq 12 n^{2}$ for all $n \geq 1$.
C. $f(n)=n^{2}$ and $g(n)=n^{3}$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq n^{2}+5 n+6 \leq n^{2}+5 n^{2}+6 n^{2} \leq 12 n^{2}$ for all $n \geq 1$.
C. $f(n)=n^{2}$ and $g(n)=n^{3}$

Solution.
If we pick $c=1$, It is clear that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
A. $f(n)=3 n+3$ and $g(n)=n$

Solution (rephrased)
If we pick $c=9$, we can show that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$.
$0 \leq 3 n+3 \leq 3 n+3 n \leq 6 n \leq 9 n$ for all $n \geq 1$.
B. $f(n)=n^{2}+5 n+6$ and $g(n)=n^{2}$

Solution.
If we pick $c=12$, we can show that $0 \leq n^{2}+5 n+6 \leq 12 n^{2}$ for all $n \geq 1$.
$0 \leq n^{2}+5 n+6 \leq n^{2}+5 n^{2}+6 n^{2} \leq 12 n^{2}$ for all $n \geq 1$.
C. $f(n)=n^{2}$ and $g(n)=n^{3}$

Solution.
If we pick $c=1$, It is clear that $0 \leq f(n) \leq c \bullet g(n)$ for all $n \geq 1$. Dividing $0 \leq n^{2} \leq n^{3}$ by n^{2} makes the equation: $0 \leq 1 \leq n$

Back to Quiz \# 1

Assume $T(n)$ is the order of growth of the running time of Bubble Sort as a function of the input size n. Which of the following is true about $T(n)$?

$$
\begin{array}{ll}
\text { A. } & T(n)=O\left(n^{2}\right) \\
\text { B. } & T(n)=O\left(n^{3}\right) \\
\text { C. } & T(n)=O\left(n^{4}\right) \\
\text { D. } & \text { All of the above. } \\
\text { E. } & \text { None of the above. }
\end{array}
$$

Back to Quiz \# 1

Assume $T(n)$ is the order of growth of the running time of Bubble Sort as a function of the input size n. Which of the following is true about $T(n)$?

$$
\begin{array}{ll}
\text { A. } & T(n)=O\left(n^{2}\right) \\
\text { B. } & T(n)=O\left(n^{3}\right) \\
\text { C. } & T(n)=O\left(n^{4}\right)
\end{array}
$$

D. All of the above.
E. None of the above.

$$
\begin{aligned}
T(n)=\frac{1}{2} n^{2}-\frac{1}{2} n & \leq c \cdot n^{2} \\
& \leq c \cdot n^{3}
\end{aligned}
$$

$$
\leq c \cdot n^{4} \quad \text { for all } n \geq 1, \text { assuming } c=1
$$

Quiz \# 2

Assume $T(n)$ is the order of growth of the running time of Selection Sort as a function of the input size n. Which of the following best describes $T(n)$?
A. $\quad T(n)=O\left(n^{2}\right)$
B. $T(n)=O\left(n^{6}\right)$
C. $\quad T(n)=O\left(n^{n}\right)$
D. All of the above.
E. None of the above.

Quiz \# 2

Assume $T(n)$ is the order of growth of the running time of Selection Sort as a function of the input size n. Which of the following best describes $T(n)$?
A. $\quad T(n)=O\left(n^{2}\right)$
B. $T(n)=O\left(n^{6}\right)$
C. $\quad T(n)=O\left(n^{n}\right)$
D. All of the above.
E. None of the above.

They are all true, but the tightest bound (and the best to use) is $O\left(n^{2}\right)$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
D. $f(n)=2^{n}$ and $g(n)=3^{n}$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
D. $f(n)=2^{n}$ and $g(n)=3^{n}$

Solution.
We need to show that: $\quad 0 \leq 2^{n} \leq c \cdot 3^{n} \quad$ for all $n \geq n_{o}$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
D. $f(n)=2^{n}$ and $g(n)=3^{n}$

Solution.
We need to show that:

$$
0 \leq 2^{n} \leq c \cdot 3^{n}
$$

for all $n \geq n_{o}$.
Divide by 2^{n} :

$$
0 \leq 1 \leq c \cdot\left(\frac{3}{2}\right)^{n} \quad \text { for all } n \geq n_{o} .
$$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
D. $f(n)=2^{n}$ and $g(n)=3^{n}$

Solution.
We need to show that:

$$
\begin{array}{ll}
0 \leq 2^{n} \leq c \cdot 3^{n} & \text { for all } n \geq n_{o} . \\
0 \leq 1 \leq c \cdot\left(\frac{3}{2}\right)^{n} & \text { for all } n \geq n_{o} .
\end{array}
$$

We can pick $c=1$ which makes the statement true for all $n \geq 1$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
D. $f(n)=2^{n}$ and $g(n)=3^{n}$

Solution.
We need to show that:

$$
\begin{array}{ll}
0 \leq 2^{n} \leq c \cdot 3^{n} & \text { for all } n \geq n_{o} . \\
0 \leq 1 \leq c \cdot\left(\frac{3}{2}\right)^{n} & \text { for all } n \geq n_{o} .
\end{array}
$$

Divide by 2^{n} :
We can pick $c=1$ which makes the statement true for all $n \geq 1$.

Note that we don't always need to explicitly find c and n_{o}.
It is enough to show that they exist. For example, a valid answer for the above example would be:

Since 1 is constant and $\left(\frac{3}{2}\right)^{n}$ is a strictly increasing function, there
must be some c and $n_{o} \geq 1$ such that $0 \leq 1 \leq c \cdot\left(\frac{3}{2}\right)^{n}$ for all $n \geq n_{o}$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Because A, B and n are positive integers.

