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Motivation

What is the running time of counting from 0 to n by  
calling function  INCREMENT  repeatedly on an array  
of k bits initialized to 0's? 

A.    

B.    

C.    

D.   

O(n)

O(n log n)

O(nk)

O(k log n)

Choose the best answer.

Cost Model. Count the 
number of bit flips.

correct and tight bound!  ... why?

correct but too pessimistic!

incorrect!

Why is it pessimistic to say:  n  calls to INCREMENT × O(log n) = O(n log n)?

Answer. Because each call to INCREMENT does not do  bit flips!O(log n)
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Implication.  
Since INCREMENT is called n 
times and the running time is 

 in total, the running time 
of each call to INCREMENT in 
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on average! 
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time of a sequence of operations, we can:Takeaway



When analyzing the worst case running 
time of a sequence of operations, we can:

Analyze the worst case running time of a single operation and then  
multiply it by the number of times the operation is performed.

Takeaway

1
Example. Running time of n increments = n × O(log n)
Problem. Might overestimate the worst case running time.



When analyzing the worst case running 
time of a sequence of operations, we can:

Analyze the worst case running time of a single operation and then  
multiply it by the number of times the operation is performed.

Reason about the total running time of the whole sequence of operations together.

Takeaway

1

2

Example. Running time of n increments = n × O(log n)

Example. Incrementing n times can't flip bits more than  times.2n

Problem. Might overestimate the worst case running time.

OR



Motivation

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n

Example. PUSH-BACK(5)7 0 1 7 0 1 5
n = 4

i = 3
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Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

n = i = 4

i = 3

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n



  if (i < n): A[i]  x←

 PUSH-BACK(A[], x) 

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

n = i = 4

simply insert at index i 
if there is a vacant cell

i = 3

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n



  if (i < n): A[i]  x 

  else:  Create array B of size n x 2 
         B[0  n-1]  A[0  n-1] 
         A  B 

       n  n x 2

←

… ← …

←
←

Motivation

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

 PUSH-BACK(A[], x) 

n = i = 4

i = 3

if there are no vacant 
cells, double the size of 
the array

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n
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  if (i < n): A[i]  x 

  else:  Create array B of size n x 2 
         B[0  n-1]  A[0  n-1] 
         A  B 

       n  n x 2 
         A[i]  x              
  i  i+1

←

… ← …

←
←

←
←

Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n

 PUSH-BACK(A[], x) 

n = i = 4

insert in the newly 
created array

i = 3
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created

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.
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n = i = 4

i = 3

What is the worst case running 
time of function PUSH-BACK? 

Q

Cost Model. Number of copied 
elements
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Assuming n and i are globally accessible.

Example. PUSH-BACK(5)7 0 1 7 0 1 5

PUSH-BACK(9)7 0 1 5 7 0 1 5 9

copied

created

Problem. Given an array  of size , implement a PUSH-BACK(x)  
operation that inserts x at the last vacant cell. If the number of occupied cells i 
equals n, double the size of the array before inserting.

A[] n

 PUSH-BACK(A[], x) 

n = i = 4

i = 3

What is the worst case running 
time of function PUSH-BACK? 

Q

Cost Model. Number of copied 
elements

 because  elements are 
copied if the array is doubled
Θ(n) n + 1A

  if (i < n): A[i]  x 

  else:  Create array B of size n x 2 
         B[0  n-1]  A[0  n-1] 
         A  B 

       n  n x 2 
         A[i]  x              
  i  i+1

←

… ← …

←
←

←
←



Exercise

What is the worst case running time of calling   
PUSH-BACK  n times on a resizing array that is  
initially of size 1? 

A.    

B.    

C.    

D.   

O(n2)

O(n log n)

O(n)

O(log n)

Choose the best answer.

Cost Model. Count the 
number of element copies.
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initially of size 1?
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In general. The total number 
of copied elements is: 

≤
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∑
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1 +
log n

∑
i=0
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Implication.  
Since PUSH-BACK is called n 
times and the running time is 

 in total, the running time 
of each call to PUSH-BACK in 
the sequence of n calls is  
on average! 
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In general. The total number 
of copied elements is: 
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Amortized Analysis

PUSH-BACK runs in  in the worst case. 
Interpretation.  At least one of the cases can make the function run in .

Θ(n)
Θ(n)

INCREMENT runs in  in the worst case. 
Interpretation.  At least one of the cases can make the function run in .

