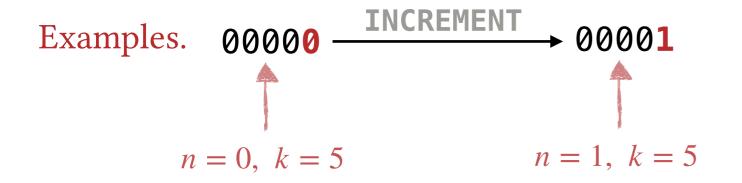
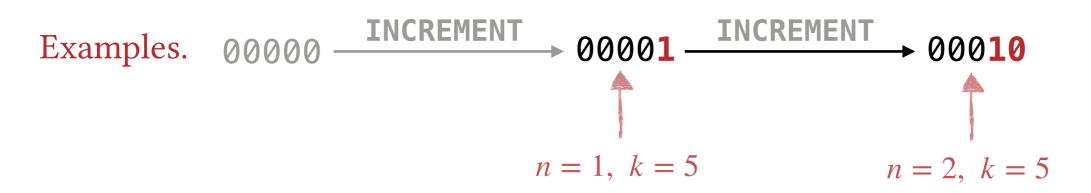
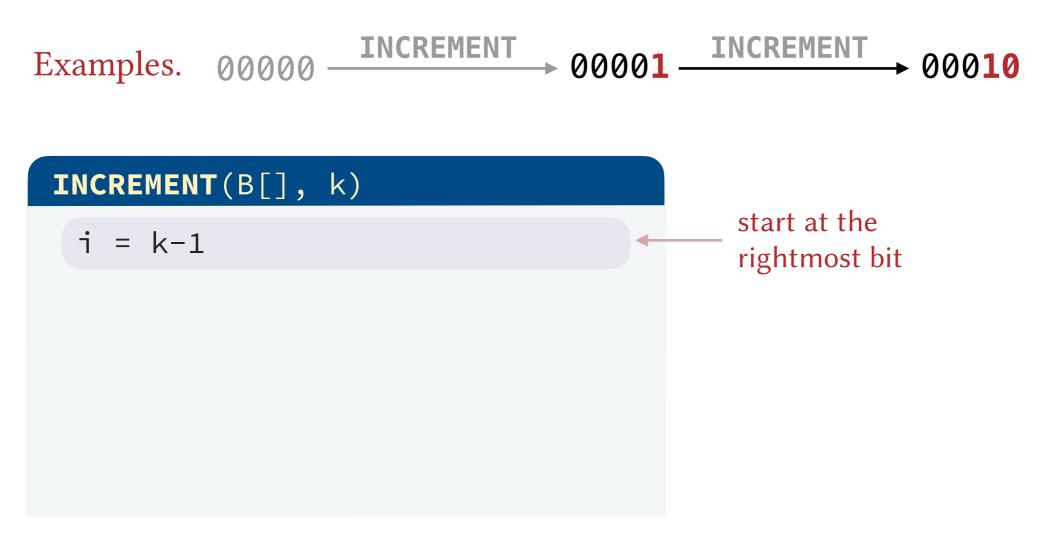
CS11921 - Fall 2023 Algorithm Design & Analysis

Amortized Analysis

Ibrahim Albluwi







Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. $0000 \xrightarrow{\text{INCREMENT}} 00001 \xrightarrow{\text{INCREMENT}} 00010$ **INCREMENT(B[], k)** i = k-1 **while** (B[i] == 1 and i >= 0): B[i] = 0 i = i-1keep flipping 1's to 0's until a 0 is reached

Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. 0000 $\xrightarrow{\text{INCREMENT}} 00001$ $\xrightarrow{\text{INCREMENT}} 00010$ $\overrightarrow{\text{INCREMENT(B[], k)}}$ i = k-1 $\overrightarrow{\text{while (B[i] == 1 and i >= 0):}}$ B[i] = 0 i = i-1 if (i >= 0) B[i] = 1 $\overrightarrow{\text{B[i] = 1}}$ $\overrightarrow{\text{B[i] = 1}}$

Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. 00000 INCREMENT > 00001 INCREMENT > 00010

INCREMENT(B[], k)

i = k-1
while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1
if (i >= 0)
 B[i] = 1

Example. 1 0 1 0 1 0 0 1 1 1 1 1 1

Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. 00000 → 00001 → 00001 → 00010

INCREMENT(B[], k)

