
CS11212 - Spring 2022
Data Structures &

Introduction to Algorithms

Analysis of Algorithms
part 1: Counting Operations

Ibrahim Albluwi

What is an Algorithm?

A sequence of steps to solve a problem.

What is an Algorithm?

A sequence of steps to solve a problem.

Example. Sequential Search is an algorithm for searching for an element in
an array, which goes through all the elements one-by-one.

What is an Algorithm?

A sequence of steps to solve a problem.

Example. Sequential Search is an algorithm for searching for an element in
an array, which goes through all the elements one-by-one.

def search(mylist, k):for e in mylist:if e == k:
return Truereturn False

public static boolean
search(int[] mylist, i

nt k) {

for (int i = 0; i < my
list.length; i++)

if (mylist[i] == k)
return true;

return false;
}

bool search(int mylist[], int k, int n) {
for (int i = 0; i < n; i++)

if (mylist[i] == k)
return true;

return false;
}

Pyth!
C++

Java

The same algorithm implemented in different languages

Comparing Algorithms

Given two algorithms A and B, how
do we know which is faster?
Given two algorithms A and B, how
do we know which is faster?Q.

Comparing Algorithms

Given two algorithms A and B, how
do we know which is faster?Q.

Implement and run both and compare
the time each takes!A.

!!Experimental!Analysis!

•  To compare between two algorithms:

–  Implement them and run them.

–  Compare the time taken by each
algorithm.

•  Problems:

–  Hardware and Software Dependent.

–  Requires an implementation!

–  Running the algorithms may take a long time.

–  Requires running the algorithms many times to
account for different possible cases and different
input sizes.

Experimental Analysis

To compare two algorithms, we can implement them, run
them and compare their running times.

Challenges.

!!Experimental!Analysis!

•  To compare between two algorithms:

–  Implement them and run them.

–  Compare the time taken by each
algorithm.

•  Problems:

–  Hardware and Software Dependent.

–  Requires an implementation!

–  Running the algorithms may take a long time.

–  Requires running the algorithms many times to
account for different possible cases and different
input sizes.

Experimental Analysis

To compare two algorithms, we can implement them, run
them and compare their running times.

Challenges.

• !e running time of a program is hardware and so!ware
dependent.
We need to run both algorithms on the same machine (or on
machines with the same specs), using the same programming
language, the same compiler, etc.

!!Experimental!Analysis!

•  To compare between two algorithms:

–  Implement them and run them.

–  Compare the time taken by each
algorithm.

•  Problems:

–  Hardware and Software Dependent.

–  Requires an implementation!

–  Running the algorithms may take a long time.

–  Requires running the algorithms many times to
account for different possible cases and different
input sizes.

Experimental Analysis

To compare two algorithms, we can implement them, run
them and compare their running times.

Challenges.

• !e running time of a program is hardware and so!ware
dependent.
We need to run both algorithms on the same machine (or on
machines with the same specs), using the same programming
language, the same compiler, etc.

• !e running time of a program depends on the input size
and on the input type.
We need to run the programs as many times as needed to cover
all possible input sizes and types that might affect the behavior
of the programs.

!!Experimental!Analysis!

•  To compare between two algorithms:

–  Implement them and run them.

–  Compare the time taken by each
algorithm.

•  Problems:

–  Hardware and Software Dependent.

–  Requires an implementation!

–  Running the algorithms may take a long time.

–  Requires running the algorithms many times to
account for different possible cases and different
input sizes.

Experimental Analysis

To compare two algorithms, we can implement them, run
them and compare their running times.

Challenges.

• !e running time of a program is hardware and so!ware
dependent.
We need to run both algorithms on the same machine (or on
machines with the same specs), using the same programming
language, the same compiler, etc.

• !e running time of a program depends on the input size
and on the input type.
We need to run the programs as many times as needed to cover
all possible input sizes and types that might affect the behavior
of the programs.

• Running the programs might take a long time!
Takes as long as the fastest of the two programs requires.

