CS11212-Spring 2022
 Data Structures \& Introduction to Algorithms

Analysis of Algorithms
part 1: Counting Operations

Ibrahim Albluwi

What is an Algorithm?

A sequence of steps to solve a problem.

What is an Algorithm?

A sequence of steps to solve a problem.

Example. Sequential Search is an algorithm for searching for an element in an array, which goes through all the elements one-by-one.

What is an Algorithm?

A sequence of steps to solve a problem.

Example. Sequential Search is an algorithm for searching for an element in an array, which goes through all the elements one-by-one.

The same algorithm implemented in different languages

Comparing Algorithms

Given two algorithms A and B, how do we know which is faster?

Comparing Algorithms

Experimental Analysis

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges.

Experimental Analysis

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges.

- The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same programming language, the same compiler, etc.

Experimental Analysis

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges.

- The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same programming language, the same compiler, etc.
- The running time of a program depends on the input size and on the input type.
We need to run the programs as many times as needed to cover all possible input sizes and types that might affect the behavior of the programs.

Experimental Analysis

To compare two algorithms, we can implement them, run them and compare their running times.

Challenges.

- The running time of a program is hardware and software dependent.
We need to run both algorithms on the same machine (or on machines with the same specs), using the same programming language, the same compiler, etc.
- The running time of a program depends on the input size and on the input type.
We need to run the programs as many times as needed to cover all possible input sizes and types that might affect the behavior of the programs.
- Running the programs might take a long time!

Takes as long as the fastest of the two programs requires.

Which program runs faster?

Program A:

$$
\begin{aligned}
& x=1 ; \\
& y=2 ; \\
& \text { sum }=x+y ;
\end{aligned}
$$

Program B:

$$
\begin{aligned}
& x=1 ; \\
& y=2 ; \\
& z=3 ; \\
& k=4 ; \\
& m=5 ; \\
& n=6 ; \\
& x=x+y ; \\
& x=x+z ; \\
& x=x+k ; \\
& x=x+m ; \\
& x=x+n ;
\end{aligned}
$$

Which program runs faster?

Program A:

$$
\begin{aligned}
& x=1 \\
& y=2 \\
& \text { sum }=x+y ;
\end{aligned}
$$

4 operations

Program B:

$$
\begin{aligned}
& x=1 ; \\
& y=2 ; \\
& z=3 ; \\
& k=4 ; \\
& m=5 ; \\
& n=6 ; \\
& x=x+y ; \\
& x=x+z ; \\
& x=x+k ; \\
& x=x+m ; \\
& x=x+n ;
\end{aligned}
$$

16 operations

Theoretical Analysis

To compare two algorithms, count the number of operations each one performs.

Theoretical Analysis

To compare two algorithms, count the number of operations each one performs.

Problem. Sometimes it is very difficult to count the number of operations or come up with a model for that.
Solution. Perform experimental analysis!

How Many Operations?

$$
\begin{aligned}
& i=0 ; \\
& \text { sum = 0; } \\
& \text { while (i<10) \{ } \\
& \quad \text { sum += i; } \\
& \quad i+=1 ;
\end{aligned}
$$

$$
\begin{aligned}
& i=0 ; \\
& \text { sum = 0; } \\
& \text { while (i<20) \{ } \\
& \quad \text { sum += i; } \\
& \quad i+=1 ; \\
& \}
\end{aligned}
$$

How Many Operations?

$2+(1 \times 11)+(4 \times 10)=$
53 operations

$2+(1 \times 21)+(4 \times 20)=$
103 operations

For simplicity, we will say:

- the left code performed the sum += i operation 10 times.
- the right code performed the sum += i operation 20 times.

We will always pick a certain operation to be the basis for our cost model.

How Many Operations?

How many times does sum += i get executed?

```
i = 0;
    sum = 0;
    while (i<5) {
    sum += i;
    i += 1;
    }
```


5 times

$$
\begin{aligned}
& i=10 ; \\
& \text { sum }=0 ; \\
& \text { while }(i>0)\{ \\
& \text { sum }+=i ; \\
& i-=1 ;
\end{aligned}
$$

$$
\}
$$

10 times

$$
\begin{aligned}
& i=0 ; \\
& \text { sum }=0 ; \\
& \text { while }(i<n)\{ \\
& \text { sum }+=i ; \\
& \quad i+=1 ;
\end{aligned}
$$

\}
n times

How Many Operations?

How many times does op() get called?

```
\[
i=100 ;
\]
while (i<n) \{
op( ) ;
\[
\text { i }+=1 ;
\]
\[
\}
\]
```

$$
n-100 \text { times }
$$

for all $n>100$ and 0 otherwise

$$
i=0 ;
$$

while (i<n) \{
op() ;

$$
i+=5 ;
$$

$$
\}
$$

$\lceil n / 5\rceil$ times

$$
\begin{aligned}
& i=100 ; \\
& \text { while }(i<n)\{ \\
& \text { op(); } \\
& i+=5 ;
\end{aligned}
$$

$$
\}
$$

$$
\lceil(n-100) / 5\rceil \text { times }
$$

for all $n>100$ and 0 otherwise

How Many Operations?