1. $0 \leq A n+B \quad$ for all $n \geq 1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Because A, B and n are positive integers.

1. $0 \leq A n+B$ for all $n \geq 1$
2. $A n+B \leq A n+B n \quad$ for all $n \geq 1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Because A, B and n are positive integers.

1. $0 \leq A n+B$
2. $A n+B \leq(A+B) n$ for all $n \geq 1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Because A, B and n are positive integers.

1. $0 \leq A n+B$ for all $n \geq 1$
2. $A n+B \leq(A+B) n \quad$ for all $n \geq 1$

Exercise \# 1

For each of the following function, show that f is $O(g)$.
E. $f(n)=A n+B$ and $g(n)=n \quad$ where A and B are positive integers Solution.

We need to show that: $\quad 0 \leq A n+B \leq c \cdot n \quad$ for all $n \geq n_{o}$.

Because A, B and n are positive integers.

1. $0 \leq A n+B$
2. $A n+B \leq(A+B) n \quad$ for all $n \geq 1$

Pick $c=A+B$ and $n_{o}=1$

Big-O
Relatives

Big- Ω

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $\Omega(g)$ if and only if :

There are two constants $c>0$ and $n_{o} \geq 0$, such that $0 \leq c \bullet g(n) \leq f(n)$ for all $n \geq n_{o}$

Big- Ω

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $\Omega(g)$ if and only if :

There are two constants $c>0$ and $n_{o} \geq 0$, such that $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_{o}$

Less formally: If multiplying $g(n)$ by a constant makes it a lower bound for $f(n)$ after some point, then f is $\Omega(g)$.

Big- Ω Example

Assume $f(n)=n^{2}+5$ and $g(n)=2 n^{2}+5$.

Big- Ω Example

Assume $f(n)=n^{2}+5$ and $g(n)=2 n^{2}+5$.
f is $\Omega(g)$ because there are c and n_{o} such that $0 \leq c \bullet g(n) \leq f(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=\frac{1}{4} \text {, then } 0 \leq \frac{1}{4} \cdot g(n) \leq f(n) \text { for all } n \geq 1
$$

Big- Ω Example

Assume $f(n)=n^{2}$ and $g(n)=n \log n$.

Big- Ω Example

Assume $f(n)=n^{2}$ and $g(n)=n \log n$.
f is $\Omega(g)$ because there are c and n_{o} such that $0 \leq c \bullet g(n) \leq f(n)$ for all $n \geq n_{o}$:

$$
\text { If } c=1 \text {, then } g(n) \leq f(n) \text { for all } n \geq 1
$$

Good and Bad Uses of Big- Ω

Good and Bad Uses of Big- Ω

Bubble Sort is $\Omega(1)$.

Good and Bad Uses of Big- Ω

Bubble Sort is $\Omega(1)$.
Yea right! All algorithms are $\Omega(1)!!$

Good and Bad Uses of Big- Ω

Bubble Sort is $\Omega(1)$.
Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds!
(Translation: "The mall of burned prices: Everything is for 0.5 Dinars or more")

Good and Bad Uses of Big- Ω

Bubble Sort is $\Omega(1)$.
Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds!
(Translation: "The mall of burned prices: Everything is for 0.5 Dinars or more")

Every comparison-based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst-case. Interesting!

Good and Bad Uses of Big- Ω

Bubble Sort is $\Omega(1)$.
Yea right! All algorithms are $\Omega(1)$!!

An example from the Jordanian market for the weird use of lower bounds!
(Translation: "The mall of burned prices: Everything is for 0.5 Dinars or more")

Every comparison-based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst-case. Interesting!

In other words. There is no use of trying to find a comparison-based sorting algorithm whose running time in the worst case is better than $n \log n$.

Stay tuned for a proof in a couple of weeks from now!

Big- Θ

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $\Theta(g)$ if and only if :

$$
f \text { is } O(g) \text { and } f \text { is also } \Omega(g)
$$

Big- Θ

Definition. Let $f(n)$ and $g(n)$ be two functions that are always positive, $f(n)$ is said to be $\Theta(g)$ if and only if :

```
f is O(g) and f is also \Omega(g)
```

Less formally: If multiplying $g(n)$ by a constant makes it an upper bound for $f(n)$ after some point and also multiplying $g(n)$ by another constant makes it a lower bound for $f(n)$ after some point, then f is $\Theta(g)$.

Big- Θ

Big-Omega

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \\
& 4 n+8=\Omega(n)
\end{aligned}
$$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \text { pick } c=12 \text { and } n_{o}=1 \\
& 4 n+8=\Omega(n)
\end{aligned} \quad \square \quad
$$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \text { pick } c=12 \text { and } n_{o}=1 \\
& 4 n+8=\Omega(n) \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \text { pick } c=12 \text { and } n_{o}=1 \\
& 4 n+8=\Omega(n) \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

B. $f(n)=\log _{2} n$ and $g(n)=\log _{3} n$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \begin{array}{l}
\text { pick } c=12 \text { and } n_{o}=1 \\
4 n+8=\Omega(n)
\end{array} \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

B. $f(n)=\log _{2} n$ and $g(n)=\log _{3} n$

Solution.
We need to show that:

$$
\begin{aligned}
& \log _{2} n=O\left(\frac{\log _{2} n}{\log _{2} 3}\right) \\
& \log _{2} n=\Omega\left(\frac{\log _{2} n}{\log _{2} 3}\right)
\end{aligned}
$$