Program A:
 x = 1;
 y = 2;
 sum = x + y;

Program B:
 x = 1;
 y = 2;
 z = 3;
 k = 4;
 m = 5;
 n = 6;
 x = x + y;
 x = x + z;
 x = x + k;
 x = x + m;
 X = x + n;

Which program runs faster?

Which program runs faster?

4 operations

16 operations

Program A:
 x = 1;
 y = 2;
 sum = x + y;

Program B:
 x = 1;
 y = 2;
 z = 3;
 k = 4;
 m = 5;
 n = 6;
 x = x + y;
 x = x + z;
 x = x + k;
 x = x + m;
 X = x + n;

Theoretical Analysis

To compare two algorithms, count the number of operations each one performs.

Theoretical Analysis

To compare two algorithms, count the number of operations each one performs.

Problem. Sometimes it is very difficult to count the number of operations or come
up with a model for that.

Solution. Perform experimental analysis!

How Many Operations?

i = 0;

sum = 0;

while (i < 10) {

sum += i;

i += 1;
}

i = 0;

sum = 0;

while (i < 20) {

sum += i;

i += 1;
}

How Many Operations?

i = 0;

sum = 0;

while (i < 10) {

sum += i;

i += 1;
}

 =
53 operations
2 + (1 × 11) + (4 × 10)

i = 0;

sum = 0;

while (i < 20) {

sum += i;

i += 1;
}

 =
103 operations
2 + (1 × 21) + (4 × 20)

For simplicity, we will say:
- the le# code performed the sum += i operation 10 times.
- the right code performed the sum += i operation 20 times.

We will always pick a certain operation to be the basis for our cost model.

1 × 1

1 × 1

1 × 11

2 × 10

2 × 10

1 × 1

1 × 1

1 × 21

2 × 20

2 × 20

How Many Operations?

i = 0;

sum = 0;

while (i<5) {

sum += i;

i += 1;

}

i = 10;

sum = 0;

while (i>0) {

sum += i;

i -= 1;

}

i = 0;

sum = 0;

while (i<n) {

sum += i;

i += 1;

}

5 times 10 times n times

How many times does sum += i get executed?

Note: In all of the examples, n is assumed to be positive

How Many Operations?

i = 100;

while (i<n) {

op();

i += 1;

}

 timesn − 100

i = 0;

while (i<n) {

op();

i += 5;

}

 times⌈n / 5⌉

i = 100;

while (i<n) {

op();

i += 5;

}

 times⌈(n − 100) / 5⌉

How many times does op() get called?

for all n > 100 and 0 otherwise for all n > 100 and 0 otherwise

How Many Operations?

for (int i=0; i<n; i++)

op();

n

⌈n /5⌉

for (int i=0; i<n; i+=5)

op();

How many times does op() get called?

How Many Operations?

for (int i=0; i<n; i++) {
op();
op();

}

2n

n

for (int i=0; i<n; i+=3) {
op();
op();
op();

}

How many times does op() get called?

assuming n is a multiple of 3. If not, then the answer is: ⌈n /3⌉ × 3

How Many Operations?

n2

2n

for (int i=0; i<n; i++)
op();

for (int j=0; j<n; j++)
op();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++)

op();
}

How many times does op() get called?

for (int i = 10; i < n; i++) {
for (int j = 5; j < n; j += 2)

op();
}

How Many Operations?

(n − 10) × 1
2 (n − 5)

How many times does op() get called?

for all n > 10, 0 otherwise

(assuming n is a multiple of 2)

How Many Operations?

How many times does op() get called?

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j += 2)

op();

for (int j = 0; j < n; j += 2)
op();

}

n × (1
2 n + 1

2 n) = n2

If n is not a multiple of 2, the answer is: n × (⌈ 1
2 n⌉ + ⌈ 1

2 n⌉)

(assuming n is a multiple of 2)

How Many Operations?

n × 1
2 n × (n − 10) = 1

2 n3 − 5n2

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j += 2)

for (int k = 10; k < n; k++)

op();

How many times does op() get called?

for all n > 10, 0 otherwise

(assuming n is a multiple of 2)

How Many Operations?

 n2 + (1
2 n × 1

2 n)

for (int i = 0; i < n*n; i++)
op();

for (int i = 0; i < n; i += 2)
for (int j = 0; j < n; j += 2)

op();

= n2 + 1
4 n2

= 5
4 n2

How many times does op() get called? (assuming n is a multiple of 2)

How Many Operations?