How many times does op() get called?

```
for (int i=0; i<n; i++)
    op();
```

 \(n\)
 for (int \(i=0 ; i<n ; i+=5)\)
 op();
 $\lceil n / 5\rceil$

How Many Operations?

How many times does op() get called?

```
for (int i=0; i<n; i++) {
    op();
    op();
}
```

$2 n$

```
for (int i=0; i<n; i+=3) {
        op();
        op();
        op();
}
```

 \(n\)

How Many Operations?

How many times does op() get called?

```
for (int i=0; i<n; i++) {
        for (int j=0; j<n; j++)
        op();
}
```

n^{2}

```
for (int i=0; i<n; i++)
    op();
for (int j=0; j<n; j++)
    op();
```


How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

```
for (int i = 10; i < n; i++) {
    for (int j = 5; j < n; j += 2)
        op();
    }
```

$(n-10) \times \frac{1}{2}(n-5)$
for all $n>10,0$ otherwise

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

$$
\begin{aligned}
& \text { for (int } i=0 ; i<n ; i++)\{ \\
& \text { for (int } j=0 ; j<n ; j+=2) \\
& \quad \text { op(); } \\
& \text { for (int } j=0 ; j<n ; j+=2) \\
& \quad \text { op(); }
\end{aligned}
$$

$$
n \times\left(\frac{1}{2} n+\frac{1}{2} n\right)=n^{2}
$$

If n is not a multiple of 2 , the answer is: $n \times\left(\left\lceil\frac{1}{2} n\right\rceil+\left\lceil\frac{1}{2} n\right\rceil\right)$

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

$$
\begin{aligned}
& \text { for (int } i=0 ; i<n ; i++) \\
& \text { for (int } j=0 ; j<n ; j+=2 \text {) } \\
& \text { for (int } k=10 ; k<n ; k++) \\
& \quad \text { op() }
\end{aligned}
$$

$$
n \times \frac{1}{2} n \times(n-10)=\frac{1}{2} n^{3}-5 n^{2}
$$

for all $n>10,0$ otherwise

How Many Operations?

How many times does op() get called? (assuming n is a multiple of 2)

```
for (int i = 0; i < n*n; i++)
    op();
for (int i = 0; i < n; i += 2)
        for (int j = 0; j < n; j += 2)
        op();
```

 \(n^{2}+\left(\frac{1}{2} n \times \frac{1}{2} n\right)\)
 $=n^{2}+\frac{1}{4} n^{2}$
$=\frac{5}{4} n^{2}$

How Many Operations?

How many times does op() get called?

```
for (int i = 0; i < n; i++)
    for (int j = i; j < i + 7; j++)
        op();
```

 \(7 n\)
 (the inner loop always repeats 7 times, regardless of what the value of i is)

```
for (int i = 0; i*i < n; i++)
    op();
```

\sqrt{n}
(the loop stops when $i^{2}=n$ i.e. when $i=\sqrt{n}$)

How Many Operations?

How many times does op() get called? (assuming n is a power of 2)

$$
\begin{aligned}
& \text { for (int } i=1 ; i<=n ; i *=2) \\
& \quad \text { op(); }
\end{aligned}
$$

$i=1, \quad 2, \quad 4, \quad 8, \quad \ldots, \quad \frac{1}{2} n, \quad n$
$=2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots, 2^{k-1}, 2^{k}$
These are $k+1$ steps, where $2^{k}=n$ i.e. $k=\log _{2}(n)$
Total number of times op () is called $=\log _{2}(n)+1$

$$
\begin{aligned}
& \text { for (int i = n; i >= 1; i /= 2) } \\
& \text { op(); }
\end{aligned}
$$

$$
\begin{array}{ll}
i & =n, \\
& \frac{1}{2} n, \quad \frac{1}{4} n, \ldots, 8,4,2,1 \\
& =2^{k}, 2^{k-1}, 2^{k-2}, \ldots, 2^{3}, 2^{2}, 2^{1}, 2^{0}
\end{array}
$$

These are $k+1$ steps, where $2^{k}=n$ i.e. $k=\log _{2}(n)$
Total number of times op () is called $=\log _{2}(n)+1$

How Many Operations?

How many times does op() get called? (assuming n is a power of 3)

$$
\begin{aligned}
& \text { for (int i }=1 \text {; i <= n; i *= 3) } \\
& \quad \text { op(); }
\end{aligned}
$$

$$
\begin{array}{rllllll}
i & =1, & 3, & 9, & 27, & \ldots, & n \\
& =3^{0}, & 3^{1}, & 3^{2}, & 3^{3}, & \ldots, & 3^{k}
\end{array}
$$

These are $k+1$ steps, where $3^{k}=n$ i.e. $k=\log _{3}(n)$
Total number of times op() is called $=\log _{3}(n)+1$
! In general:

$$
\begin{aligned}
& \text { for (i=1; i <= whatever; i *= b) } \\
& \text { op(); }
\end{aligned}
$$