Remember:
$\log _{b}(a)=\frac{\log _{x}(a)}{\log _{x}(b)}$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \text { pick } c=12 \text { and } n_{o}=1 \\
& 4 n+8=\Omega(n) \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

B. $f(n)=\log _{2} n$ and $g(n)=\log _{3} n$

Solution.
We need to show that:

$$
\begin{aligned}
& \log _{2} n=O\left(\frac{\log _{2} n}{\log _{2} 3}\right) \longrightarrow \text { pick } c \geq \log _{2} 3 \text { and } n_{o}=1 \\
& \log _{2} n=\Omega\left(\frac{\log _{2} n}{\log _{2} 3}\right)
\end{aligned}
$$

Exercises

For each of the following functions, show that f is $\Theta(g)$.
A. $f(n)=4 n+8$ and $g(n)=n$

Solution.
We need to show that:

$$
\begin{aligned}
& 4 n+8=O(n) \quad \longrightarrow \quad \begin{array}{l}
\text { pick } c=12 \text { and } n_{o}=1 \\
4 n+8=\Omega(n)
\end{array} \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

B. $f(n)=\log _{2} n$ and $g(n)=\log _{3} n$

Solution.
We need to show that:

$$
\begin{array}{ll}
\log _{2} n=O\left(\frac{\log _{2} n}{\log _{2} 3}\right) & \square
\end{array} \begin{aligned}
& \text { pick } c \geq \log _{2} 3 \text { and } n_{o}=1 \\
& \log _{2} n=\Omega\left(\frac{\log _{2} n}{\log _{2} 3}\right) \quad \longrightarrow \quad \text { pick } c=1 \quad \text { and } n_{o}=1
\end{aligned}
$$

Exercises

Show that $n^{3}+n$ is not $O\left(n^{2}\right)$.

Exercises

Show that $n^{3}+n$ is not $O\left(n^{2}\right)$.
Solution.
Assume for the sake of contradiction that there exist two constants c and n_{o} such that $0 \leq n^{3}+n \leq c \bullet n^{2}$ for all $n \geq n_{o}$.

Exercises

Show that $n^{3}+n$ is not $O\left(n^{2}\right)$.
Solution.
Assume for the sake of contradiction that there exist two constants c and n_{o} such that $0 \leq n^{3}+n \leq c \bullet n^{2}$ for all $n \geq n_{o}$.
Divide by n^{2} :
$0 \leq n+\frac{1}{n} \leq c$

Exercises

Show that $n^{3}+n$ is not $O\left(n^{2}\right)$.

Solution.

Assume for the sake of contradiction that there exist two constants c and n_{o} such that $0 \leq n^{3}+n \leq c \bullet n^{2}$ for all $n \geq n_{o}$.
Divide by $n^{2}: \quad 0 \leq n+\frac{1}{n} \leq c$
This is clearly false because $n+\frac{1}{n}$ is strictly
increasing while the right hand side is constant.

Exercises

Show that n^{2} is not $\Theta\left(n^{3}\right)$.

Exercises

Show that n^{2} is not $\Theta\left(n^{3}\right)$.
Solution.
Assume for the sake of contradiction that $n^{2}=\Omega\left(n^{3}\right)$, then there exist two constants c and n_{o} such that $0 \leq c \bullet n^{3} \leq n^{2}$ for all $n \geq n_{o}$.

Exercises

Show that n^{2} is not $\Theta\left(n^{3}\right)$.
Solution.
Assume for the sake of contradiction that $n^{2}=\Omega\left(n^{3}\right)$, then there exist two constants c and n_{o} such that $0 \leq c \cdot n^{3} \leq n^{2}$ for all $n \geq n_{o}$.
Divide by $n^{2}: \quad 0 \leq c \bullet n \leq 1$

Exercises

Show that n^{2} is not $\Theta\left(n^{3}\right)$.
Solution.
Assume for the sake of contradiction that $n^{2}=\Omega\left(n^{3}\right)$, then there exist two constants c and n_{o} such that $0 \leq c \cdot n^{3} \leq n^{2}$ for all $n \geq n_{o}$.
Divide by $n^{2}: \quad 0 \leq c \cdot n \leq 1$
This is clearly false because $c \bullet n$ is strictly increasing while the right hand side is constant.

Quiz \# 3

Which of the following is true about the running time of insertion sort?
A. The running time is $O\left(n^{2}\right)$
B. The running time is $\Omega(n)$
C. The best case is $\Theta(n)$.
D. The worst case is $\Theta\left(n^{2}\right)$.
E. All of the above.

Quiz \# 3

Which of the following is true about the running time of insertion sort?
A. The running time is $O\left(n^{2}\right)$
B. The running time is $\Omega(n)$
C. The best case is $\Theta(n)$.
D. The worst case is $\Theta\left(n^{2}\right)$.
E. All of the above.

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n)$ $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
for all $n \geq 1$
for all $n \geq 1$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.
Solution.

1. | $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n)$ | for all $n \geq 1$ |
| :--- | :--- |
| $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$ | for all $n \geq 1$ |
| $\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ | for all $n \geq 1$ |

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\begin{array}{ll}\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) & \text { for all } n \geq 1 \\ \log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right) & \text { for all } n \geq 1 \\ \log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n) & \text { for all } n \geq 1\end{array}$ Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ for all $n \geq 1$ for all $n \geq 1$

Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n) \quad$ for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
=\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n)
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$
for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n)
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right)
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.
Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right) \\
& \geq \frac{n}{2} \log \left(\frac{n}{2}\right)
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.
Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right) \\
& \geq \frac{n}{2} \log \left(\frac{n}{2}\right) \geq \frac{n}{2}(\log (n)-\log (2))
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.
Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n) \quad$ for all $n \geq 1$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$ for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right) \\
& \geq \frac{n}{2} \log \left(\frac{n}{2}\right) \geq \frac{n}{2}(\log (n)-\log (2)) \geq \frac{n}{2}(\log (n)-1)
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.
Solution.