7n

for (int i = 0; i < n; i++)
for (int j = i; j < i + 7; j++)

op();

How many times does op() get called?

n

for (int i = 0; i*i < n; i++)
op();

(the loop stops when i.e. when)i2 = n i = n

(the inner loop always repeats 7 times, regardless of what the value of i is)

How Many Operations?

i = 1, 2, 4, 8, … , 1
2 n, n

for (int i = 1; i <= n; i *= 2)
op();

= 20, 21, 22, 23, … , 2k−1, 2k

!ese are k + 1 steps,

How many times does op() get called? (assuming n is a power of 2)

where i.e. 2k = n k = log2(n)

i = n, 1
2 n, 1

4 n, … , 8, 4, 2, 1

for (int i = n; i >= 1; i /= 2)
op();

= 2k, 2k−1, 2k−2, … , 23, 22, 21, 20

!ese are k + 1 steps, where i.e. 2k = n k = log2(n)

Total number of times op() is called = log2(n) + 1

Total number of times op() is called = log2(n) + 1

⌊logb(whatever)⌋ + 1

for (i = 1; i <= whatever; i *= b)
op();

! In general:

How Many Operations?

i = 1, 3, 9, 27, … , n

for (int i = 1; i <= n; i *= 3)
op();

= 30, 31, 32, 33, … , 3k

!ese are k + 1 steps,

How many times does op() get called?

where i.e. 3k = n k = log3(n)

How many times does op() get called? (assuming n is a power of 3)

Total number of times op() is called = log3(n) + 1

How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

How Many Operations?

How many times does op() get called?

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X
for (int i = 1; i <= n; i++)

for (int j = 1; j <= i; j++)
op();

How Many Operations?

How many times does op() get called?

i j number of op() calls

1
2
3
...
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2
3
...
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3
...
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
...
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
...

n [1, 2, 3, …, n] n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
...

n [1, 2, 3, …, n] n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

1 Trace

Total =

 =

1 + 2 + 3 + . . . + n
n

∑
i=0

i

2Formulate a sum

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
...

n [1, 2, 3, …, n] n

Total =

 =

1 + 2 + 3 + . . . + n
n

∑
i=0

i = n(n + 1)
2

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

1 Trace

2Formulate a sum

3 Solve the sum

If the nested loops
are dependent, we
can't analyze each
loop separately and
then multiply them!

X

code trace summation answer

Runtime Analysis Procedure

requires tracing skills
(structured programming?)

requires math skills
(discrete mathematics?)

How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n*n; i++)
for (int j = 1; j <= i; j++)

op();

How Many Operations?

How many times does op() get called?

i j number of op() calls

1 [1] 1
2 [1, 2] 2
3 [1, 2, 3] 3
...

n*n [1, 2, 3, …, n*n] n*n

Total =

 =

1 + 2 + 3 + . . . + n2

n2

∑
i=0

i = n2(n2 + 1)
2

for (int i = 1; i <= n*n; i++)
for (int j = 1; j <= i; j++)

op();

★

∑
i=0

i = ★ (★ + 1)
2

! A very frequently
encountered sum:

How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
 for (int k = 1; k <= i; k++)

 op();

How Many Operations?

How many times does op() get called?

i number of op() calls

1 1 x 1
2 2 x 2
3 3 x 3
... ...
n n x n

Total =

 =

12 + 22 + 32 + . . . + n2

n

∑
i=0

i2 = n(n + 1)(2n + 1)
6

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
 for (int k = 1; k <= i; k++)

 op();

see the math cheatsheet

How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
 op();

How many times does op() get called?