$\left\lfloor\log _{b}(\right.$ whatever $\left.)\right\rfloor+1$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
        op();
```


How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

1 Trace

i	j	number of op() calls

1
2
3
n

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

(1) Trace

i	j	number of op () calls
1	$[1]$	1
2		

n

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

(1) Trace

i	j	number of op () calls
1	$[1]$	1
2	$[1,2]$	2

3
n

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

(1) Trace

i	j	number of op () calls
1	$[1]$	1
2	$[1,2]$	2
3	$[1,2,3]$	3

n

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

(1) Trace

i	j	number of op() calls
1	$[1]$	1
2	$[1,2]$	2
3	$[1,2,3]$	3
\cdots	$[1,2,3, \ldots, n]$	n
n	n	

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

1 Trace

i	j	number of op() calls
1	$[1]$	1
2	$[1,2]$	2
3	$[1,2,3]$	3
\cdots	$[1,2,3, \ldots, n]$	n
n	n	

Formulate a sum (2) Total $=1+2+3+\ldots+n$

$$
=\sum_{i=0}^{n} i
$$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    op();
```

X If the nested loops are dependent, we can't analyze each loop separately and then multiply them!

1 Trace

i	j	number of op() calls
1	$[1]$	1
2	$[1,2]$	2
3	$[1,2,3]$	3
\cdots	\cdots	\cdots
n	$[1,2,3, \ldots, n]$	n

Formulate a sum (2) Total $=1+2+3+\ldots+n$

$$
=\sum_{i=0}^{n} i=\frac{n(n+1)}{2} \quad 3 \text { Solve the sum }
$$

Runtime Analysis Procedure

```
    requires tracing skills
(structured programming?)
code trace }\longrightarrow\mathrm{ summation }\longrightarrow\mathrm{ answer
requires math skills
(discrete mathematics?)
```


How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n*n; i++)
    for (int j = 1; j <= i; j++)
    op();
```


How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n*n; i++)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
1	$[1]$	1
2	$[1,2]$	2
3	$[1,2,3]$	3
\ldots	\ldots	\ldots
n*n	$[1,2,3, \ldots, n * n]$	$n * n$

Total $=1+2+3+\ldots+n^{2}$

$$
=\sum_{i=0}^{n^{2}} i=\frac{n^{2}\left(n^{2}+1\right)}{2}
$$

! A very frequently encountered sum:

$$
\sum_{i=0}^{\star} i=\frac{\star(\star+1)}{2}
$$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
    for (int k = 1; k <= i; k++)
        op();
```


How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
            for (int k = 1; k <= i; k++)
                op();
```

i	number of op() calls
1	1×1
2	2×2
3	3×3
\cdots	$n \times n$
n	n

Total $=1^{2}+2^{2}+3^{2}+\ldots+n^{2}$

$$
=\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \longleftarrow \text { see the math cheatsheet }
$$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j *= 2)
        op();
```


How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j *= 2)
        op();
```

i number of op() calls
1
$\log _{2}(1)+1$
$2 \quad \log _{2}(2)+1$
$3 \quad \log _{2}(3)+1$
$n \quad \log _{2}(n)+1$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j *= 2)
        op();
```

i	number of op () calls
1	$\log _{2}(1)+1$
2	$\log _{2}(2)+1$
3	$\log _{2}(3)+1$
\ldots	\ldots
n	$\log _{2}(n)+1$

Total $=\log _{2}(1)+\log _{2}(2)+\log _{2}(3)+\ldots+\log _{2}(n)+(n \times 1)$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j *= 2)
        op();
```

i	number of op () calls
1	$\log _{2}(1)+1$
2	$\log _{2}(2)+1$
3	$\log _{2}(3)+1$
\ldots	\ldots
n	$\log _{2}(n)+1$

$$
\begin{aligned}
\text { Total } & =\log _{2}(1)+\log _{2}(2)+\log _{2}(3)+\ldots+\log _{2}(n)+(n \times 1) \\
& =\log _{2}(1 \times 2 \times 3 \times \ldots \times n)+(n \times 1)=\log _{2}(n!)+n
\end{aligned}
$$

How Many Operations?

How many times does op() get called?

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j *= 2)
        op();
```

i	number of op () calls
1	$\log _{2}(1)+1$
2	$\log _{2}(2)+1$
3	$\log _{2}(3)+1$
\ldots	\ldots
n	$\log _{2}(n)+1$

$$
\begin{aligned}
\text { Total } & =\log _{2}(1)+\log _{2}(2)+\log _{2}(3)+\ldots+\log _{2}(n)+(n \times 1) \\
& =\log _{2}(1 \times 2 \times 3 \times \ldots \times n)+(n \times 1)=\log _{2}(n!)+n \\
& \sim n \log _{2}(n) \longleftarrow \text { Stirling's Approximation (see the math cheatsheet) }
\end{aligned}
$$

How Many Operations?

```
bool foo(int n) {
    int random = rand() % 2;
    if (random == 0) {
        for (int i = 0; i < n; i++)
        op();
    } else
    op();
}
```


How Many Operations?

```
bool foo(int n) {
    int random = rand() % 2;
    if (random == 0) {
        for (int i = 0; i < n; i++)
        op();
    } else
    op();
}
```

Best Case: op() is called 1 time (if random $=1$) Worst Case: op () is called n times (if random $=0$).

How Many Operations?

```
bool foo(int n) {
    int random = rand() % 2;
    if (random == 0) {
        for (int i = 0; i < n; i++)
        op();
    } else
    op();
}
```

Best Case: op() is called 1 time (if random $=1$) Worst Case: op () is called n times (if random $=0$).