Θ(log n)
Θ(log n)

The running time of  PUSH-BACK is  amortized.O(1)
The running time of  INCREMENT is  amortized.O(1)

Interpretation.  If we perform a sequence of operations, the running time overall 
will be in the order of n in the worst case and each single operation will have 
performed a constant amount of work on average.

Goal.  Analyze the worst case running time of a sequence of operations.
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Amortized analysis can be done in multiple ways. The 
method we used so far is called the aggregate method.!
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Example.  Array resizing.

Actual Costs. New Costs.

Copying a single element: $1

Resizing the array: $n 
(n = number of elements added so far)

Copying a single element: $2

Resizing the array: $0

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i  costs  .ci
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If      consume from the credit stored in the bank.̂ci < ci



Amortized Analysis: Accountant's Method

We need to show that the bank credit will always remain nonnegative. I.e. 
The total new cost is not less than (equal or worse than) the total actual cost.!

Example.  Array resizing.

Actual Costs. New Costs.

Copying a single element: $1

Resizing the array: $n 
(n = number of elements added so far)

Copying a single element: $2

Resizing the array: $0

Goal. Show that credit always remains nonnegative, implying that ∑ ̂ci ≥ ∑ ci

Assume that each unit of work costs $1 and operation i  costs  .ci

Idea.  Use cheap frequent operations to pay for rare but expensive operations.

Assign a new cost    for operation i  (can be <, > or = to  ).̂ci ci
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Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $2
Resizing the array: $0

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 1$ $1

RESIZE use 2$ from the saved credit 
to copy 2 elements

OOPS!
There is only $1 in the credit

The chosen new costs are bad!



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit 
to copy one element

$1



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 2$ from the saved credit 
to copy 2 elements

$1

$1

$1



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK use 1$ and save 2$

$1

$1



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK 2 times: use 1$ and save 2$

$1

$1



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$2

RESIZE use 2$ from the saved credit

PUSH-BACK 2 times: use 1$ and save 2$

$1

$1 $2



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
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Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

SECOND ATTEMPT. Use $3 instead of $2

PUSH-BACK use 1$ and save 2$ $2

RESIZE use 1$ from the saved credit

PUSH-BACK use 1$ and save 2$ $2

$1

$1

$1

$1

RESIZE use 2$ from the saved credit

RESIZE use 4$ from the saved credit

$2PUSH-BACK 2 times: use 1$ and save 2$ $1 $2

$1 $2PUSH-BACK 4 times: use 1$ and save 2$ $2 $2 $2

There is enough to pay for a new resize!
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operations. Assume that the claim is true for  PUSH-BACK operations.k
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Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 

• Therefore, the next resize happens after  copy operations, which adds  
$2 $n to the credit. 
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Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 

• Therefore, the next resize happens after  copy operations, which adds  
$2 $n to the credit.  

• This is enough to copy the n elements in the next resize operation.
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Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 

• Therefore, the next resize happens after  copy operations, which adds  
$2 $n to the credit.  

• This is enough to copy the n elements in the next resize operation. 

Hence, the claim is true for the  PUSH-BACK operation.
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Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 
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Copying a single element: O(1)
Resizing the array: O(1)
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Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 
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Hence, the claim is true for the  PUSH-BACK operation.
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Amortized Cost.
Copying a single element: O(1)
Resizing the array: O(1)

Assuming arrays are not resized unless 
they are full and that their size doubles 
when they resize.



Accountants Method: Resizing Array Demo

Actual Costs. New Costs.
Copying a single element: $1
Resizing the array: $n

Copying a single element: $3
Resizing the array: $0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 PUSH-BACK 
operations. Assume that the claim is true for  PUSH-BACK operations. 

Note that: 
• Copying a single element without resize adds $2 to the credit. 

• Resizing produces an array of size n, where    cells are empty. 

• Thft


• Th

Hence, the claim is true for the  PUSH-BACK operation.

k

n
2

n
2

× n
2 =

k + 1

Amortized Cost.
Copying a single element: O(1)
Resizing the array: O(1)

Interpretation.
Any sequence of PUSH-BACK 
operations performs at most  
operations in total.

Θ(n)

Assuming arrays are not resized unless 
they are full and that their size doubles 
when they resize.
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Actual Costs. New Costs.
Flipping 0's to 1's: 

Flipping 1's to 0's: up to 

Flipping 0's to 1's: 
Flipping 1's to 0's: 
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0 1 1 1 0
0 1 1 1 1

0 
1 
2 
3 
4 
5 
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7 
8 
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10 
11 
12 
13 
14 
15

Flipping 1's can be expensive!