How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
 op();

How many times does op() get called?

i number of op() calls

1
2
3

… …

n

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
 op();

How many times does op() get called?

i number of op() calls

1
2
3

… …

n

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total = log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)

How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
 op();

How many times does op() get called?

i number of op() calls

1
2
3

… …

n

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total =

 =

log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)
log2(1 × 2 × 3 × … × n) + (n × 1) = log2(n!) + n

How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
 op();

How many times does op() get called?

i number of op() calls

1
2
3

… …

n

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total =

 =

log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)
log2(1 × 2 × 3 × … × n) + (n × 1) = log2(n!) + n

∼ n log2(n) Stirling's Approximation (see the math cheatsheet)

How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
 for (int i = 0; i < n; i++)
 op();
} else
 op();

}

How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
 for (int i = 0; i < n; i++)
 op();
} else
 op();

}

Best Case: op() is called 1 time (if random = 1)
Worst Case: op() is called n times (if random = 0).

How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
 for (int i = 0; i < n; i++)
 op();
} else
 op();

}

Average Case: P(0) × cost(0) + P(1) × cost(1)

probability of
random = 0

of op() calls
if random = 0

probability of
random = 1

of op() calls
if random = 1

Best Case: op() is called 1 time (if random = 1)
Worst Case: op() is called n times (if random = 0).

How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
 for (int i = 0; i < n; i++)
 op();
} else
 op();

}

Average Case: P(0) × cost(0) + P(1) × cost(1)

probability of
random = 0

of op() calls
if random = 0

probability of
random = 1

of op() calls
if random = 1

1
2 n 1

2 1× ×+ = 1
2 n+ 1

2 = 1
2 (n + 1)

Best Case: op() is called 1 time (if random = 1)
Worst Case: op() is called n times (if random = 0).

How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

Let’s consider comparisons with k as the basis for our analysis.

How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Let’s consider comparisons with k as the basis for our analysis.

Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

Average Case:
n−1

∑
i=0

P(i) × cost(i)

probability of finding
k at index i

number of operations
if k is found at index i

How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Assuming k is equally likely
to appear at any index:

= (1
n × 1) + (1

n × 2) + … + (1
n × n)

= 1
n × (n(n + 1)

2) = 1
2 (n + 1)

Let’s consider comparisons with k as the basis for our analysis.

Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

Average Case:
n−1

∑
i=0

P(i) × cost(i)

probability of finding
k at index i

number of operations
if k is found at index i

How Many Operations?

Best Case: 1 comparison (first two elements are not in order).
Worst Case: n - 1 comparisons (list is in order).

bool isSorted(int a[], int n) {

for (int i = 1; i < n; i++)
if (a[i - 1] > a[i])

return false;
return true;

}

Average Case: Not straightforward!

We will focus on best case and worst case analysis in this course.!

Let’s consider comparisons between array elements as the basis for our analysis.

CS11212 - Spring 2022
Data Structures &

Introduction to Algorithms

Analysis of Algorithms
part 2: Asymptotic Analysis

Ibrahim Albluwi

Which is better?

for (int i=0; i < 50 * n; i++)
op();

for (int i=0; i < n * n; i++)
op();

A

B

50n

n2

Which is better?

for (int i=0; i < 50 * n; i++)
op();

for (int i=0; i < n * n; i++)
op();

A

B

50n

n2

We expressed the number of operations performed by each program as

 and , which are two functions that have

different values depending on the value of the input size .

TA(n) = 50n TB(n) = n2

n

Which function represents a be&er running time (less performed operations)??

Which is better?

50n n2

n Algorithm
A

Algorithm
B

10 500 100

Which is better?

20 1000 400

30 1500 900

40 2000 1600

50 2500 2500

60 3000 3600

70 3500 4900

80 4000 6400

90 4500 8100

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80

Algorithm A
Algorithm B

 vs 50n n250n n2

n Algorithm
A

Algorithm
B

10 500 100

 is
 w

or
se

n2
 is

 w
or

se
50

n

Which is better?

