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What is an Algorithm?

A sequence of steps to solve a problem. 

Example. Sequential Search is an algorithm for searching for an element in 
an array, which goes through all the elements one-by-one.

def search(mylist, k):for e in mylist:if e == k:
return Truereturn False

public static boolean 
search(int[] mylist, i

nt k) {

for (int i = 0; i < my
list.length; i++)

if (mylist[i] == k)
return true;

return false;
}

bool search(int mylist[], int k, int n) {
for (int i = 0; i < n; i++)

if (mylist[i] == k)
return true;

return false;
}

Pyth!
C++

Java

The same algorithm implemented in different languages



Comparing Algorithms

Given two algorithms A and B, how 
do we know which is faster?
Given two algorithms A and B, how 
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Comparing Algorithms

Given two algorithms A and B, how 
do we know which is faster?Q.

Implement and run both and compare 
the time each takes!A.



!!Experimental!Analysis!

•  To compare between two algorithms: 

–  Implement them and run them. 

–  Compare the time taken by each  
algorithm. 

•  Problems: 

–  Hardware and Software Dependent. 

–  Requires an implementation! 

–  Running the algorithms may take a long time. 

–  Requires running the algorithms many times to 
account for different possible cases and different 
input sizes. 
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!!Experimental!Analysis!

•  To compare between two algorithms: 

–  Implement them and run them. 

–  Compare the time taken by each  
algorithm. 

•  Problems: 

–  Hardware and Software Dependent. 

–  Requires an implementation! 

–  Running the algorithms may take a long time. 

–  Requires running the algorithms many times to 
account for different possible cases and different 
input sizes. 

Experimental Analysis

To compare two algorithms, we can implement them, run 
them and compare their running times. 

Challenges. 

• !e running time of a program is hardware and so!ware 
dependent. 
We need to run both algorithms on the same machine (or on 
machines with the same specs), using the same programming 
language, the same compiler, etc. 

• !e running time of a program depends on the input size 
and on the input type. 
We need to run the programs as many times as needed to cover 
all possible input sizes and types that might affect the behavior 
of the programs. 

• Running the programs might take a long time! 
Takes as long as the fastest of the two programs requires.



Program A: 
 x = 1; 
 y = 2; 
 sum = x + y;

Program B: 
 x = 1; 
 y = 2; 
 z = 3; 
 k = 4; 
 m = 5; 
 n = 6; 
 x = x + y; 
 x = x + z; 
 x = x + k; 
 x = x + m; 
 X = x + n;

Which program runs faster?



Which program runs faster?

4 operations

16 operations

Program A: 
 x = 1; 
 y = 2; 
 sum = x + y;

Program B: 
 x = 1; 
 y = 2; 
 z = 3; 
 k = 4; 
 m = 5; 
 n = 6; 
 x = x + y; 
 x = x + z; 
 x = x + k; 
 x = x + m; 
 X = x + n;



Theoretical Analysis

To compare two algorithms, count the number of operations each one performs.



Theoretical Analysis

To compare two algorithms, count the number of operations each one performs. 

Problem. Sometimes it is very difficult to count the number of operations or come 
up with a model for that. 

Solution. Perform experimental analysis!



How Many Operations?

i = 0; 

sum = 0; 

while (i < 10) { 

sum += i; 

i += 1; 
}

i = 0; 

sum = 0; 

while (i < 20) { 

sum += i; 

i += 1; 
}



How Many Operations?

i = 0; 

sum = 0; 

while (i < 10) { 

sum += i; 

i += 1; 
}

 =  
53 operations
2 + (1 × 11) + (4 × 10)

i = 0; 

sum = 0; 

while (i < 20) { 

sum += i; 

i += 1; 
}

 =  
103 operations
2 + (1 × 21) + (4 × 20)

For simplicity, we will say: 
- the le# code performed the sum += i operation 10 times. 
- the right code performed the sum += i operation 20 times. 