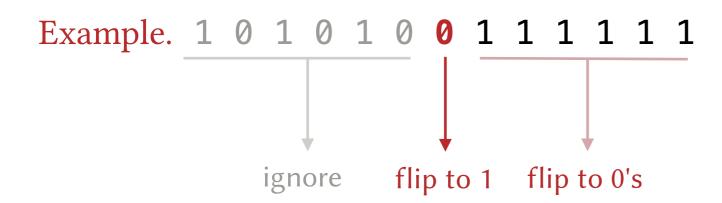
i = k-1
while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1
if (i >= 0)
 B[i] = 1

Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. 00000 — INCREMENT → 00001 — INCREMENT → 00010

INCREMENT(B[], k)

i = k-1
while (B[i] == 1 and i >= 0):
 B[i] = 0
 i = i-1
if (i >= 0)
 B[i] = 1



Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

Examples. 00000 → 00001 → 00001 → 00010

INCREMENT(B[], k)

i = k-1

What is the running time of function **INCREMENT**? Choose the *best* answer.

Cost Model. Count the number of *bit flips*.

A. *O*(1)

Q

- **B.** *O*(*k*)
- **C.** $O(\log n)$

D. O(n)

Problem. Given an array $B[0 \dots k-1]$ of bits, representing a number $n < 2^k$, increment *n*.

0

Examples. 00000 → 00001 → 00001 → 00010

INCREMENT(B[], k)

i = k-1

What is the running time of function **INCREMENT**? Choose the *best* answer. Cost Model. Count the number of bit flips. A. O(1) — incorrect **B.** $O(k) \leftarrow$ too pessimistic! **C.** $O(\log n)$ **D.** $O(n) \leftarrow$ too pessimistic!

What is the running time for counting from 0 to n by calling function **INCREMENT** repeatedly on an array of *k* bits initialized to 0's?

Cost Model. Count the number of *bit flips*.

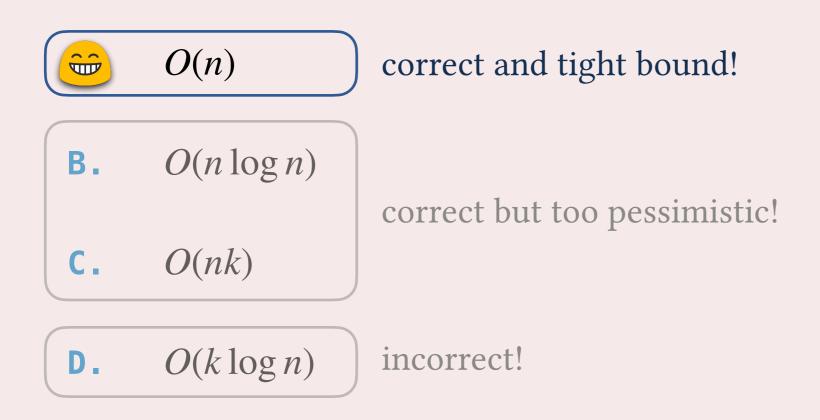
Choose the *best* answer.

- A. O(n)
- **B.** $O(n \log n)$
- $\mathbf{C}. \quad O(nk)$
- **D**. $O(k \log n)$

What is the running time of counting from 0 to n by calling function **INCREMENT** repeatedly on an array of *k* bits initialized to 0's?

Cost Model. Count the number of *bit flips*.

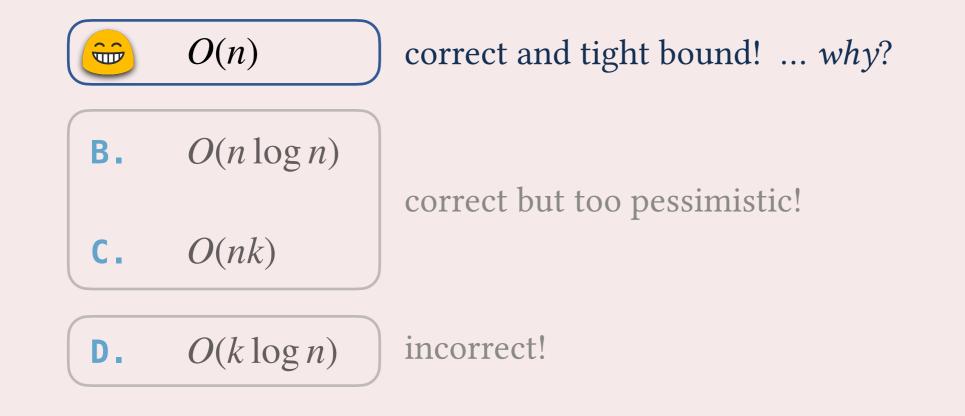
Choose the *best* answer.



What is the running time of counting from 0 to n by calling function **INCREMENT** repeatedly on an array of *k* bits initialized to 0's?

Cost Model. Count the number of *bit flips*.