1. $\begin{array}{lll}\log (1 \times 2 \times 3 \times \ldots \times n) & \leq \log (n \times n \times n \times \ldots \times n) & \text { for all } n \geq 1 \\ \log (1 \times 2 \times 3 \times \ldots \times n) & \leq \log \left(n^{n}\right) & \text { for all } n \geq 1 \\ \log (1 \times 2 \times 3 \times \ldots \times n) & \leq n \log (n) & \text { for all } n \geq 1\end{array}$ Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right) \\
& \geq \frac{n}{2} \log \left(\frac{n}{2}\right) \geq \frac{n}{2}(\log (n)-\log (2)) \geq \frac{n}{2}(\log (n)-1) \geq \frac{n}{2}\left(\log (n)-\frac{1}{4} \log (n)\right)
\end{aligned}
$$

Exercises

Stirling's Approximation states that:

$$
\log _{2}(n!)=n \log _{2} n-n \log _{2} e+r \log _{2} n \quad(r \text { is a positive constant })
$$

Show that $\log _{2}(n!)=\Theta(n \log n)$ without using Stirling's Approximation.

Solution.

1. $\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log (n \times n \times n \times \ldots \times n)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq \log \left(n^{n}\right)$
$\log (1 \times 2 \times 3 \times \ldots \times n) \leq n \log (n)$
for all $n \geq 1$
for all $n \geq 1$
for all $n \geq 1$
Therefore $\log _{2}(n!)=O(n \log n)$ because $0 \leq \log (n!) \leq 1 \bullet n \log n \quad$ for all $n \geq 1$
2. $\log _{2}(n!)=\log \left(1 \times 2 \times 3 \times \ldots \times \frac{n}{2} \times\left(\frac{n}{2}+1\right) \times\left(\frac{n}{2}+2\right) \times \ldots \times n\right)$

$$
\begin{aligned}
& =\log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}+1\right)+\log \left(\frac{n}{2}+2\right)+\ldots+\log (n) \\
& \geq \log (1)+\log (2)+\log (3)+\ldots+\log \left(\frac{n}{2}\right)+\log \left(\frac{n}{2}\right) \quad+\log \left(\frac{n}{2}\right) \quad+\ldots+\log \left(\frac{n}{2}\right) \\
& \geq \frac{n}{2} \log \left(\frac{n}{2}\right) \geq \frac{n}{2}(\log (n)-\log (2)) \geq \frac{n}{2}(\log (n)-1) \geq \frac{n}{2}\left(\log (n)-\frac{1}{4} \log (n)\right)
\end{aligned}
$$

Therefore $\log _{2}(n!)=\Omega(n \log n)$ because $0 \leq \frac{3}{8} \bullet n \log n \leq \log (n!) \quad$ for all $n \geq 16$

Optional Example

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2}$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2}$
for all $n \geq 1$
for all $n \geq 1$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2}$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2}$ Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)$

$$
\begin{aligned}
& \text { for all } n \geq 1 \\
& \text { for all } n \geq 1 \\
& \text { pick } c=1 \text { and } n_{o}=1
\end{aligned}
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$
$1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad$ for all $n \geq 1$
Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right) \quad$ pick $c=1$ and $n_{o}=1$
2. $\quad 1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad \text { for all } n \geq 1
$$

$$
\text { Therefore, } 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)
$$

$$
\text { pick } c=1 \text { and } n_{o}=1
$$

2. $\quad 1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\geq 1^{2}+2^{2}+\cdots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2} \quad \text { for all } n \geq 1
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad \text { for all } n \geq 1
$$

$$
\text { Therefore, } 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right) \quad \text { pick } c=1 \text { and } n_{o}=1
$$

2. $1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\begin{array}{lll}
\geq & \text { for all } n \geq 1 \\
\geq & \left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2} & \text { for all } n \geq 1
\end{array}
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad$ for all $n \geq 1$ Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)$ pick $c=1$ and $n_{o}=1$
2. $1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\begin{array}{ll}
\geq & \text { for all } n \geq 1 \\
\geq 1^{2}+2^{2}+\cdots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}\right)^{2}+\ldots+\left(\frac{n}{2}\right)^{2} & \text { for all } n \geq 1 \\
\geq \frac{n}{2} \times\left(\frac{n}{2}\right)^{2} & \text { for all } n \geq 1
\end{array}
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad$ for all $n \geq 1$ Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)$ pick $c=1$ and $n_{o}=1$
2. $1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\begin{array}{ll}
\geq & \text { for all } n \geq 1 \\
\geq 1^{2}+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2} & \text { for all } n \geq 1 \\
\geq \frac{n}{2} \times\left(\frac{n}{2}\right)^{2} \geq \frac{n}{2} \times \frac{n^{2}}{4} & \text { for all } n \geq 1
\end{array}
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad$ for all $n \geq 1$ Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)$ pick $c=1$ and $n_{o}=1$
2. $1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\begin{array}{ll}
\geq & \text { for all } n \geq 1 \\
\geq & \text { for all } n \geq 1 \\
\left.\geq \frac{n}{2} \times\left(\frac{n}{2}\right)^{2} \geq \frac{n}{2} \times \frac{n}{4} \geq \frac{n^{2}}{2} \geq\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2} & \text { for all } n \geq 1
\end{array}
$$

Optional Examples

We know that $\sum_{i=0}^{n} i^{2}$ can be computed using the formula: $\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Show that $\quad \sum_{i=0}^{n} i^{2}=\Theta\left(n^{3}\right)$ without using the above formula.