20 1000 400

30 1500 900

40 2000 1600

50 2500 2500

60 3000 3600

70 3500 4900

80 4000 6400

90 4500 8100

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80

Algorithm A
Algorithm B

 vs 50n n2

 grows faster than .n2 50n!

50n n2

n Algorithm
A

Algorithm
B

10 500 100

 must at some point become worse (perform more
operations) than forever (when n > 50 in this case)
n2

50n

 is
 w

or
se

n2
 is

 w
or

se
50

n

Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

n2

 will at some point exceed regardless of what the value of c is.n2 cn!

Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

50n

n2

 will at some point exceed regardless of what the value of c is.n2 cn!

Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

50n

60n
70nn2

 will at some point exceed regardless of what the value of c is.n2 cn!

Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

50n − 250
50n
50n + 500
50n + 1000

n2

 will at some point exceed regardless of what the values of c and are.n2 cn + a a!

Orders of Growth

How quickly does the number operations performed grows when the
input size grows (when the array size grows)?

Example. Assume n 10 is the size of an array and we are interested in counting
the number of array accesses an algorithm performs.

≥

for (i=0; i<10; i++)
sum += a[0];

for (i=0; i<n; i++)
sum += a[i];

for (i=0; i<n; i++)
 for (j=0; j<n; j++)

 sum += a[j];

?

Orders of Growth

How quickly does the number operations performed grows when the
input size grows (when the array size grows)?

for (i=0; i<10; i++)
sum += a[0];

for (i=0; i<n; i++)
sum += a[i];

for (i=0; i<n; i++)
 for (j=0; j<n; j++)

 sum += a[j];

?

O
pe

ra
tio

ns

0

5

10

15

20

n

2 4 8 16

No growth!
Always 10, regardless

of the array size

Example. Assume n 10 is the size of an array and we are interested in counting
the number of array accesses an algorithm performs.

≥

Orders of Growth

How quickly does the number operations performed grows when the
input size grows (when the array size grows)?

for (i=0; i<10; i++)
sum += a[0];

for (i=0; i<n; i++)
sum += a[i];

for (i=0; i<n; i++)
 for (j=0; j<n; j++)

 sum += a[j];

?

O
pe

ra
tio

ns

0

5

10

15

20

n

2 4 8 16
0
2
4
6
8

10
12
14
16

n

2 6 10 14

No growth!
Always 10, regardless

of the array size

Linear growth!
operations double when
the array size doubles

Example. Assume n 10 is the size of an array and we are interested in counting
the number of array accesses an algorithm performs.

≥

Orders of Growth

How quickly does the number operations performed grows when the
input size grows (when the array size grows)?

for (i=0; i<10; i++)
sum += a[0];

for (i=0; i<n; i++)
sum += a[i];

for (i=0; i<n; i++)
 for (j=0; j<n; j++)

 sum += a[j];

?

O
pe

ra
tio

ns

0

5

10

15

20

n

2 4 8 16
0
2
4
6
8

10
12
14
16

n

2 6 10 14
0

64

128

192

256

n

2 4 8 16

No growth!
Always 10, regardless

of the array size

Linear growth!
operations double when
the array size doubles

Quadratic growth!
operations quadruple when

the array size doubles

Example. Assume n 10 is the size of an array and we are interested in counting
the number of array accesses an algorithm performs.

≥

Lesson # 1
Look at the running time growth rate!

Classify algorithms based on the order of growth of their running time
(ignoring the coefficients).

Example:

 have a quadratic order of growth.
 have a linear order of growth.

 have a logarithmic order of growth.

5n2, 30n2, 7n2, etc .
7n, 87n, 3n, etc .
3 log2 n, 2 ln n, 10 log10 n, etc .