How Many Operations?

```
bool foo(int n) {
    int random = rand() % 2;
    if (random == 0) {
        for (int i = 0; i < n; i++)
        op();
    } else
    op();
}
```

Best Case: op() is called 1 time (if random $=1$) Worst Case: op () is called n times (if random $=0$).

How Many Operations?

```
bool search(int a[], int k, int n) {
    for (int i = 0; i < n; i++)
        if (a[i] == k)
            return true;
    return false;
}
```

Let's consider comparisons with k as the basis for our analysis.
Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

How Many Operations?

```
bool search(int a[], int k, int n) {
    for (int i = 0; i < n; i++)
        if (a[i] == k)
            return true;
    return false;
}
```

Let's consider comparisons with k as the basis for our analysis.
Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

Average Case: $\sum_{i=0}^{n-1} \mathrm{P}(i) \times \underset{\uparrow}{\operatorname{cost}(i)}$
probability of finding number of operations k at index i if k is found at index i

How Many Operations?

bool search(int $a[]$, int k, int n) \{
for (int $i=0 ; i<n ; i++)$ if (a[i] == k)
return true;
return false;
\}

Let's consider comparisons with k as the basis for our analysis.
Best Case: 1 comparison (k is the first element in the list).
Worst Case: n comparisons (k is not in the list).

Average Case: $\sum_{i=0}^{n-1} \mathrm{P}(i) \times \underset{\uparrow}{\operatorname{cost}(i)}$
probability of finding k at index i
number of operations if k is found at index i

Assuming k is equally likely to appear at any index:
$=\left(\frac{1}{n} \times 1\right)+\left(\frac{1}{n} \times 2\right)+\ldots+\left(\frac{1}{n} \times n\right)$
$=\frac{1}{n} \times\left(\frac{n(n+1)}{2}\right)=\frac{1}{2}(n+1)$

How Many Operations?

```
bool isSorted(int a[], int n) {
    for (int i = 1; i < n; i++)
        if (a[i - 1] > a[i])
            return false;
    return true;
}
```

Let's consider comparisons between array elements as the basis for our analysis.
Best Case: 1 comparison (first two elements are not in order).
Worst Case: $n-1$ comparisons (list is in order).

Average Case: Not straightforward!
! We will focus on best case and worst case analysis in this course.

CS11212-Spring 2022

Data Structures \& Introduction to Algorithms

Analysis of Algorithms
part 2: Asymptotic Analysis

Ibrahim Albluwi

Which is better?


```
for (int \(i=0 ; i<n * n ; i++)\)
        op();
```


Which is better?

A

$$
\begin{aligned}
& \text { for (int i=0; i < } 50 \text { * n; i++) } \\
& \text { op(); }
\end{aligned}
$$

```
for (int i=0; i < n * n; i++)
```

 op(); op();
 We expressed the number of operations performed by each program as $T_{A}(n)=50 n$ and $T_{B}(n)=n^{2}$, which are two functions that have different values depending on the value of the input size n.
? Which function represents a better running time (less performed operations)?

Which is better?

Which is better?

		50n	n^{2}
	n	Algorithm A	Algorithm B
-	10	500	100
3	20	1000	400
E	30	1500	900
n	40	2000	1600
	50	2500	2500
	60	3000	3600
$\stackrel{\sim}{0}$	70	3500	4900
. 2	80	4000	6400
\sim	90	4500	8100

Which is better?

(!) n^{2} grows faster than $50 n$. n^{2} must at some point become worse (perform more
operations) than $50 n$ forever (when $n>50$ in this case)

Orders of Growth

(!) n^{2} will at some point exceed $c n$ regardless of what the value of c is.

Orders of Growth

(! n^{2} will at some point exceed $c n$ regardless of what the value of c is.

Orders of Growth

! n^{2} will at some point exceed $c n$ regardless of what the value of c is.

Orders of Growth

(!) n^{2} will at some point exceed $c n+a$ regardless of what the values of c and a are.

Orders of Growth

Example. Assume $n \geq 10$ is the size of an array and we are interested in counting the number of array accesses an algorithm performs.
?
How quickly does the number operations performed grows when the input size grows (when the array size grows)?

```
for (i=0; i<10; i++)
for (i=0; i<n; i++)
    sum += a[0];
    sum += a[i];
```

```
for (i=0; i<n; i++)
```

for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (j=0; j<n; j++)
sum += a[j];

```
        sum += a[j];
```


Orders of Growth

Example. Assume $n \geq 10$ is the size of an array and we are interested in counting the number of array accesses an algorithm performs.
?
How quickly does the number operations performed grows when the input size grows (when the array size grows)?

for $(i=0 ; i<10 ; i++)$	for ($i=0 ; i<n ; i++)$
sum $+=a[0] ;$	sum $+=a[i] ;$

```
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
        sum += a[j];
```

20

No growth!
Always 10, regardless
of the array size

Orders of Growth

Example. Assume $n \geq 10$ is the size of an array and we are interested in counting the number of array accesses an algorithm performs.
?
How quickly does the number operations performed grows when the input size grows (when the array size grows)?
sum += a[0];
for (i=0; i<n; i++)
for (i=0; i<n; i++)
sum += a[i];
sum += a[i];

```
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
        sum += a[j];
```


Linear growth!