We will always pick a certain operation to be the basis for our cost model.

1 × 1

1 × 1

1 × 11

2 × 10

2 × 10

1 × 1

1 × 1

1 × 21

2 × 20

2 × 20



How Many Operations?

i = 0;

sum = 0;

while (i<5) {

sum += i;

i += 1;

}

i = 10;

sum = 0;

while (i>0) {

sum += i;

i -= 1;

}

i = 0;

sum = 0;

while (i<n) {

sum += i;

i += 1;

}

5 times 10 times n times

How many times does sum += i get executed?

Note: In all of the examples, n is assumed to be positive



How Many Operations?

i = 100;

while (i<n) {

op();

i += 1;

}

 timesn − 100

i = 0;

while (i<n) {

op();

i += 5;

}

 times⌈n / 5⌉

i = 100;

while (i<n) {

op();

i += 5;

}

 times⌈(n − 100) / 5⌉

How many times does op() get called?

for all n > 100 and 0 otherwise for all n > 100 and 0 otherwise



How Many Operations?

for (int i=0; i<n; i++)

op();

n

⌈n /5⌉

for (int i=0; i<n; i+=5)

op();

How many times does op() get called?



How Many Operations?

for (int i=0; i<n; i++) {
op();
op();

}

2n

n 

for (int i=0; i<n; i+=3) {
op();
op();
op();

}

How many times does op() get called?

assuming n is a multiple of 3. If not, then the answer is: ⌈n /3⌉ × 3



How Many Operations?

n2

2n

for (int i=0; i<n; i++)
op();

for (int j=0; j<n; j++)
op();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++)

op();
}

How many times does op() get called?



for (int i = 10; i < n; i++) {
for (int j = 5; j < n; j += 2)

op();
}

How Many Operations?

(n − 10) × 1
2 (n − 5)

How many times does op() get called?

for all n > 10, 0 otherwise

(assuming n is a multiple of 2)



How Many Operations?

How many times does op() get called?

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j += 2)

op();

for (int j = 0; j < n; j += 2)
op();

}

n × ( 1
2 n + 1

2 n) = n2

If n is not a multiple of 2, the answer is: n × (⌈ 1
2 n⌉ + ⌈ 1

2 n⌉)

(assuming n is a multiple of 2)



How Many Operations?

n × 1
2 n × (n − 10) = 1

2 n3 − 5n2

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j += 2)

for (int k = 10; k < n; k++)

op();

How many times does op() get called?

for all n > 10, 0 otherwise

(assuming n is a multiple of 2)



How Many Operations?

     n2 + ( 1
2 n × 1

2 n)

for (int i = 0; i < n*n; i++)
op();

for (int i = 0; i < n; i += 2)
for (int j = 0; j < n; j += 2)

op();

= n2 + 1
4 n2

= 5
4 n2

How many times does op() get called? (assuming n is a multiple of 2)



How Many Operations?

7n

for (int i = 0; i < n; i++)
for (int j = i; j < i + 7; j++)

op();

How many times does op() get called?

n

for (int i = 0; i*i < n; i++)
op();

(the loop stops when    i.e. when  )i2 = n i = n

(the inner loop always repeats 7 times, regardless of what the value of i is)



How Many Operations?

i = 1, 2, 4, 8, … , 1
2 n, n

for (int i = 1; i <= n; i *= 2)
op();

= 20, 21, 22, 23, … , 2k−1, 2k

!ese are k + 1 steps,

How many times does op() get called? (assuming n is a power of 2)

where    i.e.  2k = n k = log2(n)

i = n, 1
2 n, 1

4 n, … , 8, 4, 2, 1

for (int i = n; i >= 1; i /= 2)
op();

= 2k, 2k−1, 2k−2, … , 23, 22, 21, 20

!ese are k + 1 steps, where    i.e.  2k = n k = log2(n)

Total number of times op() is called = log2(n) + 1

Total number of times op() is called = log2(n) + 1



⌊logb(whatever)⌋ + 1

for (i = 1; i <= whatever; i *= b)
op();

! In general:

How Many Operations?

i = 1, 3, 9, 27, … , n

for (int i = 1; i <= n; i *= 3)
op();

= 30, 31, 32, 33, … , 3k

!ese are k + 1 steps,

How many times does op() get called?

where    i.e.  3k = n k = log3(n)

How many times does op() get called? (assuming n is a power of 3)

Total number of times op() is called = log3(n) + 1



How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();



How Many Operations?