!

linearithmic

Examples of Growth Rates
graph by Kevin Wayne and Robert Sedgewick

order of growth
name function

constant

logarithmic

linear

quadratic

cubic

exponential

exponential

factorial

1

log(n)

n

n

n n

n2

n3

2n

3n

n!

n log(n)

linearithmic

Examples of Growth Rates
graph by Kevin Wayne and Robert Sedgewick

order of growth
name function

constant

logarithmic

linear

quadratic

cubic

exponential

exponential

factorial

1

log(n)

n

n

n n

n2

n3

2n

3n

n!

n log(n)

constant < logarithmic < polynomial < exponential < factorial < nn!
logb(n) nc (c > 0) cn (c > 1)

linearithmic

Examples of Growth Rates
graph by Kevin Wayne and Robert Sedgewick

order of growth
name function

constant

logarithmic

linear

quadratic

cubic

exponential

exponential

factorial

1

log(n)

n

n

n n

n2

n3

2n

3n

n!

n log(n)

go
od

fin
e

ba
d

ho
rr

ib
le

constant < logarithmic < polynomial < exponential < factorial < nn!
logb(n) nc (c > 0) cn (c > 1)

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

Lower Order Terms? Really?

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

1000 106 105 3 103

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

1000 106 105 3 103

100000 1010 107 5 103

Assume
1 op requires
10-6 seconds:

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

1000 106 105 3 103

100000 1010 107 5 103

Assume
1 op requires
10-6 seconds:

= seconds
 2.78 Hours

1010 × 10−6

104
10 sec
107 × 10−6

0.000005 sec
5 × 10−6

0.001 sec
103 × 10−6

Lower Order Terms? Really?

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

+ + +

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

1000 106 105 3 103

100000 1010 107 5 103

Lower Order Terms? Really?

 dominates
when the input

size is large!

n2

If the running time of an algorithm is given by:

What is the most important term?

n2 + 100n + log10(n) + 1000

10 sec
107 × 10−6

0.000005 sec
5 × 10−6

0.001 sec
103 × 10−6

+ + +

= seconds
 2.78 Hours

1010 × 10−6

104

value of n n2 100n log10(n) 1000

1 1 102 0 103

10 102 103 1 103

100 104 104 2 103

1000 106 105 3 103

100000 1010 107 5 103

Running time in seconds assuming each operation takes seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

Lower Order Terms? Really?

log2(n)

n

n

n2

n3

2n

n!

nn

input size

or
de

r
of

 g
ro

w
th

Running time in seconds assuming each operation takes seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

10-5 10-4 0.001 0.01 0.1

Lower Order Terms? Really?

log2(n)

n

n

n2

n3

2n

n!

nn

input size

or
de

r
of

 g
ro

w
th

Running time in seconds assuming each operation takes seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

10-5 10-4 0.001 0.01 0.1

10-4 0.01 1 sec 1.67 sec 2.78 hr

Lower Order Terms? Really?

log2(n)

n

n

n2

n3

2n

n!

nn

input size

or
de

r
of

 g
ro

w
th

Running time in seconds assuming each operation takes seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

10-5 10-4 0.001 0.01 0.1

10-4 0.01 1 sec 1.67 sec 2.78 hr

0.001 1 sec 16.7 min 11.6 days 31.7 years

Lower Order Terms? Really?

log2(n)

n

n

n2

n3

2n

n!

nn

input size

or
de

r
of

 g
ro

w
th

Running time in seconds assuming each operation takes seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

10-5 10-4 0.001 0.01 0.1

10-4 0.01 1 sec 1.67 sec 2.78 hr

0.001 1 sec 16.7 min 11.6 days 31.7 years

0.001 4 x 1016 years !! !! !!

2.78 hr 3 x 10144 years !! !! !!

42 days !! !! !! !!

Lower Order Terms? Really?

log2(n)

n

n

n2

n3

2n

n!

nn

input size

or
de

r
of

 g
ro

w
th

Lesson # 2
When working with large
input sizes, consider only
the highest order term.

Lesson # 2
When working with large
input sizes, consider only
the highest order term.

Drop all lower order terms and coefficients and
express the running time using Big-O notation:

Example:

Example:

T(n) = 5n2 + 3n + 1 ⟶ O(n2)

T(n) = 3n3 + n log2(n) ⟶ O(n3)

!

