
 Algorithm
Design & Analysis

Amortized Analysis

CS11921 - Fall 2023

Ibrahim Albluwi

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples.

n = 0, k = 5

INCREMENT
 00000

n = 1, k = 5

 00001

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010

n = 2, k = 5n = 1, k = 5

 00001

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1
start at the
rightmost bit

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

keep flipping 1's to 0's
until a 0 is reached

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

keep flipping 1's to 0's
until a 0 is reached

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

Example. 1 0 1 0 1 0 0 1 1 1 1 1 1

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

Example.

flip to 0'sflip to 1

 1 0 1 0 1 0 0 1 1 1 1 1 1

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

flip to 0'sflip to 1ignore

Example. 1 0 1 0 1 0 0 1 1 1 1 1 1

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

What is the running time of
function INCREMENT?
Choose the best answer.

Q

Cost Model. Count the number of
bit flips.

flip to 0'sflip to 1ignore

 1 0 1 0 1 0 0 1 1 1 1 1 1 Example.

A. O(1)

B. O(k)

C. O(log n)

D. O(n)

Motivation

Problem. Given an array of bits, representing a number ,
increment n.

B[0 … k − 1] n < 2k

Examples. INCREMENT
 00000 INCREMENT 00010 00001

 INCREMENT(B[], k)

 i = k-1

 while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1

 if (i >= 0)
 B[i] = 1

What is the running time of
function INCREMENT?
Choose the best answer.

Q

Cost Model. Count the number of
bit flips.

flip to 0'sflip to 1ignore

 1 0 1 0 1 0 0 1 1 1 1 1 1 Example.

A. O(1)

B. O(k)

C. O(log n)

D. O(n) too pessimistic!

too pessimistic!

incorrect

Motivation

What is the running time for counting from 0 to n by
calling function INCREMENT repeatedly on an array
of k bits initialized to 0's?

A.

B.

C.

D.

O(n)

O(n log n)

O(nk)

O(k log n)

Choose the best answer.

Cost Model. Count the
number of bit flips.

Motivation

What is the running time of counting from 0 to n by
calling function INCREMENT repeatedly on an array
of k bits initialized to 0's?

A.

B.

C.

D.

O(n)

O(n log n)

O(nk)

O(k log n)

Choose the best answer.

Cost Model. Count the
number of bit flips.

correct and tight bound!

correct but too pessimistic!

incorrect!

Motivation

What is the running time of counting from 0 to n by
calling function INCREMENT repeatedly on an array
of k bits initialized to 0's?

A.

B.

C.

D.

O(n)

O(n log n)

O(nk)

O(k log n)

Choose the best answer.

Cost Model. Count the
number of bit flips.

correct and tight bound! ... why?

correct but too pessimistic!

incorrect!

Why is it pessimistic to say: n calls to INCREMENT × O(log n) = O(n log n)?

Answer. Because each call to INCREMENT does not do bit flips!O(log n)

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips

7 flips

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips

7 flips

3 flips

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips

7 flips

3 flips

1 flip

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips = ⌊ n
20 ⌋

7 flips = ⌊ n
21 ⌋

3 flips = ⌊ n
22 ⌋

1 flip = ⌊ n
23 ⌋

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips = ⌊ n
20 ⌋

7 flips = ⌊ n
21 ⌋

3 flips = ⌊ n
22 ⌋

1 flip = ⌊ n
23 ⌋

In general.

The total number of bit flips is:

k−1

∑
i=0

⌊ n
2i ⌋≤

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips = ⌊ n
20 ⌋

7 flips = ⌊ n
21 ⌋

3 flips = ⌊ n
22 ⌋

1 flip = ⌊ n
23 ⌋

In general.

The total number of bit flips is:

k−1

∑
i=0

⌊ n
2i ⌋ ≤ n

∞

∑
i=0

(1
2)i≤

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips = ⌊ n
20 ⌋

7 flips = ⌊ n
21 ⌋

3 flips = ⌊ n
22 ⌋

1 flip = ⌊ n
23 ⌋

In general.

The total number of bit flips is:

k−1

∑
i=0

⌊ n
2i ⌋ ≤ n

∞

∑
i=0

(1
2)i

≤ 2n = O(n)

≤

Motivation: Counting Bit-Flips

Problem. What is the total number of bit-flips performed when counting from 0 to n
by calling function INCREMENT repeatedly on an array of k bits initialized to 0's?