Orders of Growth

Example. Assume $n \geq 10$ is the size of an array and we are interested in counting the number of array accesses an algorithm performs.
$?$
How quickly does the number operations performed grows when the input size grows (when the array size grows)?

$$
\begin{array}{cc}
\text { for }(i=0 ; i<10 ; i++) & \text { for }(i=0 ; i<n ; i++) \\
\text { sum }+=a[0] ; & \text { sum }+=a[i] ;
\end{array}
$$

for $(i=0 ; i<n ; i++)$
for $(j=0 ; j<n ; j++)$
$\operatorname{sum}+=a[j] ;$

No growth!
Always 10, regardless
of the array size

Lesson \# 1
 Look at the running time growth rate!

! Classify algorithms based on the order of growth of their running time (ignoring the coefficients).

Example:
$5 n^{2}, 30 n^{2}, 7 n^{2}$, etc. have a quadratic order of growth.
$7 n, 87 n, 3 n$, etc. have a linear order of growth.
$3 \log _{2} n, 2 \ln n, 10 \log _{10} n$, etc. have a logarithmic order of growth.

Examples of Growth Rates

order of growth	
name	function
constant	1
logarithmic	$\log (n)$
	\sqrt{n}
linear	n
linearithmic	$n \log (n)$
	$n \sqrt{n}$
quadratic	n^{2}
cubic	n^{3}
exponential	2^{n}
exponential	3^{n}
factorial	$n!$

Examples of Growth Rates

order of growth	
name	function
constant	1
logarithmic	$\log (n)$
	\sqrt{n}
linear	n
linearithmic	$n \log (n)$
	$n \sqrt{n}$
quadratic	n^{2}
cubic	n^{3}
exponential	2^{n}
exponential	3^{n}
factorial	$n!$

(! constant < logarithmic < polynomial < exponential < factorial < n^{n} $\log _{b}(n) \quad n^{c}(c>0) \quad c^{n}(c>1)$

Examples of Growth Rates

	order of growth	
	constant	1
$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	logarithmic	$\begin{gathered} \log (n) \\ \sqrt{n} \end{gathered}$
$\underset{\sim}{ \pm}$	linear linearithmic	$\begin{gathered} n \\ n \log (n) \\ n \sqrt{n} \end{gathered}$
『్ర	quadratic cubic	$\begin{aligned} & n^{2} \\ & n^{3} \end{aligned}$
	exponential exponential factorial	$\begin{aligned} & 2^{n} \\ & 3^{n} \\ & n! \end{aligned}$

(! constant < logarithmic < polynomial < exponential < factorial < n^{n} $\log _{b}(n) \quad n^{c}(c>0) \quad c^{n}(c>1)$

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}
1000	10^{6}	10^{5}	3	10^{3}

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}
1000	10^{6}	10^{5}	3	10^{3}
100000	10^{10}	10^{7}	5	10^{3}

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}
1000	10^{6}	10^{5}	3	10^{3}
100000	10^{10}	10^{7}	5	10^{3}

Assume
1 op requires
10^{-6} seconds:

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}
1000	10^{6}	10^{5}	3	10^{3}
100000	10^{10}	10^{7}	5	10^{3}

Assume	$10^{10} \times 10^{-6}$		
1 op requires			
10^{-6} seconds:	10^{4} seconds $+10^{7} \times 10^{-6}$	5×10^{-6}	$10^{3} \times 10^{-6}$
	2.78 Hours $+10 \mathrm{sec}+0.00005 \mathrm{sec}+0.001 \mathrm{sec}$		

Lower Order Terms? Really?

If the running time of an algorithm is given by:

$$
n^{2}+100 n+\log _{10}(n)+1000
$$

What is the most important term?

value of n	n^{2}	$100 n$	$\log _{10}(n)$	1000
1	1	10^{2}	0	10^{3}
10	10^{2}	10^{3}	1	10^{3}
100	10^{4}	10^{4}	2	10^{3}
1000	10^{6}	10^{5}	3	10^{3}
100000	10^{10}	10^{7}	5	10^{3}

n^{2} dominates
when the input size is large!
2.78 Hours $+10 \mathrm{sec}+0.000005 \mathrm{sec}+0.001 \mathrm{sec}$
$10^{10} \times 10^{-6}$
$=10^{4}$ seconds
$10^{7} \times 10^{-6} \quad 5 \times 10^{-6}$
$10^{3} \times 10^{-6}$

Lower Order Terms? Really?

Running time in seconds assuming each operation takes 10^{-6} seconds to execute.

	input size				
	10	10^{2}	10^{3}	10^{4}	10^{5}
$\log _{2}(n)$	3.3×10^{-6}	6.6×10^{-6}	10^{-5}	1.3×10^{-5}	1.7×10^{-5}
\sqrt{n}	3.2×10^{-6}	10^{-5}	3.1×10^{-5}	10^{-4}	3.2×10^{-4}
n					
n^{2}					
n^{3}					
2^{n}					
$n!$					
n^{n}					

Lower Order Terms? Really?