Flipping 0's is cheap!
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Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

0 0 0 0 0
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Flipping 1's can be expensive!

Flipping 0's is cheap!

Let's Try!
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Accountants Method: Incrementing a Binary Counter

Actual Costs. New Costs.
Flipping 0's to 1's: $1
Flipping 1's to 0's: up to $log(n)

Flipping 0's to 1's: $2
Flipping 1's to 0's: $0

+$2 and use $1
credit

+$2 and use $2
credit

+$2 and use $1
credit

+$2 and use $3
credit

+$2 and use $1
credit

00000

add $2 and use $1

There are always enough dollars to flip from 0's to 1's. 
An  amortized cost for the increment operation is valid!O(1)

credit=
00001 00010 00011

00100001010011000111

+$2 and use $2
credit

+$2 and use $4
credit
01000

Whenever we get a 1, we store an extra $1 to flip the 1 back to a 0 later on



Example: A Queue using Two Stacks



Example: A Queue using Two Stacks

 CLASS Queue

  Define in  as a Stack 
  Define out as a Stack 

  ENQUEUE(x):  
    in.PUSH(x)   

  DEQUEUE(){  
    if (out.IS-EMPTY()):  
        while (not in.IS-EMPTY()):  
            out.PUSH(in.POP());  
   
    return out.POP();  
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Exercise. Use the Accounting Method 
to show that the amortized cost for each 
of the ENQUEUE and DEQUEUE 
operations is .O(1)

Claim. Any sequence of  ENQUEUE and 
DEQUEUE operations runs in  in the 
worst case.

N
Θ(N )
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Exercise. Use the Accounting Method 
to show that the amortized cost for each 
of the ENQUEUE and DEQUEUE 
operations is .O(1)

Claim. Any sequence of  ENQUEUE and 
DEQUEUE operations runs in  in the 
worst case.

N
Θ(N )

Solution.  
Pay $3 for each ENQUEUE operation and 
$0 for each DEQUEUE operation. 
Each enqueued item will have $2 saved 
that can be used later for moving it to 
the out stack and then for popping it.



PITFALL
Confusing average case analysis with amortized analysis.

Average Case Analysis. Uses probabilistic assumptions to 
describe how an algorithm is expected to behave. 

Example. The statement "the average case for quicksort is 
" provides an expectation for the performance 

assuming the probability of all element permutations is the 
same. The algorithm is not guaranteed to have this 
performance. 

Amortized Analysis. Does not make any probabilistic 
assumptions. Provides a guarantee for the performance  
of a sequence of operations. 

Example. The statement "The PUSH and POP operations 
run in  amortized time" mean that every possible 
sequence of PUSH and POP operations is guaranteed to  
have an average running time of  per operation.

Θ(n log n)

O(1)

O(1)



The Potential Method

Definition. Given a sequence of  operations, we define  as a non-negative 
function that describes the potential after operation , where the amortized cost 
of operation  is:  

n Φ(i)
i

i

amortized cost 
of operation i

actual cost of 
operation i

change in 
potential   ̂ci = ci + Φ(i) − Φ(i − 1)



The Potential Method

Definition. Given a sequence of  operations, we define  as a non-negative 
function that describes the potential after operation , where the amortized cost 
of operation  is:  

n Φ(i)
i

i

amortized cost 
of operation i

actual cost of 
operation i

change in 
potential   ̂ci = ci + Φ(i) − Φ(i − 1)

Claim. If   and  then  Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci
I.e. the amortized cost for each operation 
is an upper bound for the actual cost!
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How do we choose the Potential function?

Claim. If   and  then  Φ(0) = 0 Φ(i) ≥ 0
n

∑
i=1

̂ci ≥
n

∑
i=1

ci



Example # 1: Resizing Arrays

Bad Choice of . Let  be equal to the number of elements in the array 
after applying operation operation i.  

Φ(i) Φ(i)

•   because initially the array has 0 elements 
•     is always non-negative

Φ(0) = 0
Φ(i) = i

Case # 1 - no resize:                             ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + i − (i − 1) = 2

actual cost number of 
elements now

number of 
elements before

amortized 
cost = O(1)



This upper bound is not interesting! 
It is the same as the actual worst-

case running time we already know!

Example # 1: Resizing Arrays

Bad Choice of . Let  be equal to the number of elements in the array 
after applying operation operation i.  