Solution.

1. $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n^{2}+n^{2}+n^{2}+\ldots+n^{2} \quad$ for all $n \geq 1$ $1^{2}+2^{2}+3^{2}+\ldots+n^{2} \leq n \times n^{2} \quad$ for all $n \geq 1$ Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=O\left(n^{3}\right)$ pick $c=1$ and $n_{o}=1$
2. $1^{2}+2^{2}+3^{2}+\ldots+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2}$

$$
\begin{array}{ll}
\geq & \text { for all } n \geq 1 \\
\geq+\left(\frac{n}{2}\right)^{2}+\left(\frac{n}{2}+1\right)^{2}+\left(\frac{n}{2}+2\right)^{2}+\ldots+n^{2} & \text { for all } n \geq 1 \\
\geq \frac{n}{2} \times\left(\frac{n}{2}\right)^{2} \geq \frac{n}{2} \times \frac{n^{2}}{4} \geq \frac{n^{3}}{8} & \text { for all } n \geq 1
\end{array}
$$

Therefore, $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\Omega\left(n^{3}\right)$
pick $c=\frac{1}{8}$ and $n_{o}=1$

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation		Example
	$f \leq g$		If $f=O\left(n^{2}\right)$, examples for f could be:
$f=o(g)$	$f<g$	If $f=o\left(n^{2}\right)$, examples for f could be:	

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation	Example
$f=O(g)$	$f \leq g$	$\begin{aligned} & \text { If } f=O\left(n^{2}\right) \text {, examples for } f \text { could be: } \\ & n^{2}, 3 n^{2}+n, 5 n-1,7 n \log n+5 n, \sqrt{n} \end{aligned}$
$f=o(g)$	$f<g$	If $f=o\left(n^{2}\right)$, examples for f could be: $n^{1.9}, 5 n-1,7 n \log n+5 n, \sqrt{n}$

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation	Example
$f=O(g)$	$f \leq g$	If $f=O\left(n^{2}\right)$, examples for f could be: $n^{2}, 3 n^{2}+n, 5 n-1,7 n \log n+5 n, \sqrt{n}$
$f=o(g)$	$f<g$	If $f=o\left(n^{2}\right)$, examples for f could be: $n^{1.9}, 5 n-1, \quad 7 n \log n+5 n, \quad \sqrt{n}$
$f=\Omega(g)$	$f \geq g$	If $f=\Omega\left(n^{2}\right)$, examples for f could be:
$f=\omega(g)$	$f>g$	If $f=\omega\left(n^{2}\right)$, examples for f could be:

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation	Example
$f=O(g)$	$f \leq g$	If $f=O\left(n^{2}\right)$, examples for f could be: $n^{2}, 3 n^{2}+n, 5 n-1,7 n \log n+5 n, \sqrt{n}$
$f=o(g)$	$f<g$	If $f=o\left(n^{2}\right)$, examples for f could be: $n^{1.9}, 5 n-1, \quad 7 n \log n+5 n, \quad \sqrt{n}$
$f=\Omega(g)$	$f \geq g$	If $f=\Omega\left(n^{2}\right)$, examples for f could be: $n^{2}, 3 n^{2}+n, 5 n^{3}, 7 n^{5}, \quad 2^{n}$
$f=\omega(g)$	$f>g$	If $f=\omega\left(n^{2}\right)$, examples for f could be: $n^{2.01}, n^{2} \log n, 5 n^{3}, 7 n^{5}, 2^{n}$

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Notation	Order of Growth Relation	Example
$f=O(g)$	$f \leq g$	$\begin{aligned} & \text { If } f=O\left(n^{2}\right), \text { examples for } f \text { could be: } \\ & n^{2}, 3 n^{2}+n, 5 n-1,7 n \log n+5 n, \sqrt{n} \end{aligned}$
$f=o(g)$	$f<g$	If $f=o\left(n^{2}\right)$, examples for f could be: $n^{1.9}, 5 n-1,7 n \log n+5 n, \sqrt{n}$
$f=\Omega(g)$	$f \geq g$	If $f=\Omega\left(n^{2}\right)$, examples for f could be: $n^{2}, 3 n^{2}+n, 5 n^{3}, 7 n^{5}, 2^{n}$
$f=\omega(g)$	$f>g$	If $f=\omega\left(n^{2}\right)$, examples for f could be: $n^{2.01}, n^{2} \log n, 5 n^{3}, 7 n^{5}, 2^{n}$
$f=\Theta(g)$	$f=g$	If $f=\Theta\left(n^{2}\right)$, examples for f could be: $n^{2}, \quad 3 n^{2}, 5 n^{2}-n, 7 n^{2}+n \log n+100$

Quiz \# 4

Assume that a function f is known to be $o\left(n^{2}\right)$ and also known to be $\Omega(\log n)$, which of the following functions can f possibly be?

Choose all that applies.

A. n^{n}
F. $n \sqrt{n}$
K. $\log ^{2} n$
B. 2^{n}
G. $n^{1.1}$
L. $\log n$
C. n^{3}
H. $n \log n$
M. $\log (\log n)$
D. $n^{2} \log n$
I. n
M. 100
E. n^{2}
Ј. \sqrt{n}

Quiz \# 4

Assume that a function f is known to be $o\left(n^{2}\right)$ and also known to be $\Omega(\log n)$, which of the following functions can f possibly be?