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Example. Counting to 15.

15 flips = ⌊ n
20 ⌋

7 flips = ⌊ n
21 ⌋

3 flips = ⌊ n
22 ⌋

1 flip = ⌊ n
23 ⌋

In general.

The total number of bit flips is:

k−1

∑
i=0

⌊ n
2i ⌋ ≤ n

∞

∑
i=0

(1
2)i

≤ 2n = O(n)

Implication.
Since INCREMENT is called n
times and the running time is

 in total, the running time
of each call to INCREMENT in
the sequence of calls is
on average!

O(n)

O(1)

≤

When analyzing the worst case running
time of a sequence of operations, we can:Takeaway

When analyzing the worst case running
time of a sequence of operations, we can:

Analyze the worst case running time of a single operation and then
multiply it by the number of times the operation is performed.

Takeaway

1
Example. Running time of n increments = n × O(log n)
Problem. Might overestimate the worst case running time.

When analyzing the worst case running
time of a sequence of operations, we can:

Analyze the worst case running time of a single operation and then
multiply it by the number of times the operation is performed.

Reason about the total running time of the whole sequence of operations together.

Takeaway

1

2

Example. Running time of n increments = n × O(log n)

Example. Incrementing n times can't flip bits more than times.2n

Problem. Might overestimate the worst case running time.

OR

Motivation

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

Example. PUSH-BACK(5)7 0 1 7 0 1 5
n = 4

i = 3

Motivation

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

n = i = 4

i = 3

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

 if (i < n): A[i] x←

 PUSH-BACK(A[], x)

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

n = i = 4

simply insert at index i
if there is a vacant cell

i = 3

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

 if (i < n): A[i] x

 else: Create array B of size n x 2
 B[0 n-1] A[0 n-1]
 A B

 n n x 2

←

… ← …

←
←

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

 PUSH-BACK(A[], x)

n = i = 4

i = 3

if there are no vacant
cells, double the size of
the array

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

Motivation

 if (i < n): A[i] x

 else: Create array B of size n x 2
 B[0 n-1] A[0 n-1]
 A B

 n n x 2
 A[i] x
 i i+1

←

… ← …

←
←

←
←

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

 PUSH-BACK(A[], x)

n = i = 4

insert in the newly
created array

i = 3

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

 PUSH-BACK(A[], x)

n = i = 4

i = 3

What is the worst case running
time of function PUSH-BACK?

Q

Cost Model. Number of copied
elements

 if (i < n): A[i] x

 else: Create array B of size n x 2
 B[0 n-1] A[0 n-1]
 A B

 n n x 2
 A[i] x
 i i+1

←

… ← …

←
←

←
←

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

Problem. Given an array of size , implement a PUSH-BACK(x)
operation that inserts x at the last vacant cell. If the number of occupied cells i
equals n, double the size of the array before inserting.

A[] n

 PUSH-BACK(A[], x)

n = i = 4

i = 3

What is the worst case running
time of function PUSH-BACK?

Q

Cost Model. Number of copied
elements

 because elements are
copied if the array is doubled
Θ(n) n + 1A

 if (i < n): A[i] x

 else: Create array B of size n x 2
 B[0 n-1] A[0 n-1]
 A B

 n n x 2
 A[i] x
 i i+1

←

… ← …

←
←

←
←

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

A.

B.

C.

D.

O(n2)

O(n log n)

O(n)

O(log n)

Choose the best answer.

Cost Model. Count the
number of element copies.

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

A.

B.

C.

D.

O(n2)

O(n log n)

O(n)

O(log n)

Exercise

correct and tight bound!

correct but too pessimistic!

incorrect!

Cost Model. Count the
number of element copies.

Choose the best answer.