Running time in seconds assuming each operation takes 10^{-6} seconds to execute.

	input size				
	10	10^{2}	10^{3}	10^{4}	10^{5}
$\log _{2}(n)$	3.3×10^{-6}	6.6×10^{-6}	10^{-5}	1.3×10^{-5}	1.7×10^{-5}
\sqrt{n}	3.2×10^{-6}	10^{-5}	3.1×10^{-5}	10^{-4}	3.2×10^{-4}
n	10^{-5}	10^{-4}	0.001	0.01	0.1
n^{2}					
n^{3}					
2^{n}					
$n!$					
n^{n}					

Lower Order Terms? Really?

Running time in seconds assuming each operation takes 10^{-6} seconds to execute.
input size

Lower Order Terms? Really?

Running time in seconds assuming each operation takes 10^{-6} seconds to execute.
input size

Lower Order Terms? Really?

Running time in seconds assuming each operation takes 10^{-6} seconds to execute.
input size

	10	10^{2}	10^{3}	10^{4}	10^{5}
$\log _{2}(n)$	3.3×10^{-6}	6.6×10^{-6}	10^{-5}	1.3×10^{-5}	1.7×10^{-5}
\sqrt{n}	3.2×10^{-6}	10^{-5}	3.1×10^{-5}	10^{-4}	3.2×10^{-4}
n	10^{-5}	10^{-4}	0.001	0.01	0.1
n^{2}	10^{-4}	0.01	1 sec	1.67 sec	2.78 hr
n^{3}	0.001	1 sec	16.7 min	11.6 days	31.7 years
2^{n}	0.001	4×10^{16} years	!!	!!	!!
n !	2.78 hr	3×10^{144} years	!!	!!	!!
n^{n}	42 days	!!	!!	!!	!!

Lesson \# 2
When working with large input sizes, consider only the highest order term.

Lesson \# 2

When working with large input sizes, consider only the highest order term.
! Drop all lower order terms and coefficients and express the running time using Big-O notation:

Example: $T(n)=5 n^{2}+3 n+1 \longrightarrow O\left(n^{2}\right)$
Example: $T(n)=3 n^{3}+n \log _{2}(n) \longrightarrow O\left(n^{3}\right)$

Lesson \# 2

When working with large input sizes, consider only the highest order term.

> Technically (not for this course):
> The running time of the algorithm (as a function of the input size n) is bounded above (after some point) by a constant multiplied by n^{2}.

Informally (in this course):
The running time (as a function of the input size n) has $c n^{2}$ as the highest order term ($c>0$ is a constant).
! Drop all lower order terms and coefficients and express the running time using Big-O notation:

Example: $T(n)=5 n^{2}+3 n+1 \longrightarrow O\left(n^{2}\right)$
Example: $T(n)=3 n^{3}+n \log _{2}(n) \longrightarrow O\left(n^{3}\right)$

What is the order of growth as a function of n ?

```
for (int i = 0; i < 100; i += 5)
    for (int j = 0; j < n; j++)
        for (int k = 0; k < 2 * n; k++)
        op();
```


What is the order of growth as a function of n ?

$$
\begin{aligned}
& \text { for (int } i=0 ; i<100 ; i+=5) \\
& \quad \text { for }(\text { int } j=0 ; j<n ; j++) \\
& \quad \text { for }(\text { int } k=0 ; \mathrm{k}<2 * \mathrm{n}) \\
& \quad \text { op }() ;
\end{aligned}
$$

$$
O(1) \times O(n) \times O(n)=O\left(n^{2}\right)
$$

What is the order of growth as a function of n ?

```
for (int i = 0; i < 100; i += 5) - O(1)
    for (int j = 0; j < n; j++)}O(n
        for (int k = 0; k < 2 * n; k++)-O(n)
        op();
```

$O(1) \times O(n) \times O(n)=O\left(n^{2}\right)$
for (int $i=0 ; i<100 ; i+=5)$ \{
for (int $j=1 ; j<n ; j+=2)$
op();
for (int $k=0 ; k<2 * n ; k++)$
op();
op();
\}

What is the order of growth as a function of n ?

```
for (int i = 0; i < 100; i += 5)
    for (int j = 0; j < n; j++)}O(n
        for (int k = 0; k < 2 * n; k++)-O(n)
        op();
```

$O(1) \times O(n) \times O(n)=O\left(n^{2}\right)$
for (int i $=0$; $i<100$; $i+=5)\{-O(1)$
for (int j $=1$; j $<n$; j += 2) $O(n)$
op();
for (int $\mathrm{k}=0 ; \mathrm{k}<2$ * n ; $\mathrm{k}++$) $-O(n)$
op();
op();
\}
$O(1) \times(O(n)+O(n)+O(1))=O(n)$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
    op();
```

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op() calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow$	$4]$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow 4]$	4
6	$[1 \longrightarrow 6]$	6
\cdots	\cdots	
n	$[1 \longrightarrow$	$n]$

Total $=0+2+4+6+\ldots+n$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow$	$4]$

Total $=0+2+4+6+\ldots+n$

$$
=2 \times\left(0+1+2+3+\ldots+\frac{1}{2} n\right)
$$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow$	$4]$

Total $=0+2+4+6+\ldots+n$

$$
=2 \times\left(0+1+2+3+\ldots+\frac{1}{2} n\right)=2 \times \sum_{i=0}^{n / 2} i=
$$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow$	$4]$

Total $=0+2+4+6+\ldots+n$

$$
=2 \times\left(0+1+2+3+\ldots+\frac{1}{2} n\right)=2 \times \sum_{i=0}^{n / 2} i=2 \times \frac{\frac{1}{2} n\left(\frac{1}{2} n+1\right)}{2}
$$

What is the order of growth as a function of n ?