How many times does op() get called?

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X
for (int i = 1; i <= n; i++)

for (int j = 1; j <= i; j++)
op();



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1     
2    
3    
...   
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace
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How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    
3    
...   
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    
...   
n

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    [1, 2, 3]            3 
...  
n    

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    [1, 2, 3]            3 
...   ...                     ... 

n    [1, 2, 3, …, n]      n 

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    [1, 2, 3]            3 
...   ...                     ... 

n    [1, 2, 3, …, n]      n 

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X

1 Trace

Total =  

         =  

1 + 2 + 3 + . . . + n
n

∑
i=0

i

2Formulate a sum



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    [1, 2, 3]            3 
...   ...                     ... 

n    [1, 2, 3, …, n]      n 

Total =  

         =  

1 + 2 + 3 + . . . + n
n

∑
i=0

i = n(n + 1)
2

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

op();

1 Trace

2Formulate a sum

3 Solve the sum

If the nested loops 
are dependent, we 
can't analyze each 
loop separately and 
then multiply them!

X



code trace summation answer

Runtime Analysis Procedure

requires tracing skills 
(structured programming?)

requires math skills 
(discrete mathematics?)



How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n*n; i++)
for (int j = 1; j <= i; j++)

op();



How Many Operations?

How many times does op() get called?

i          j                          number of  op() calls 

1    [1]                  1 
2    [1, 2]               2 
3    [1, 2, 3]            3 
...   ...                     ... 

n*n  [1, 2, 3, …, n*n]    n*n 

Total =  

         =  

1 + 2 + 3 + . . . + n2

n2

∑
i=0

i = n2(n2 + 1)
2

for (int i = 1; i <= n*n; i++)
for (int j = 1; j <= i; j++)

op();

★

∑
i=0

i = ★ (★ + 1)
2

! A very frequently  
encountered sum:



How Many Operations?

How many times does op() get called?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
  for (int k = 1; k <= i; k++)

  op();



How Many Operations?

How many times does op() get called?

i          number of  op() calls 

1          1 x 1 
2          2 x 2 
3          3 x 3 
...          ...  
n          n x n          

Total =  

         =  

12 + 22 + 32 + . . . + n2

n

∑
i=0

i2 = n(n + 1)(2n + 1)
6

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
  for (int k = 1; k <= i; k++)

  op();

see the math cheatsheet



How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
  op();

How many times does op() get called?



How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
  op();

How many times does op() get called?

i       number of  op() calls 

1                
2                
3                

…               … 

n               

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1



How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
  op();

How many times does op() get called?

i       number of  op() calls 

1                
2                
3                

…               … 

n               

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total = log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)



How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
  op();

How many times does op() get called?

i       number of  op() calls 

1                
2                
3                

…               … 

n               

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total =  

         = 

log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)
log2(1 × 2 × 3 × … × n) + (n × 1) = log2(n!) + n



How Many Operations?

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j *= 2)
  op();

How many times does op() get called?

i       number of  op() calls 

1                
2                
3                

…               … 

n               

log2(1) + 1
log2(2) + 1
log2(3) + 1

log2(n) + 1

Total =  

         =  

          

log2(1) + log2(2) + log2(3) + … + log2(n) + (n × 1)
log2(1 × 2 × 3 × … × n) + (n × 1) = log2(n!) + n

∼ n log2(n) Stirling's Approximation (see the math cheatsheet)



How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
    for (int i = 0; i < n; i++)
        op();
} else
    op();

}



How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
    for (int i = 0; i < n; i++)
        op();
} else
    op();

}

Best Case: op() is called 1 time (if random = 1) 
Worst Case: op() is called n times (if random = 0).