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x 1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x

1
1 + 1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x

1
1 + 1

1 + 2

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x

1
1 + 1

1 + 2
1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x

1
1 + 1

1 + 2
1

1 + 4

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x

1
1 + 1

1 + 2
1

1 + 4
1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx

1
1 + 1

1 + 2
1

1 + 4
1
1
1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x
x x x x x x xx x x
x x x x x x xx x x x
x x x x x x xx x x x x
x x x x x x xx x x x x x
x x x x x x xx x x x x x x
x x x x x x xx x x x x x x x
x x x x x x xx x x x x x x xx

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8
1
1
1
1
1
1
1

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x
x x x x x x xx x x
x x x x x x xx x x x
x x x x x x xx x x x x
x x x x x x xx x x x x x
x x x x x x xx x x x x x x
x x x x x x xx x x x x x x x
x x x x x x xx x x x x x x xx
x x x x x x xx x x x x x x xx x

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8
1
1
1
1
1
1
1 1 + 16

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x
x x x x x x xx x x
x x x x x x xx x x x
x x x x x x xx x x x x
x x x x x x xx x x x x x
x x x x x x xx x x x x x x
x x x x x x xx x x x x x x x
x x x x x x xx x x x x x x xx
x x x x x x xx x x x x x x xx x

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8
1
1
1
1
1
1
1 1 + 16

In general. The total number
of copied elements is:

≤
n

∑
i=0

1 +
log n

∑
i=0

2i

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x
x x x x x x xx x x
x x x x x x xx x x x
x x x x x x xx x x x x
x x x x x x xx x x x x x
x x x x x x xx x x x x x x
x x x x x x xx x x x x x x x
x x x x x x xx x x x x x x xx
x x x x x x xx x x x x x x xx x

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8
1
1
1
1
1
1
1 1 + 16

In general. The total number
of copied elements is:

n

∑
i=0

1 +
log n

∑
i=0

2i ≤ 3n
O(n)

≤
=

Exercise

What is the worst case running time of calling
PUSH-BACK n times on a resizing array that is
initially of size 1?

x
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x x
x x x x x x xx
x x x x x x xx x
x x x x x x xx x x
x x x x x x xx x x x
x x x x x x xx x x x x
x x x x x x xx x x x x x
x x x x x x xx x x x x x x
x x x x x x xx x x x x x x x
x x x x x x xx x x x x x x xx
x x x x x x xx x x x x x x xx x

1
1 + 1

1 + 2
1

1 + 4
1
1
1

1 + 8
1
1
1
1
1
1
1 1 + 16

Implication.
Since PUSH-BACK is called n
times and the running time is

 in total, the running time
of each call to PUSH-BACK in
the sequence of n calls is
on average!

O(n)

O(1)

O(n)

In general. The total number
of copied elements is:

n

∑
i=0

1 +
log n

∑
i=0

2i≤
=
≤ 3n

Amortized Analysis
welcome to

Amortized Analysis

PUSH-BACK runs in in the worst case.
Interpretation. At least one of the cases can make the function run in .

Θ(n)
Θ(n)

INCREMENT runs in in the worst case.
Interpretation. At least one of the cases can make the function run in .

Θ(log n)
Θ(log n)

The running time of PUSH-BACK is amortized.O(1)
The running time of INCREMENT is amortized.O(1)

Interpretation. If we perform a sequence of operations, the running time overall
will be in the order of n in the worst case and each single operation will have
performed a constant amount of work on average.

Goal. Analyze the worst case running time of a sequence of operations.

W
or

st
 C

as
e

A
na

ly
si

s
A

m
or

ti
ze

d
A

na
ly

si
s

V.S.

Amortized Analysis

PUSH-BACK runs in in the worst case.
Interpretation. At least one of the cases can make the function run in .

Θ(n)
Θ(n)

INCREMENT runs in in the worst case.
Interpretation. At least one of the cases can make the function run in .

Θ(log n)
Θ(log n)

The running time of PUSH-BACK is amortized.O(1)
The running time of INCREMENT is amortized.O(1)

Interpretation. If we perform a sequence of operations, the running time overall
will be in the order of n in the worst case and each single operation will have
performed a constant amount of work on average.

Goal. Analyze the worst case running time of a sequence of operations.

W
or

st
 C

as
e

A
na

ly
si

s
A

m
or

ti
ze

d
A

na
ly

si
s

V.S.

Amortized analysis can be done in multiple ways. The
method we used so far is called the aggregate method.!

Amortized Analysis: Accountant's Method

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Amortized Analysis: Accountant's Method

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Amortized Analysis: Accountant's Method

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

Amortized Analysis: Accountant's Method

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Amortized Analysis: Accountant's Method

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Amortized Analysis: Accountant's Method

Example. Array resizing.