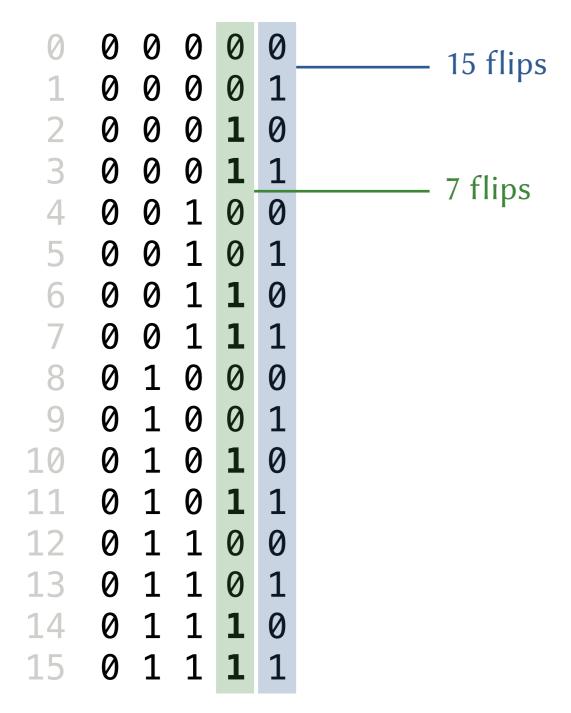
Choose the *best* answer.

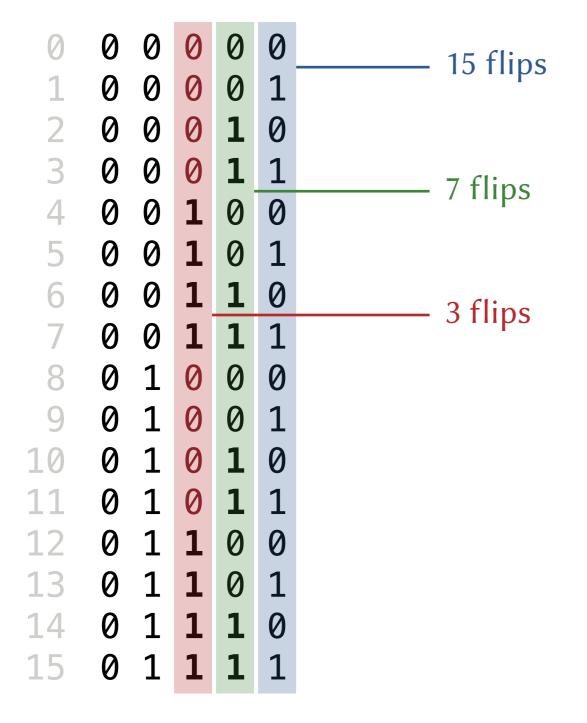


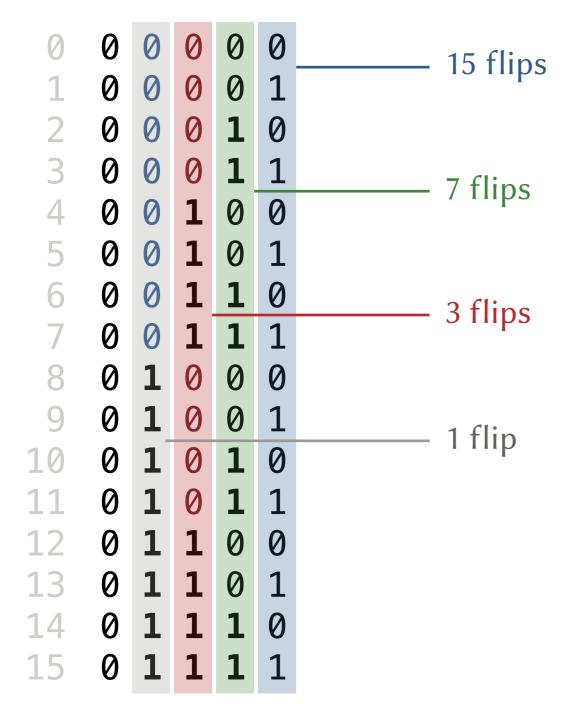
Why is it pessimistic to say: *n* calls to **INCREMENT** $\times O(\log n) = O(n \log n)$? **Answer.** Because each call to **INCREMENT** does not do $O(\log n)$ bit flips!

Example. Counting to 15.