How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
    for (int i = 0; i < n; i++)
        op();
} else
    op();

}

Average Case:  P(0) × cost(0) + P(1) × cost(1)

probability of  
random = 0

# of op() calls 
if random = 0

probability of  
random = 1

# of op() calls 
if random = 1

Best Case: op() is called 1 time (if random = 1) 
Worst Case: op() is called n times (if random = 0).



How Many Operations?

bool foo(int n) {
int random = rand() % 2;
if (random == 0) {
    for (int i = 0; i < n; i++)
        op();
} else
    op();

}

Average Case:  P(0) × cost(0) + P(1) × cost(1)

probability of  
random = 0

# of op() calls 
if random = 0

probability of  
random = 1

# of op() calls 
if random = 1

1
2 n 1

2 1× ×+ = 1
2 n+ 1

2 = 1
2 (n + 1)

Best Case: op() is called 1 time (if random = 1) 
Worst Case: op() is called n times (if random = 0).



How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Best Case: 1 comparison (k  is the first element in the list). 
Worst Case: n comparisons (k  is not in the list). 

Let’s consider comparisons with k as the basis for our analysis. 



How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Let’s consider comparisons with k as the basis for our analysis. 

Best Case: 1 comparison (k  is the first element in the list). 
Worst Case: n comparisons (k  is not in the list). 

Average Case: 
n−1

∑
i=0

P(i) × cost(i)

probability of finding  
k at index i

number of operations 
if k is found at index i



How Many Operations?

bool search(int a[], int k, int n) {

for (int i = 0; i < n; i++)
if (a[i] == k)

return true;
return false;

}

Assuming k is equally likely  
to appear at any index: 

 

 

= ( 1
n × 1) + ( 1

n × 2) + … + ( 1
n × n)

= 1
n × ( n(n + 1)

2 ) = 1
2 (n + 1)

Let’s consider comparisons with k as the basis for our analysis. 

Best Case: 1 comparison (k  is the first element in the list). 
Worst Case: n comparisons (k  is not in the list). 

Average Case: 
n−1

∑
i=0

P(i) × cost(i)

probability of finding  
k at index i

number of operations 
if k is found at index i



How Many Operations?

Best Case: 1 comparison (first two elements are not in order). 
Worst Case: n - 1 comparisons (list is in order).

bool isSorted(int a[], int n) {

for (int i = 1; i < n; i++)
if (a[i - 1] > a[i])

return false;
return true;

}

Average Case: Not straightforward!

We will focus on best case and worst case analysis in this course.!

Let’s consider comparisons between array elements as the basis for our analysis. 
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Which is better?

for (int i=0; i < 50 * n; i++)
op();

for (int i=0; i < n * n; i++)
op();

A

B

50n

n2



Which is better?

for (int i=0; i < 50 * n; i++)
op();

for (int i=0; i < n * n; i++)
op();

A

B

50n

n2

We expressed the number of operations performed by each program as 

  and   , which are two functions that have  

different values depending on the value of the input size .

TA(n) = 50n TB(n) = n2

n

Which function represents a be&er running time (less performed operations)??



Which is better?

50n n2

n Algorithm  
A

Algorithm  
B

10 500 100



Which is better?

20 1000 400

30 1500 900

40 2000 1600

50 2500 2500

60 3000 3600

70 3500 4900

80 4000 6400

90 4500 8100

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80

Algorithm A
Algorithm B

       vs      50n n250n n2

n Algorithm  
A

Algorithm  
B

10 500 100

 is
 w

or
se

n2
 is

 w
or

se
50

n



Which is better?