Actual Costs. New Costs.

Copying a single element:

Resizing the array:

Copying a single element:

Resizing the array:

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Amortized Analysis: Accountant's Method

Example. Array resizing.

Actual Costs. New Costs.

Copying a single element: $1

Resizing the array: $n
(n = number of elements added so far)

Copying a single element:

Resizing the array:

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Amortized Analysis: Accountant's Method

Example. Array resizing.

Actual Costs. New Costs.

Copying a single element: $1

Resizing the array: $n
(n = number of elements added so far)

Copying a single element: $2

Resizing the array: $0

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Amortized Analysis: Accountant's Method

We need to show that the bank credit will always remain nonnegative. I.e.
The total new cost is not less than (equal or worse than) the total actual cost.!

Example. Array resizing.

Actual Costs. New Costs.

Copying a single element: $1

Resizing the array: $n
(n = number of elements added so far)

Copying a single element: $2

Resizing the array: $0

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i costs .ci

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost for operation i (can be <, > or = to).̂ci ci

If save the extra credit in the bank for use by other operations.̂ci > ci

If consume from the credit stored in the bank.̂ci < ci

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $2
Resizing the array: $0

PUSH-BACK use 1$ and save 1$ $1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $2
Resizing the array: $0

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 1$ from the saved credit
to copy 1 element

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $2
Resizing the array: $0

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 1$ $1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $2
Resizing the array: $0

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 2$ from the saved credit
to copy 2 elements

OOPS!
There is only $1 in the credit

The chosen new costs are bad!

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit
to copy one element

$1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 2$ from the saved credit
to copy 2 elements

$1

$1

$1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK use 1$ and save 2$

$1

$1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK 2 times: use 1$ and save 2$

$1

$1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK 2 times: use 1$ and save 2$

$1

$1 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit
to copy 4 elements

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK use 1$ and save 2$

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK 2 times: use 1$ and save 2$ $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK 3 times: use 1$ and save 2$ $2 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK 4 times: use 1$ and save 2$ $2 $2 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK 4 times: use 1$ and save 2$ $2 $2 $2

There is enough to pay for a new resize!

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.k

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

k

n
2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Therefore, the next resize happens after copy operations, which adds
$2 $n to the credit.

k

n
2

n
2

× n
2 =

$2 $2 $2 $2 $2 $2 $2 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Therefore, the next resize happens after copy operations, which adds
$2 $n to the credit.

• This is enough to copy the n elements in the next resize operation.

k

n
2

n
2

× n
2 =

$2 $2 $2 $2 $2 $2 $2 $2

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Therefore, the next resize happens after copy operations, which adds
$2 $n to the credit.

• This is enough to copy the n elements in the next resize operation.

Hence, the claim is true for the PUSH-BACK operation.

k

n
2

n
2

× n
2 =

k + 1

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Thft

• Th

Hence, the claim is true for the PUSH-BACK operation.

k

n
2

n
2

× n
2 =

k + 1

Amortized Cost.
Copying a single element: O(1)
Resizing the array: O(1)

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Thft

• Th

Hence, the claim is true for the PUSH-BACK operation.

k

n
2

n
2

× n
2 =

k + 1

Amortized Cost.
Copying a single element: O(1)
Resizing the array: O(1)

Assuming arrays are not resized unless
they are full and that their size doubles
when they resize.

Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK
operations. Assume that the claim is true for PUSH-BACK operations.

Note that:
• Copying a single element without resize adds $2 to the credit.

• Resizing produces an array of size n, where cells are empty.

• Thft

• Th

Hence, the claim is true for the PUSH-BACK operation.

k

n
2

n
2

× n
2 =

k + 1

Amortized Cost.
Copying a single element: O(1)
Resizing the array: O(1)

Interpretation.
Any sequence of PUSH-BACK
operations performs at most
operations in total.

Θ(n)

Assuming arrays are not resized unless
they are full and that their size doubles
when they resize.

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's:

Flipping 1's to 0's: up to

Flipping 0's to 1's:
Flipping 1's to 0's:

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Flipping 1's can be expensive!

Flipping 0's is cheap!

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's:
Flipping 1's to 0's:

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Flipping 1's can be expensive!

Flipping 0's is cheap!

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Flipping 1's can be expensive!

Flipping 0's is cheap!