```
for (int i = 0; i <= n; i += 2)
    for (int j = 1; j <= i; j++)
        op();
```

i	j	number of op () calls
0	-	0
2	$[1, ~ 2]$	2
4	$[1 \longrightarrow$	$4]$

Total $=0+2+4+6+\ldots+n$

$$
=2 \times\left(0+1+2+3+\ldots+\frac{1}{2} n\right)=2 \times \sum_{i=0}^{n / 2} i=2 \times \frac{\frac{1}{2} n\left(\frac{1}{2} n+1\right)}{2}=O\left(n^{2}\right)
$$

Which function grows faster?

$$
T(n)=n^{5}
$$

$$
H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n
$$

Which function grows faster?

$$
T(n)=n^{5} \quad \text { same } \quad H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n
$$

Which function grows faster?

$$
T(n)=n^{5} \quad \text { same } \quad H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n
$$

$$
T(n)=2^{n}
$$

$$
H(n)=2^{n+1}
$$

Which function grows faster?

$$
T(n)=n^{5} \quad \text { same } \quad H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n
$$

$$
T(n)=2^{n} \quad \text { same } \quad H(n)=2^{n+1}=2^{1} \times 2^{n}=O\left(2^{n}\right)
$$

Which function grows faster?

$$
\begin{array}{cll}
T(n)=n^{5} & \text { same } & H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n \\
T(n)=2^{n} & \text { same } & H(n)=2^{n+1} \\
T(n)=\log _{2}\left(n^{2}\right) & & H(n)=\left(\log _{2}(n)\right)^{2}
\end{array}
$$

Which function grows faster?

$$
T(n)=n^{5} \quad \text { same } \quad H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n
$$

$$
T(n)=2^{n} \quad \text { same } \quad H(n)=2^{n+1}
$$

$$
T(n)=\log _{2}\left(n^{2}\right)=2 \log _{2}(n) \quad H(n)=\left(\log _{2}(n)\right)^{2}
$$

Which function grows faster?

$$
\begin{array}{cll}
T(n)=n^{5} & \text { same } & H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n \\
T(n)=2^{n} & \text { same } & H(n)=2^{n+1} \\
T(n)=\log _{2}\left(n^{2}\right) & H(n)=\left(\log _{2}(n)\right)^{2} \\
T(n)=\log _{2}(n) & H(n)=\log _{10}(n)
\end{array}
$$

Which function grows faster?

$$
\begin{array}{cll}
T(n)=n^{5} & \text { same } & H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n \\
T(n)=2^{n} & \text { same } & H(n)=2^{n+1} \\
T(n)=\log _{2}\left(n^{2}\right) & & H(n)=\left(\log _{2}(n)\right)^{2} \\
\hline T(n)=\log _{2}(n) & \text { same } & H(n)=\log _{10}(n)=\frac{\log _{2}(n)}{\log _{2}(10)}
\end{array}
$$

Which function grows faster?

$$
\begin{array}{cll}
T(n)=n^{5} & \text { same } & H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n \\
T(n)=2^{n} & \text { same } & H(n)=2^{n+1} \\
T(n)=\log _{2}\left(n^{2}\right) & & H(n)=\left(\log _{2}(n)\right)^{2} \\
\hline T(n)=\log _{2}(n) & \text { same } & H(n)=\log _{10}(n) \\
\hline T(n)=\log _{2}(n) & H(n)=\sqrt{n}
\end{array}
$$

Which function grows faster?

$$
\begin{array}{cll}
T(n)=n^{5} & \text { same } & H(n)=n^{5}+n^{4}+n^{3}+n^{2}+n \\
T(n)=2^{n} & \text { same } & H(n)=2^{n+1} \\
T(n)=\log _{2}\left(n^{2}\right) & & H(n)=\left(\log _{2}(n)\right)^{2} \\
\hline T(n)=\log _{2}(n) & \text { same } & H(n)=\log _{10}(n) \\
\hline T(n)=\log _{2}(n) & H(n)=\sqrt{n}=n^{0.5}
\end{array}
$$

Do the math!

The speed of a machine is 10^{6} operations per second. Given an algorithm that
? performs $\sim n \lg n$ operations, how much time will this algorithm (roughly) require if we run it on an input size of $n=1000$?

Do the math!

The speed of a machine is 10^{6} operations per second. Given an algorithm that
? performs $\sim n \lg n$ operations, how much time will this algorithm (roughly) require if we run it on an input size of $n=1000$?

$$
\begin{gathered}
\text { speed }=\frac{\text { number of operations }}{\text { time }} \\
10^{6}=\frac{1000 \times \lg (1000)}{\text { time }}
\end{gathered}
$$

Do the math!

The speed of a machine is 10^{6} operations per second. Given an algorithm that
? performs $\sim n \lg n$ operations, how much time will this algorithm (roughly) require if we run it on an input size of $n=1000$?

$$
\begin{aligned}
& \text { speed }=\frac{\text { number of opera }}{\text { time }} \\
& 10^{6}=\frac{1000 \times \lg (1000)}{\text { time }} \\
& \text { time }=\frac{1000 \times \lg (1000)}{10^{6}}
\end{aligned}
$$

Do the math!

The speed of a machine is 10^{6} operations per second. Given an algorithm that