Lesson # 2
When working with large
input sizes, consider only
the highest order term.

Drop all lower order terms and coefficients and
express the running time using Big-O notation:

Example:

Example:

T(n) = 5n2 + 3n + 1 ⟶ O(n2)

T(n) = 3n3 + n log2(n) ⟶ O(n3)

!

Technically (not for this course):
!e running time of the algorithm
(as a function of the input size n)
is bounded above (a#er some point)
by a constant multiplied by .

Informally (in this course):
!e running time (as a function of
the input size n) has as the
highest order term (c > 0 is a constant).

n2

cn2

for (int i = 0; i < 100; i += 5)
for (int j = 0; j < n; j++)

for (int k = 0; k < 2 * n; k++)
op();

What is the order of growth as a function of n?

for (int i = 0; i < 100; i += 5)
for (int j = 0; j < n; j++)

for (int k = 0; k < 2 * n; k++)
op();

What is the order of growth as a function of n?

O(1) × O(n) × O(n) = O(n2)

O(1)
O(n)
O(n)

for (int i = 0; i < 100; i += 5)
for (int j = 0; j < n; j++)

for (int k = 0; k < 2 * n; k++)
op();

What is the order of growth as a function of n?

for (int i = 0; i < 100; i += 5) {
for (int j = 1; j < n; j += 2)

op();
for (int k = 0; k < 2 * n; k++)

op();
op();

}

O(1) × O(n) × O(n) = O(n2)

O(1)
O(n)
O(n)

for (int i = 0; i < 100; i += 5)
for (int j = 0; j < n; j++)

for (int k = 0; k < 2 * n; k++)
op();

What is the order of growth as a function of n?

for (int i = 0; i < 100; i += 5) {
for (int j = 1; j < n; j += 2)

op();
for (int k = 0; k < 2 * n; k++)

op();
op();

}

O(1) × O(n) × O(n) = O(n2)

O(1) × (O(n) + O(n) + O(1)) = O(n)

O(1)
O(n)
O(n)

O(1)
O(n)

O(n)

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

Total = 0 + 2 + 4 + 6 + . . . + n

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

Total =

 = = = =

0 + 2 + 4 + 6 + . . . + n

2 × (0 + 1 + 2 + 3 + . . . + 1
2 n) 2 ×

n/2

∑
i=0

i 2 ×
1
2 n(1

2 n + 1)
2 O(n2)

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

Total =

 = = = =

0 + 2 + 4 + 6 + . . . + n

2 × (0 + 1 + 2 + 3 + . . . + 1
2 n) 2 ×

n/2

∑
i=0

i 2 ×
1
2 n(1

2 n + 1)
2 O(n2)

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

Total =

 = = =

0 + 2 + 4 + 6 + . . . + n

2 × (0 + 1 + 2 + 3 + . . . + 1
2 n) 2 ×

n/2

∑
i=0

i 2 ×
1
2 n(1

2 n + 1)
2

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

for (int i = 0; i <= n; i += 2)
for (int j = 1; j <= i; j++)

op();

What is the order of growth as a function of n?

i j number of op() calls

0 - 0
2 [1, 2] 2
4 [1 4] 4
6 [1 6] 6
...
n [1 n] n

⟶
⟶

⟶

Total =

 = = = =

0 + 2 + 4 + 6 + . . . + n

2 × (0 + 1 + 2 + 3 + . . . + 1
2 n) 2 ×

n/2

∑
i=0

i 2 ×
1
2 n(1

2 n + 1)
2 O(n2)

Which function grows faster?

T(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

Which function grows faster?

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

Which function grows faster?

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

Which function grows faster?

same

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1 = 21 × 2n = O(2n)

Which function grows faster?

same

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

Which function grows faster?

same

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2= 2 log2(n)

Which function grows faster?

same

sameT(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

T(n) = log2(n) H(n) = log10(n)

Which function grows faster?

same

same

same

T(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

T(n) = log2(n) H(n) = log10(n) = log2(n)
log2(10)

Which function grows faster?

same

same

same

T(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

T(n) = log2(n) H(n) = log10(n)

T(n) = log2(n) H(n) = n

Which function grows faster?

same

same

same

T(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

T(n) = log2(n) H(n) = log10(n)

T(n) = log2(n) H(n) = n = n0.5

Do the math!