Let's Try!

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

00000

add $2 and use $1
credit=

00001

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

+$2 and use $1
credit

00011

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

+$2 and use $3
credit

00100

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

+$2 and use $1
credit

00011

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

00100

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

+$2 and use $1
credit

00011

+$2 and use $1

00101

+$2 and use $3
credit

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

+$2 and use $3
credit

00100

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

+$2 and use $1
credit

00011

+$2 and use $1

00101

+$2 and use $2
credit

00110
credit

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

+$2 and use $3
credit

00100

00000

add $2 and use $1
credit=

00001 00010

+$2 and use $2
credit

+$2 and use $1
credit

00011

+$2 and use $1

00101

+$2 and use $2
credit

00110
credit

+$2 and use $1
credit

00111

Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

+$2 and use $1
credit

+$2 and use $2
credit

+$2 and use $1
credit

+$2 and use $3
credit

+$2 and use $1
credit

00000

add $2 and use $1

There are always enough dollars to flip from 0's to 1's.
An amortized cost for the increment operation is valid!O(1)

credit=
00001 00010 00011

00100001010011000111

+$2 and use $2
credit

+$2 and use $4
credit
01000

Whenever we get a 1, we store an extra $1 to flip the 1 back to a 0 later on

Example: A Queue using Two Stacks

Example: A Queue using Two Stacks

 CLASS Queue

 Define in as a Stack
 Define out as a Stack

 ENQUEUE(x):
 in.PUSH(x)

 DEQUEUE(){
 if (out.IS-EMPTY()):
 while (not in.IS-EMPTY()):
 out.PUSH(in.POP());

 return out.POP();

in out in out in out in out in out

1
2
3
4

4
3
2

4
3

4
3

5 45de
qu

eu
e(

)

de
qu

eu
e(

)

en
qu
eu
e(

5)

de
qu
eu
e(

)

Example: A Queue using Two Stacks

 CLASS Queue

 Define in as a Stack
 Define out as a Stack

 ENQUEUE(x):
 in.PUSH(x)

 DEQUEUE(){
 if (out.IS-EMPTY()):
 while (not in.IS-EMPTY()):
 out.PUSH(in.POP());

 return out.POP();

in out in out in out in out in out

1
2
3
4

4
3
2

4
3

4
3

5 45de
qu

eu
e(

)

de
qu

eu
e(

)

en
qu
eu
e(

5)

de
qu
eu
e(

)

Exercise. Use the Accounting Method
to show that the amortized cost for each
of the ENQUEUE and DEQUEUE
operations is .O(1)

Claim. Any sequence of ENQUEUE and
DEQUEUE operations runs in in the
worst case.

N
Θ(N)

Example: A Queue using Two Stacks

 CLASS Queue

 Define in as a Stack
 Define out as a Stack

 ENQUEUE(x):
 in.PUSH(x)

 DEQUEUE(){
 if (out.IS-EMPTY()):
 while (not in.IS-EMPTY()):
 out.PUSH(in.POP());

 return out.POP();

in out in out in out in out in out

1
2
3
4

4
3
2

4
3

4
3

5 45de
qu

eu
e(

)

de
qu

eu
e(

)

en
qu
eu
e(

5)

de
qu
eu
e(

)

Exercise. Use the Accounting Method
to show that the amortized cost for each
of the ENQUEUE and DEQUEUE
operations is .O(1)

Claim. Any sequence of ENQUEUE and
DEQUEUE operations runs in in the
worst case.

N
Θ(N)

Solution.
Pay $3 for each ENQUEUE operation and
$0 for each DEQUEUE operation.
Each enqueued item will have $2 saved
that can be used later for moving it to
the out stack and then for popping it.

PITFALL
Confusing average case analysis with amortized analysis.

Average Case Analysis. Uses probabilistic assumptions to
describe how an algorithm is expected to behave.

Example. The statement "the average case for quicksort is
" provides an expectation for the performance

assuming the probability of all element permutations is the
same. The algorithm is not guaranteed to have this
performance.

Amortized Analysis. Does not make any probabilistic
assumptions. Provides a guarantee for the performance
of a sequence of operations.

Example. The statement "The PUSH and POP operations
run in amortized time" mean that every possible
sequence of PUSH and POP operations is guaranteed to
have an average running time of per operation.