20 1000 400

30 1500 900

40 2000 1600

50 2500 2500

60 3000 3600

70 3500 4900

80 4000 6400

90 4500 8100

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80

Algorithm A
Algorithm B

       vs      50n n2

 grows faster than .n2 50n!

50n n2

n Algorithm  
A

Algorithm  
B

10 500 100

 must at some point become worse  (perform more  
operations) than  forever (when n > 50 in this case)
n2

50n

 is
 w

or
se

n2
 is

 w
or

se
50

n



Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

n2

  will at some point exceed    regardless of what the value of  c  is.n2 cn!



Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

50n

n2

  will at some point exceed    regardless of what the value of  c  is.n2 cn!



Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

40n

50n

60n
70nn2

  will at some point exceed    regardless of what the value of  c  is.n2 cn!



Orders of Growth

0

1750

3500

5250

7000

10 20 30 40 50 60 70 80 90 100 110

50n − 250
50n
50n + 500
50n + 1000

n2

  will at some point exceed    regardless of what the values of  c  and    are.n2 cn + a a!



Orders of Growth

How quickly does the number operations performed grows when the  
input size grows (when the array size grows)?

Example. Assume  n  10  is the size of an array and we are interested in counting 
the number of array accesses an algorithm performs.
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for (i=0; i<10; i++)
sum += a[0];

for (i=0; i<n; i++)
sum += a[i];

for (i=0; i<n; i++)
  for (j=0; j<n; j++)

  sum += a[j];
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Quadratic growth!
operations quadruple when 
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Example. Assume  n  10  is the size of an array and we are interested in counting 
the number of array accesses an algorithm performs.
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Lesson # 1 
Look at the running time growth rate! 

Classify algorithms based on the order of growth of their running time 
(ignoring the coefficients). 
  
Example:  

         have a quadratic order of growth.
               have a linear order of growth.

   have a logarithmic order of growth.

5n2, 30n2, 7n2, etc .
7n, 87n, 3n, etc .
3 log2 n, 2 ln n, 10 log10 n, etc .

!
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Examples of Growth Rates
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If the running time of an algorithm is given by:  

      
What is the most important term?

n2 + 100n + log10(n) + 1000

Lower Order Terms? Really?
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Assume 
1 op requires  
10-6 seconds:

Lower Order Terms? Really?

If the running time of an algorithm is given by:  
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Assume 
1 op requires  
10-6 seconds:

    
=  seconds 
  2.78 Hours

1010 × 10−6

104  
10 sec
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0.000005 sec
5 × 10−6  

0.001 sec
103 × 10−6

Lower Order Terms? Really?
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+ + +
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Lower Order Terms? Really?

 dominates  
when the input  

size is large!

n2

If the running time of an algorithm is given by:  

      
What is the most important term?

n2 + 100n + log10(n) + 1000

 
10 sec
107 × 10−6  

0.000005 sec
5 × 10−6  

0.001 sec
103 × 10−6

+ + +
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Running time in seconds assuming each operation takes  seconds to execute.10−6

10 102 103 104 105

3.3 x 10-6 6.6 x 10-6 10-5 1.3 x 10-5 1.7 x 10-5

3.2 x 10-6 10-5 3.1 x 10-5 10-4 3.2 x 10-4

10-5 10-4 0.001 0.01 0.1

10-4 0.01 1 sec 1.67 sec 2.78 hr

0.001 1 sec 16.7 min 11.6 days 31.7 years

0.001 4 x 1016 years !! !! !!

2.78 hr 3 x 10144 years !! !! !!

42 days !! !! !! !!
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Lesson # 2 
When working with large 
input sizes, consider only 
the highest order term.



Lesson # 2 
When working with large 
input sizes, consider only 
the highest order term.

Drop all lower order terms and coefficients and  
express the running time using Big-O notation: 

Example: 

Example: 

T(n) = 5n2 + 3n + 1 ⟶ O(n2)

T(n) = 3n3 + n log2(n) ⟶ O(n3)
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Lesson # 2 
When working with large 
input sizes, consider only 
the highest order term.