Φ(i) Φ(i)

•   because initially the array has 0 elements 
•     is always non-negative

Φ(0) = 0
Φ(i) = i

Case # 1 - no resize:                             ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + i − (i − 1) = 2

actual cost number of 
elements now

number of 
elements before

amortized 
cost = O(1)

Case # 2 - with resize:                             ̂ci = i + Φ(i) − Φ(i − 1) = i + i − (i − 1) = i + 1

amortized 
cost = O(n)

WHO 
CARES?



Good Choice of . Let   the capacity of the array after operation i, and let   

                                    let    

Hence: 

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2 ) = 2i − Ni Double the number of 
elements in the second 
half of the array  
(after operation i)

Example # 1: Resizing Arrays

•                    because i = 0 and Ni = 0 
•     because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0

Case # 1 - no resize:                  ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2i − Ni) − (2(i − 1) − Ni−1)

actual cost capacity before 
and after is the 

same

                                                                                 = 1 + 2i − Ni − 2i + 2 + Ni−1 = 3
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2 )

actual cost capacity before is 
half the current 

capacity
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=

current number of elements = 
half the current capacity + 1



Good Choice of . Let   the capacity of the array after operation i, and let   

                                    let    

Hence: 

Φ(i) Ni =

Φ(i) = 2(i−
Ni

2 ) = 2i − Ni Double the number of 
elements in the second 
half of the array  
(after operation i)
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•                    because i = 0 and Ni = 0 
•     because the array is never less than half full

Φ(0) = 0
Φ(i) = 2i − N ≥ 0
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This upper bound is interesting! 

This is much lower than worst case 
running time we know, which is O(n)

amortized 
cost = O(1)YES!!



Example # 2: Counting Bit-Flips

Potential Function. Let   , where  is the number of 1s after operation i.   
                                

Hence: 

Φ(i) = Ni Ni

•             because the number of 1s in 000000... is 0 
•     because the number of bits is never negative

Φ(0) = 0
Φ(i) = Ni ≥ 0

Case # 1 - Flip :                             0 → 1 ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + Ni − (Ni − 1) = 2

actual cost number of 
1s now

number of 
1s before

amortized 
cost = O(1)
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Potential Function. Let   , where  is the number of 1s after operation i.   
                                

Hence: 

Φ(i) = Ni Ni

•             because the number of 1s in 000000... is 0 
•     because the number of bits is never negative

Φ(0) = 0
Φ(i) = Ni ≥ 0

Case # 1 - Flip :                             0 → 1 ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + Ni − (Ni − 1) = 2

amortized 
cost = O(1)

Case # 2 - Flip :                    1 → 0 ̂ci = Ni−1 + 1 + Φ(i) − Φ(i − 1)        = Ni−1 + 1 + 1 − Ni−1

in the worst case, all the 
1s are flipped to 0s and 

one 0 is flipped to 1

in the worst case, 
only one 1 remains



Example # 2: Counting Bit-Flips

Potential Function. Let   , where  is the number of 1s after operation i.   
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Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

actual cost
the in stack 

increases by 1

the out stack 
does not change



Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

       = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized 
cost = O(1)



Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

       = 1 + 2ai + bi − 2ai + 2 − bi
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cost = O(1)

Case # 2 - Dequeue:                  ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

move  elements from in 
to out + pop  element

ai−1
1

assuming out is empty
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ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=

in becomes  
empty

assuming out is empty

out  
was empty



Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

       = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized 
cost = O(1)

Case # 2 - Dequeue:                  ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= =



Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

       = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized 
cost = O(1)

Case # 2 - Dequeue:                  ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= 1 + bi − ai−1=



Example # 3: A Queue using Two Stacks

Potential Function. Let   , where:  
                                -  = number of elements in the in stack after operation i 
                                -  = the number of elements in the out stack after operation i                     

Hence: 

Φ(i) = 2ai + bi
ai
bi

•                     Initially, no elements in any of the stacks 
•     The number of elements is never negative

Φ(0) = 0
Φ(i) = 2ai + bi ≥ 0

Case # 1 - Enqueue:                            ̂ci = 1 + Φ(i) − Φ(i − 1) = 1 + (2ai + bi) − (2(ai − 1) + bi)

       = 1 + 2ai + bi − 2ai + 2 − bi

= 3 amortized 
cost = O(1)

Case # 2 - Dequeue:                  ̂ci = ai−1 + 1 + Φ(i) − Φ(i − 1)

ai−1 + 1 + (2 × 0 + bi) − (2ai−1 + 0)=
assuming out is empty

ai−1 + 1 + bi − 2ai−1= 1 + bi − ai−1= = 0 amortized 
cost = O(1)

# of elements in  out now is  less 
than the # of elements in in before
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