Θ(n log n)

O(1)

O(1)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci
I.e. the amortized cost for each operation
is an upper bound for the actual cost!

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1)

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

=
n

∑
i=1

ci + Φ(1) − Φ(0) + Φ(2) − Φ(1) + Φ(3) − Φ(2)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

+Φ(4) − Φ(3) + … + Φ(n) − Φ(n − 1)

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

=
n

∑
i=1

ci + Φ(1) − Φ(0) + Φ(2) − Φ(1) + Φ(3) − Φ(2)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

+Φ(4) − Φ(3) + … + Φ(n) − Φ(n − 1)

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

=
n

∑
i=1

ci + Φ(1) − Φ(0) + Φ(2) − Φ(1) + Φ(3) − Φ(2)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

+Φ(4) − Φ(3) + … + Φ(n) − Φ(n − 1)

=
n

∑
i=1

ci − Φ(0) + Φ(n)

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

=
n

∑
i=1

ci + Φ(1) − Φ(0) + Φ(2) − Φ(1) + Φ(3) − Φ(2)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

+Φ(4) − Φ(3) + … + Φ(n) − Φ(n − 1)

=
n

∑
i=1

ci − Φ(0) + Φ(n) ≥
n

∑
i=1

ci

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

=
n

∑
i=1

ci + Φ(1) − Φ(0) + Φ(2) − Φ(1) + Φ(3) − Φ(2)

The Potential Method

Definition. Given a sequence of operations, we define as a non-negative
function that describes the potential after operation , where the amortized cost
of operation is:

n Φ(i)
i

i

amortized cost
of operation i

actual cost of
operation i

change in
potential ̂ci = ci + Φ(i) − Φ(i − 1)

Proof.

I.e. the amortized cost for each operation
is an upper bound for the actual cost!

n

∑
i=1

̂ci =
n

∑
i=1

ci + Φ(i) − Φ(i − 1) =
n

∑
i=1

ci +
n

∑
i=1

(Φ(i) − Φ(i − 1))

+Φ(4) − Φ(3) + … + Φ(n) − Φ(n − 1)

=
n

∑
i=1

ci − Φ(0) + Φ(n) ≥
n

∑
i=1

ci

How do we choose the Potential function?

Claim. If and then Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci

Example # 1: Resizing Arrays

Bad Choice of . Let be equal to the number of elements in the array
after applying operation operation i.

Φ(i) Φ(i)

• because initially the array has 0 elements
• is always non-negative

Φ(0) = 0
Φ(i) = i

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + i − (i − 1) = 2

actual cost number of
elements now

number of
elements before

amortized
cost = O(1)

This upper bound is not interesting!
It is the same as the actual worst-

case running time we already know!

Example # 1: Resizing Arrays

Bad Choice of . Let be equal to the number of elements in the array
after applying operation operation i.

Φ(i) Φ(i)

• because initially the array has 0 elements
• is always non-negative

Φ(0) = 0
Φ(i) = i

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + i − (i − 1) = 2

actual cost number of
elements now

number of
elements before

amortized
cost = O(1)

Case # 2 - with resize: ̂ci = i + Φ(i) − Φ(i − 1) = i + i − (i − 1) = i + 1

amortized
cost = O(n)

WHO
CARES?

Good Choice of . Let the capacity of the array after operation i, and let

 let

Hence:

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2) = 2i − Ni Double the number of
elements in the second
half of the array
(after operation i)

Example # 1: Resizing Arrays

• because i = 0 and Ni = 0
• because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2i − Ni) − (2(i − 1) − Ni−1)

actual cost capacity before
and after is the

same

 = 1 + 2i − Ni − 2i + 2 + Ni−1 = 3

Good Choice of . Let the capacity of the array after operation i, and let

 let

Hence:

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2) = 2i − Ni Double the number of
elements in the second
half of the array
(after operation i)

Example # 1: Resizing Arrays

• because i = 0 and Ni = 0
• because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2i − Ni) − (2(i − 1) − Ni−1)

 = 1 + 2i − Ni − 2i + 2 + Ni−1 = 3

Case # 2 - with resize: ̂ci = i + Φ(i) − Φ(i − 1) = i + (2i − Ni) − (2(i − 1)−
Ni