Drop all lower order terms and coefficients and  
express the running time using Big-O notation: 

Example: 

Example: 

T(n) = 5n2 + 3n + 1 ⟶ O(n2)

T(n) = 3n3 + n log2(n) ⟶ O(n3)

!

Technically (not for this course):  
!e running time of the algorithm 
(as a function of the input size n) 
is bounded above (a#er some point) 
by a constant multiplied by . 

Informally (in this course): 
!e running time (as a function of 
the input size n) has  as the 
highest order term (c > 0 is a constant).

n2

cn2
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for (int k = 0; k < 2 * n; k++) 
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for (int j = 0; j < n; j++)
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op();
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Which function grows faster?

same

same

same

T(n) = n5 H(n) = n5 + n4 + n3 + n2 + n

T(n) = 2n H(n) = 2n+1

T(n) = log2(n2) H(n) = (log2(n))2

T(n) = log2(n) H(n) = log10(n)

T(n) = log2(n) H(n) = n = n0.5





Do the math!

!e speed of a machine is  operations per second. Given an algorithm that 
performs  operations, how much time will this algorithm (roughly) 
require if we run it on an input size of ?

106

∼ n lg n
n = 1000

?
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time
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Do the math!

?

speed = number of operations
time

106 = 1000 × lg(1000)
time

  time = 1000 × lg(1000)
106 = lg(1000)

103 ≈ 0.01 sec

!e speed of a machine is  operations per second. Given an algorithm that 
performs  operations, how much time will this algorithm (roughly) 
require if we run it on an input size of ?

106

∼ n lg n
n = 1000



Do the math!

An algorithm that performs    operations takes    seconds to run with  
an input of size .  How long is this algorithm expected to take if the input 
size is  ?

∼ n 10−4

n = 104

n = 108
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speed = number of operations
time

speed = 104

10−4 = 106 operations per second
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time

An algorithm that performs    operations takes    seconds to run with  
an input of size .  How long is this algorithm expected to take if the input 
size is  ?
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Do the math!

?

speed = number of operations
time

speed = 104

10−4 = 106 operations per second

106 = 108

time time = 108

106 = 0.01 sec⟶

An algorithm that performs    operations takes    seconds to run with  
an input of size .  How long is this algorithm expected to take if the input 
size is  ?

∼ n 10−4

n = 104

n = 108



Do the math!

An algorithm that performs    operations required  10 seconds  to run on  
a machine that performs    operations per second. How much time is an 
algorithm that performs  operations expected to take when run on the  
same machine and the same input?

∼ n2

107

∼ n3?

speed = number of operations
time



Do the math!

?

speed = number of operations
time

      107 = n2

10

find the input size on 
which the  algorithm 
took 10 seconds

n2

An algorithm that performs    operations required  10 seconds  to run on  
a machine that performs    operations per second. How much time is an 
algorithm that performs  operations expected to take when run on the  
same machine and the same input?

∼ n2
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Do the math!

?

speed = number of operations
time

              107 = n2

10 n2 = 10 × 107⟶ n = 104⟶
find the input size on 
which the  algorithm 
took 10 seconds

n2

An algorithm that performs    operations required  10 seconds  to run on  
a machine that performs    operations per second. How much time is an 
algorithm that performs  operations expected to take when run on the  
same machine and the same input?

∼ n2

107
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Do the math!

?

speed = number of operations
time

              107 = n2

10 n2 = 10 × 107

107 = n3

time

⟶ n = 104⟶

time = (104)3

107 = 105 sec ≈ 27.8 hours⟶

find the input size on 
which the  algorithm 
took 10 seconds

n2

use the computed input 
size to find the time taken 
by the  algorithm n3

An algorithm that performs    operations required  10 seconds  to run on  
a machine that performs    operations per second. How much time is an 
algorithm that performs  operations expected to take when run on the  
same machine and the same input?

∼ n2

107

∼ n3