!e speed of a machine is operations per second. Given an algorithm that
performs operations, how much time will this algorithm (roughly)
require if we run it on an input size of ?

106

∼ n lg n
n = 1000

?

Do the math!

?

speed = number of operations
time

106 = 1000 × lg(1000)
time

!e speed of a machine is operations per second. Given an algorithm that
performs operations, how much time will this algorithm (roughly)
require if we run it on an input size of ?

106

∼ n lg n
n = 1000

Do the math!

?

speed = number of operations
time

106 = 1000 × lg(1000)
time

time = 1000 × lg(1000)
106

!e speed of a machine is operations per second. Given an algorithm that
performs operations, how much time will this algorithm (roughly)
require if we run it on an input size of ?

106

∼ n lg n
n = 1000

Do the math!

?

speed = number of operations
time

106 = 1000 × lg(1000)
time

 time = 1000 × lg(1000)
106 = lg(1000)

103 ≈ 0.01 sec

!e speed of a machine is operations per second. Given an algorithm that
performs operations, how much time will this algorithm (roughly)
require if we run it on an input size of ?

106

∼ n lg n
n = 1000

Do the math!

An algorithm that performs operations takes seconds to run with
an input of size . How long is this algorithm expected to take if the input
size is ?

∼ n 10−4

n = 104

n = 108
?

Do the math!

?

speed = number of operations
time

speed = 104

10−4 = 106 operations per second

An algorithm that performs operations takes seconds to run with
an input of size . How long is this algorithm expected to take if the input
size is ?

∼ n 10−4

n = 104

n = 108

Do the math!

?

speed = number of operations
time

speed = 104

10−4 = 106 operations per second

106 = 108

time

An algorithm that performs operations takes seconds to run with
an input of size . How long is this algorithm expected to take if the input
size is ?

∼ n 10−4

n = 104

n = 108

Do the math!

?

speed = number of operations
time

speed = 104

10−4 = 106 operations per second

106 = 108

time time = 108

106 = 0.01 sec⟶

An algorithm that performs operations takes seconds to run with
an input of size . How long is this algorithm expected to take if the input
size is ?

∼ n 10−4

n = 104

n = 108

Do the math!

An algorithm that performs operations required 10 seconds to run on
a machine that performs operations per second. How much time is an
algorithm that performs operations expected to take when run on the
same machine and the same input?

∼ n2

107

∼ n3?

speed = number of operations
time

Do the math!

?

speed = number of operations
time

 107 = n2

10

find the input size on
which the algorithm
took 10 seconds

n2

An algorithm that performs operations required 10 seconds to run on
a machine that performs operations per second. How much time is an
algorithm that performs operations expected to take when run on the
same machine and the same input?

∼ n2

107

∼ n3

Do the math!

?

speed = number of operations
time

 107 = n2

10 n2 = 10 × 107⟶ n = 104⟶
find the input size on
which the algorithm
took 10 seconds

n2

An algorithm that performs operations required 10 seconds to run on
a machine that performs operations per second. How much time is an
algorithm that performs operations expected to take when run on the
same machine and the same input?

∼ n2

107

∼ n3

Do the math!

?

speed = number of operations
time

 107 = n2

10 n2 = 10 × 107

107 = n3

time

⟶ n = 104⟶

time = (104)3

107 = 105 sec ≈ 27.8 hours⟶

find the input size on
which the algorithm
took 10 seconds

n2

use the computed input
size to find the time taken
by the algorithm n3

An algorithm that performs operations required 10 seconds to run on
a machine that performs operations per second. How much time is an
algorithm that performs operations expected to take when run on the
same machine and the same input?

∼ n2

107

∼ n3