2)

actual cost capacity before is
half the current

capacity

Good Choice of . Let the capacity of the array after operation i, and let

 let

Hence:

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2) = 2i − Ni Double the number of
elements in the second
half of the array
(after operation i)

Example # 1: Resizing Arrays

• because i = 0 and Ni = 0
• because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2i − Ni) − (2(i − 1) − Ni−1)

 = 1 + 2i − Ni − 2i + 2 + Ni−1 = 3

Case # 2 - with resize: ̂ci = i + Φ(i) − Φ(i − 1) = i + (2i − Ni) − (2(i − 1)−
Ni

2)

i + 2i − Ni − 2i + 2+
Ni

2
=

Ni

2 +1 − Ni + 2+
Ni

2
=

current number of elements =
half the current capacity + 1

Good Choice of . Let the capacity of the array after operation i, and let

 let

Hence:

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2) = 2i − Ni Double the number of
elements in the second
half of the array
(after operation i)

Example # 1: Resizing Arrays

• because i = 0 and Ni = 0
• because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0

Case # 1 - no resize: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2i − Ni) − (2(i − 1) − Ni−1)

 = 1 + 2i − Ni − 2i + 2 + Ni−1 = 3

Case # 2 - with resize: ̂ci = i + Φ(i) − Φ(i − 1) = i + (2i − Ni) − (2(i − 1)−
Ni

2)

i + 2i − Ni − 2i + 2+
Ni

2
=

Ni

2 +1 − Ni + 2+
Ni

2
=

= 3
This upper bound is interesting!

This is much lower than worst case
running time we know, which is O(n)

amortized
cost = O(1)YES!!

Example # 2: Counting Bit-Flips

Potential Function. Let , where is the number of 1s after operation i.

Hence:

Φ(i) = Ni Ni

• because the number of 1s in 000000... is 0
• because the number of bits is never negative

Φ(0) = 0
Φ(i) = Ni ≥ 0

Case # 1 - Flip : 0 → 1 ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + Ni − (Ni − 1) = 2

actual cost number of
1s now

number of
1s before

amortized
cost = O(1)

Example # 2: Counting Bit-Flips

Potential Function. Let , where is the number of 1s after operation i.

Hence:

Φ(i) = Ni Ni

• because the number of 1s in 000000... is 0
• because the number of bits is never negative

Φ(0) = 0
Φ(i) = Ni ≥ 0

Case # 1 - Flip : 0 → 1 ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + Ni − (Ni − 1) = 2

amortized
cost = O(1)

Case # 2 - Flip : 1 → 0 ̂ci = Ni−1 + 1 + Φ(i) − Φ(i − 1) = Ni−1 + 1 + 1 − Ni−1

in the worst case, all the
1s are flipped to 0s and

one 0 is flipped to 1

in the worst case,
only one 1 remains

Example # 2: Counting Bit-Flips

Potential Function. Let , where is the number of 1s after operation i.

Hence:

Φ(i) = Ni Ni

• because the number of 1s in 000000... is 0
• because the number of bits is never negative

Φ(0) = 0
Φ(i) = Ni ≥ 0

Case # 1 - Flip : 0 → 1 ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + Ni − (Ni − 1) = 2

amortized
cost = O(1)

Case # 2 - Flip : 1 → 0 ̂ci = Ni−1 + 1 + Φ(i) − Φ(i − 1) = Ni−1 + 1 + 1 − Ni−1

= 2 amortized
cost = O(1)

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

actual cost
the in stack

increases by 1

the out stack
does not change

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Case # 2 - Dequeue: ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

move elements from in
to out + pop element

ai−1
1

assuming out is empty

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Case # 2 - Dequeue: ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=

in becomes
empty

assuming out is empty

out
was empty

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Case # 2 - Dequeue: ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= =

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Case # 2 - Dequeue: ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= 1 + bi − ai−1=

Example # 3: A Queue using Two Stacks

Potential Function. Let , where:
 - = number of elements in the in stack after operation i
 - = the number of elements in the out stack after operation i

Hence:

Φ(i) = 2ai + bi
ai
bi

• Initially, no elements in any of the stacks
• The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue: ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

 = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized
cost = O(1)

Case # 2 - Dequeue: ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= 1 + bi − ai−1= = 0 amortized
cost = O(1)

of elements in out now is less
than the # of elements in in before

1