Choose all that applies.

A. n^{n}
B. 2^{n}
C. n^{3}
D. $n^{2} \log n$
E. n^{2}
F. $n \sqrt{n}$
G. $n^{1.1}$
H. $n \log n$
I. n
J. \sqrt{n}
K. $\log ^{2} n$
L. $\log n$
M. $\log (\log n)$
M. 100

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Examples.
$3 n^{2}$ vs n^{2} $3 n^{2}$ vs n^{3}
$3 n^{3}$ vs n^{2}

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g. Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Examples.

$3 n^{2}$ vs n^{2}	$3 n^{2}$ vs n^{3}	$3 n^{3}$ vs n^{2}
$3 n^{2}=O\left(n^{2}\right)$		
$3 n^{2}=\Omega\left(n^{2}\right)$		
$3 n^{2}=\Theta\left(n^{2}\right)$		
$3 n^{2} \neq o\left(n^{2}\right)$		
$3 n^{2} \neq \omega\left(n^{2}\right)$		

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g.
Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Examples.

$3 n^{2}$ vs n^{2}	$3 n^{2}$ vs n^{3}	$3 n^{3}$ vs n^{2}
$3 n^{2}=O\left(n^{2}\right)$	$3 n^{2}=\mathrm{O}\left(n^{3}\right)$	
$3 n^{2}=\Omega\left(n^{2}\right)$	$3 n^{2} \neq \Omega\left(n^{3}\right)$	
$3 n^{2}=\Theta\left(n^{2}\right)$	$3 n^{2} \neq \Theta\left(n^{3}\right)$	
$3 n^{2} \neq o\left(n^{2}\right)$	$3 n^{2}=\mathrm{o}\left(n^{3}\right)$	
$3 n^{2} \neq \omega\left(n^{2}\right)$	$3 n^{2} \neq \omega\left(n^{3}\right)$	

Small- o and Small- ω

Informal Definition. f is said to be $o(g)$ if it grows strictly slower than g.
Informal Definition. f is said to be $\omega(g)$ if it grows strictly faster than g.

Examples.

$3 n^{2}$ vs n^{2}	$3 n^{2}$ vs n^{3}	$3 n^{3}$ vs n^{2}
$3 n^{2}=O\left(n^{2}\right)$	$3 n^{2}=\mathrm{O}\left(n^{3}\right)$	$3 n^{3} \neq \mathrm{O}\left(n^{2}\right)$
$3 n^{2}=\Omega\left(n^{2}\right)$	$3 n^{2} \neq \Omega\left(n^{3}\right)$	$3 n^{3}=\Omega\left(n^{2}\right)$
$3 n^{2}=\Theta\left(n^{2}\right)$	$3 n^{2} \neq \Theta\left(n^{3}\right)$	$3 n^{3} \neq \Theta\left(n^{2}\right)$
$3 n^{2} \neq o\left(n^{2}\right)$	$3 n^{2}=\mathrm{o}\left(n^{3}\right)$	$3 n^{3} \neq \mathrm{o}\left(n^{2}\right)$
$3 n^{2} \neq \omega\left(n^{2}\right)$	$3 n^{2} \neq \omega\left(n^{3}\right)$	$3 n^{3}=\omega\left(n^{2}\right)$

Quiz \# 5

Consider $f(n)=O(g(n))$. Which of the following is definitely true?
Choose all that applies.
A. $f=\Theta(g)$
B. $f=o(g)$
C. $\quad g=\Omega(f)$
D. $\quad g=\omega(f)$

Quiz \# 5

Consider $f(n)=O(g(n))$. Which of the following is definitely true?
Choose all that applies.
A. $\quad f=\Theta(g) \longleftarrow$ we don't know if $f=\Omega(g)$
B. $f=o(g) \longleftarrow f$ and g could be of the same order!
C. $g=\Omega(f) \longleftarrow \begin{aligned} & g=\Omega(f) \Longleftrightarrow f=O(g) \\ & g=\omega(f) \Longleftrightarrow f=o(g)\end{aligned}$
D. $\quad g=\omega(f) \longleftarrow$ _ and g could be of the same order!

Properties

- Reflexivity. $f=$? $O(f)$
$f=? \Omega(f)$
$f=$? $\Theta(f)$
$f=? \omega(f)$
$f=? o(f)$

Properties

- Reflexivity. $f=\Theta(f)$
$f=O(f)$
$f=\Omega(f)$
$f \neq \omega(f)$
$f \neq o(f)$

Properties

- Reflexivity. f is $\Theta(f)$ and $O(f)$ and $\Omega(f)$ but not $o(f)$ or $\omega(f)$
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.

Example: $4 n^{2}+5$ is $\Theta\left(n^{2}\right)$ and $4 \times\left(4 n^{2}+5\right)$ is also $\Theta\left(n^{2}\right)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.

Example: $4 n^{2}+5$ is $\Theta\left(n^{2}\right)$ and $4 \times\left(4 n^{2}+5\right)$ is also $\Theta\left(n^{2}\right)$.
Similarly: If f is $O(g)$ and $c>0$, then $c \bullet f$ is $O(g)$.
If f is $\Omega(g)$ and $c>0$, then $c \bullet f$ is $\Omega(g)$.
If f is $o(g)$ and $c>0$, then $c \bullet f$ is $o(g)$.
If f is $\omega(g)$ and $c>0$, then $c \bullet f$ is $\omega(g)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $O(g)$ and g is $O(h)$ then f is $O(h)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $O(g)$ and g is $O(h)$ then f is $O(h)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $O(g)$ and g is $O(h)$ then f is $O(h)$. Similarly: If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.