? performs $\sim n \lg n$ operations, how much time will this algorithm (roughly) require if we run it on an input size of $n=1000$?

$$
\begin{aligned}
& \text { speed }=\frac{\text { number of operations }}{\text { time }} \\
& 10^{6}=\frac{1000 \times \lg (1000)}{\text { time }} \\
& \text { time }=\frac{1000 \times \lg (1000)}{10^{6}}=\frac{\lg (1000)}{10^{3}} \approx 0.01 \mathrm{sec}
\end{aligned}
$$

Do the math!

An algorithm that performs $\sim \sqrt{n}$ operations takes 10^{-4} seconds to run with
? an input of size $n=10^{4}$. How long is this algorithm expected to take if the input size is $n=10^{8}$?

Do the math!

An algorithm that performs $\sim \sqrt{n}$ operations takes 10^{-4} seconds to run with
? an input of size $n=10^{4}$. How long is this algorithm expected to take if the input size is $n=10^{8}$?

$$
\begin{aligned}
& \text { speed }=\frac{\text { number of operations }}{\text { time }} \\
& \text { speed }=\frac{\sqrt{10^{4}}}{10^{-4}}=10^{6} \text { operations per second }
\end{aligned}
$$

Do the math!

An algorithm that performs $\sim \sqrt{n}$ operations takes 10^{-4} seconds to run with
? an input of size $n=10^{4}$. How long is this algorithm expected to take if the input size is $n=10^{8}$?

$$
\begin{aligned}
\text { speed } & =\frac{\text { number of operations }}{\text { time }} \\
\text { speed } & =\frac{\sqrt{10^{4}}}{10^{-4}}=10^{6} \text { operations per second } \\
10^{6} & =\frac{\sqrt{10^{8}}}{\text { time }}
\end{aligned}
$$

Do the math!

An algorithm that performs $\sim \sqrt{n}$ operations takes 10^{-4} seconds to run with
? an input of size $n=10^{4}$. How long is this algorithm expected to take if the input size is $n=10^{8}$?

$$
\begin{aligned}
\text { speed } & =\frac{\text { number of operations }}{\text { time }} \\
\text { speed } & =\frac{\sqrt{10^{4}}}{10^{-4}}=10^{6} \text { operations per second } \\
10^{6} & =\frac{\sqrt{10^{8}}}{\text { time }} \quad \longrightarrow \quad \text { time }=\frac{\sqrt{10^{8}}}{10^{6}}=0.01 \mathrm{sec}
\end{aligned}
$$

Do the math!

An algorithm that performs $\sim n^{2}$ operations required 10 seconds to run on a machine that performs 10^{7} operations per second. How much time is an algorithm that performs $\sim n^{3}$ operations expected to take when run on the same machine and the same input?

$$
\text { speed }=\frac{\text { number of operations }}{\text { time }}
$$

Do the math!

An algorithm that performs $\sim n^{2}$ operations required 10 seconds to run on

?a machine that performs 10^{7} operations per second. How much time is an algorithm that performs $\sim n^{3}$ operations expected to take when run on the same machine and the same input?

$$
\text { speed }=\frac{\text { number of operations }}{\text { time }}
$$

$$
10^{7}=\frac{n^{2}}{10}
$$

Do the math!

An algorithm that performs $\sim n^{2}$ operations required 10 seconds to run on

?a machine that performs 10^{7} operations per second. How much time is an algorithm that performs $\sim n^{3}$ operations expected to take when run on the same machine and the same input?

$$
\text { speed }=\frac{\text { number of operations }}{\text { time }}
$$

$$
10^{7}=\frac{n^{2}}{10} \quad \longrightarrow \quad n^{2}=10 \times 10^{7} \quad \longrightarrow n=10^{4}
$$

find the input size on which the n^{2} algorithm took 10 seconds

Do the math!

An algorithm that performs $\sim n^{2}$ operations required 10 seconds to run on

?a machine that performs 10^{7} operations per second. How much time is an algorithm that performs $\sim n^{3}$ operations expected to take when run on the same machine and the same input?

$$
\text { speed }=\frac{\text { number of operations }}{\text { time }}
$$

$$
10^{7}=\frac{n^{2}}{10} \quad \longrightarrow \quad n^{2}=10 \times 10^{7} \quad \longrightarrow n=10^{4}
$$

find the input size on which the n^{2} algorithm took 10 seconds

$$
10^{7}=\frac{n^{3}}{\text { time }} \quad \longrightarrow \quad \text { time }=\frac{\left(10^{4}\right)^{3}}{10^{7}}=10^{5} \mathrm{sec} \approx 27.8 \text { hours }
$$

use the computed input
size to find the time taken
by the n^{3} algorithm