If f is $\Omega(g)$ and g is $\Omega(h)$ then f is $\Omega(h)$.
If f is $o(g)$ and g is $o(h)$ then f is $o(h)$.
If f is $\omega(g)$ and g is $\omega(h)$ then f is $\omega(h)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_{1} is $\Theta\left(g_{1}\right)$ and f_{2} is $\Theta\left(g_{2}\right)$, then $f_{1}+f_{2}$ is \ldots ?

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_{1} is $\Theta\left(g_{1}\right)$ and f_{2} is $\Theta\left(g_{2}\right)$, then $f_{1}+f_{2}$ is $\Theta\left(\max \left\{g_{1}, g_{2}\right\}\right)$.

Example: If $f_{1}(n)$ is $\Theta\left(n^{2}\right)$ and $f_{2}(n)$ is $\Theta\left(n^{3}\right)$ then $f_{1}+f_{2}$ is $\Theta\left(n^{3}\right)$.

Properties

- Reflexivity. f is $\Theta(f)$.
- Constants. If f is $\Theta(g)$ and $c>0$, then $c \bullet f$ is $\Theta(g)$.
- Transitivity. If f is $\Theta(g)$ and g is $\Theta(h)$ then f is $\Theta(h)$.
- Sums. If f_{1} is $\Theta\left(g_{1}\right)$ and f_{2} is $\Theta\left(g_{2}\right)$, then $f_{1}+f_{2}$ is $\Theta\left(\max \left\{g_{1}, g_{2}\right\}\right)$.

Example: If $f_{1}(n)$ is $\Theta\left(n^{2}\right)$ and $f_{2}(n)$ is $\Theta\left(n^{3}\right)$ then $f_{1}+f_{2}$ is $\Theta\left(n^{3}\right)$.
Similarly: If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$, then $f_{1}+f_{2}$ is $O\left(\max \left\{g_{1}, g_{2}\right\}\right)$.
If f_{1} is $\Omega\left(g_{1}\right)$ and f_{2} is $\Omega\left(g_{2}\right)$, then $f_{1}+f_{2}$ is $\Omega\left(\max \left\{g_{1}, g_{2}\right\}\right)$.

- Don't say: "My algorithm is $O\left(n^{2}\right)$ "
- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".
Explanation. An algorithm is not a function, its running time is.

- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".

- Don't say: "Your algorithm runs in at least $O\left(n^{2}\right)$ "
- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".

- Don't say: "Your algorithm runs in at least $O\left(n^{2}\right)$ "

Say: "Your algorithm runs in $\Omega\left(n^{2}\right)$ " or "Your algorithm runs in at least $\Theta\left(n^{2}\right)$ "
Explanation. $O\left(n^{2}\right)$ describes all the functions whose order of growth is n^{2} or less (e.g. $\log (n), \sqrt{n}, n, n \log (n)$, etc.)
Saying that the running time is at least one of these functions means that the running time could be anything!

- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".

- Don't say: "Your algorithm runs in at least $O\left(n^{2}\right)$ "

Say: "Your algorithm runs in $\Omega\left(n^{2}\right)$ " or "Your algorithm runs in at least $\Theta\left(n^{2}\right)$ "

- Avoid saying: "The worst case running time of Bubble Sort is $O\left(n^{2}\right)$ "
- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".

- Don't say: "Your algorithm runs in at least $O\left(n^{2}\right)$ "

Say: "Your algorithm runs in $\Omega\left(n^{2}\right)$ " or "Your algorithm runs in at least $\Theta\left(n^{2}\right)$ "

- Avoid saying: "The worst case running time of Bubble Sort is $O\left(n^{2}\right)$ " Say: "The worst case running time of Bubble Sort is $\Theta\left(n^{2}\right)$ "

Explanation. $O\left(n^{2}\right)$ means: in the order of n^{2} or less $\Theta\left(n^{2}\right)$ means: in the order of n^{2}

قَّه ولا تّعَّه

- Don't say: "My algorithm is $O\left(n^{2}\right)$ "

Say: "The running time of my algorithm" is $O\left(n^{2}\right)$ or "My algorithm runs in $O\left(n^{2}\right)$ ".

- Don't say: "Your algorithm runs in at least $O\left(n^{2}\right)$ "

Say: "Your algorithm runs in $\Omega\left(n^{2}\right)$ " or "Your algorithm runs in at least $\Theta\left(n^{2}\right)$ "

- Avoid saying: "The worst case running time of Bubble Sort is $O\left(n^{2}\right)$ " Say: "The worst case running time of Bubble Sort is $\Theta\left(n^{2}\right)$ "$O(g(n))$ is a set of functions, but computer scientists often abuse the notation by writing $f(n)=O(g(n))$ instead of $f(n) \in O(g(n))$.

Alternative Definitions

$$
\text { if } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \quad \text { then }
$$

Alternative Definitions

order of growth relationship

$$
\text { if } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \quad \text { then } \quad f=o(g) \quad f(n)<g(n)
$$

Alternative Definitions

order of growth relationship

$$
\begin{aligned}
& \text { if } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \quad \text { then } \quad f=o(g) \quad f(n)<g(n) \\
& \text { if } \quad 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty \quad \text { then }
\end{aligned}
$$

Alternative Definitions

order of growth relationship

$$
\begin{array}{llll}
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g)
\end{array} f(n)<g(n)
$$

Alternative Definitions

order of growth relationship

$\begin{array}{llll}\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g) \\ \text { if } & 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f=O(n)\end{array}$
if $\quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty \quad$ then

Alternative Definitions

order of growth relationship

$$
\begin{array}{llll}
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g) \\
\text { if } & 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f=O(n)
\end{array}
$$

Alternative Definitions

order of growth relationship

$$
\begin{array}{llll}
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g) \\
\text { if } & 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f=O(n)
\end{array} \quad f(n) \leq g(n)
$$

Alternative Definitions

order of growth relationship

$$
\begin{array}{llll}
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g) \\
\text { if } & 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f=O(g)
\end{array} \quad f(n) \leq g(n)
$$

Alternative Definitions

order of growth relationship

$$
\begin{array}{llll}
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \text { then } & f=o(g) \\
\text { if } & 0 \leq \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f=O(g) \\
\text { if } & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty & \text { then } & f=\omega(n) \leq g(n) \\
\text { if } & 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq \infty & \text { then } & f=\Omega(g) \\
\text { if } & 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty & \text { then } & f(n) \geq g(n)
\end{array}
$$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$
Using L'Hôpital's rule: $\quad \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2 \sqrt{n}}}$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$
Using L'Hôpital's rule: $\quad \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2 \sqrt{n}}}$

$$
=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n \cdot \ln 2}
$$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$
$\begin{array}{ll}\text { Using L'Hôpital's rule: } & \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2 \sqrt{n}}} \\ \lim \frac{f(x)}{n}=\lim \frac{f^{\prime}(x)}{g} & \end{array}$

$$
=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n \cdot \ln 2}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{\sqrt{n} \sqrt{n} \cdot \ln 2}
$$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$
$\begin{array}{ll}\text { Using L'Hôpital's rule: } & \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2 \sqrt{n}}} \\ \lim \frac{f(x)}{n}=\lim \frac{f^{\prime}(x)}{s} . & \end{array}$

$$
=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n \cdot \ln 2}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{\sqrt{n} \sqrt{n} \cdot \ln 2}
$$

$$
=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n} \cdot \ln 2}=0
$$

Optional Example

Show that $\log _{2}(n) \times \log _{2}(n)=O(n)$

Solution.
This is equivalent to showing that $\log _{2}(n)=O(\sqrt{n})$

We need to show that: $\quad 0 \leq \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}<\infty$
$\begin{array}{ll}\text { Using L'Hôpital's rule: } & \lim _{n \rightarrow \infty} \frac{\log _{2}(n)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot \ln 2}}{\frac{1}{2 \sqrt{n}}}\end{array}$

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Remember. $\log ^{c} n=o\left(n^{d}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n \cdot \ln 2}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{\sqrt{n} \sqrt{n} \cdot \ln 2} \\
& =\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n} \cdot \ln 2}=0
\end{aligned}
$$

Optional Example

Prove by induction that $2^{n}=O(n!)$

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 2^{n} \leq c \bullet n$! for all $n \geq n_{o}$.

Assume $c=1$

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.

Assume $c=1$
i. When $n=4,2^{n}=16$ while $n!=24$. Therefore, the inequality holds for $n=4$.

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.

Assume $c=1$
i. When $n=4,2^{n}=16$ while $n!=24$. Therefore, the inequality holds for $n=4$.
ii. Assuming that we will show that

$$
\begin{array}{ll}
0 \leq 2^{m} \leq m! & \text { is true for some } m \geq 4, \\
0 \leq 2^{m+1} \leq(m+1)! & \text { is also true } .
\end{array}
$$

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that $0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.

Assume $c=1$
i. When $n=4,2^{n}=16$ while $n!=24$. Therefore, the inequality holds for $n=4$.
ii. Assuming that $\quad 0 \leq 2^{m} \leq m!\quad$ is true for some $m \geq 4$, we will show that $\quad 0 \leq 2^{m+1} \leq(m+1)$! is also true.

Rewriting the equation: $0 \leq 2^{1} \cdot 2^{m} \leq(m+1) \cdot m$!

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that
$0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.
Assume $c=1$
i. When $n=4,2^{n}=16$ while $n!=24$. Therefore, the inequality holds for $n=4$.
ii. Assuming that $\quad 0 \leq 2^{m} \leq m!\quad$ is true for some $m \geq 4$, we will show that $\quad 0 \leq 2^{m+1} \leq(m+1)!$ is also true.

Rewriting the equation: $0 \leq 2^{1} \cdot 2^{m} \leq(m+1) \cdot m$!
This is clearly true, since $2^{1} \leq(m+1)$ since $m \geq 4$ and we know from the induction hypothesis that $2^{m} \leq m$!

Optional Example

Prove by induction that $2^{n}=O(n!)$

Solution.
We need to show that there exist two constants c and n_{o} such that
$0 \leq 2^{n} \leq c \cdot n$! for all $n \geq n_{o}$.
Assume $c=1$
i. When $n=4,2^{n}=16$ while $n!=24$. Therefore, the inequality holds for $n=4$.
ii. Assuming that $\quad 0 \leq 2^{m} \leq m!\quad$ is true for some $m \geq 4$, we will show that $\quad 0 \leq 2^{m+1} \leq(m+1)!$ is also true.

Rewriting the equation: $0 \leq 2^{1} \cdot 2^{m} \leq(m+1) \cdot m$!
This is clearly true, since $2^{1} \leq(m+1)$ since $m \geq 4$ and we know from the induction hypothesis that $2^{m} \leq m$!

Therefore, $0 \leq 2^{n} \leq c \bullet n$! for all $n \geq n_{o}$ is true if we pick $c=1$ and $n_{o}=4$.