Ω	0	0	0	0	0		
1	0					15 flips	S
1	0	0	0	0	1		
2 3	0	0	0	1	0		
3	0	0	0	1	1		
4	0	0	1	0	0		
5	0	0	1	0	1		
6	0	0	1	1	0		
7	0	0	1	1	1		
8	0	1	0	0	0		
9	0	1	0	0	1		
10	0	1	0	1	0		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		

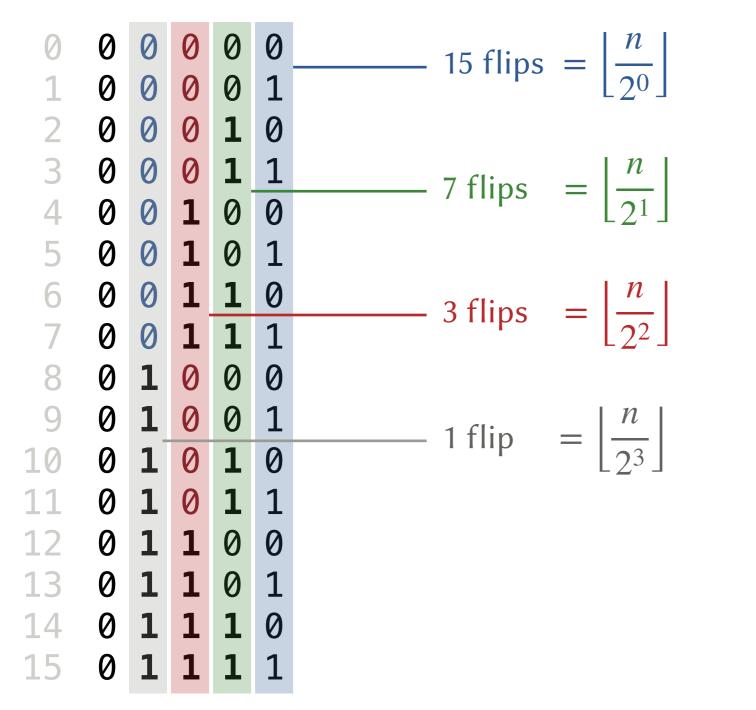






0	0	0	0	0	0	15 flips = $\left\lfloor \frac{n}{2^0} \right\rfloor$
1	0	0	0	0	1	
2	0	0	0	1	0	
3	0	0	0	1	1	7 flips = $\left\lfloor \frac{n}{2^1} \right\rfloor$
4	0	0	1	0	0	
5	0	0	1	0	1	
6	0	0	1	1	0	$ 3 \text{ flips} = \left\lfloor \frac{n}{2^2} \right\rfloor$
7	0	0	1	1	1	
8	0	1	0	0	0	
9	0	1	0	0	1	1 flip = $\left\lfloor \frac{n}{2^3} \right\rfloor$
10	0	1	0	1	0	$- \left\lfloor \frac{1}{2^3} \right\rfloor$
11	0	1	0	1	1	
12	0	1	1	0	0	
13	0	1	1	0	1	
14	0	1	1	1	0	
15	0	1	1	1	1	

Example. Counting to 15.

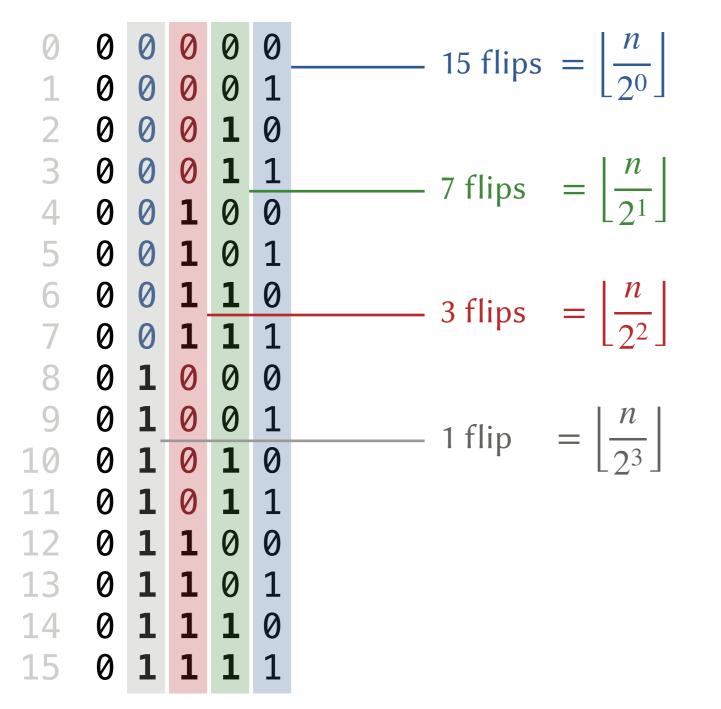


In general.

The total number of bit flips is:

$$\leq \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor$$

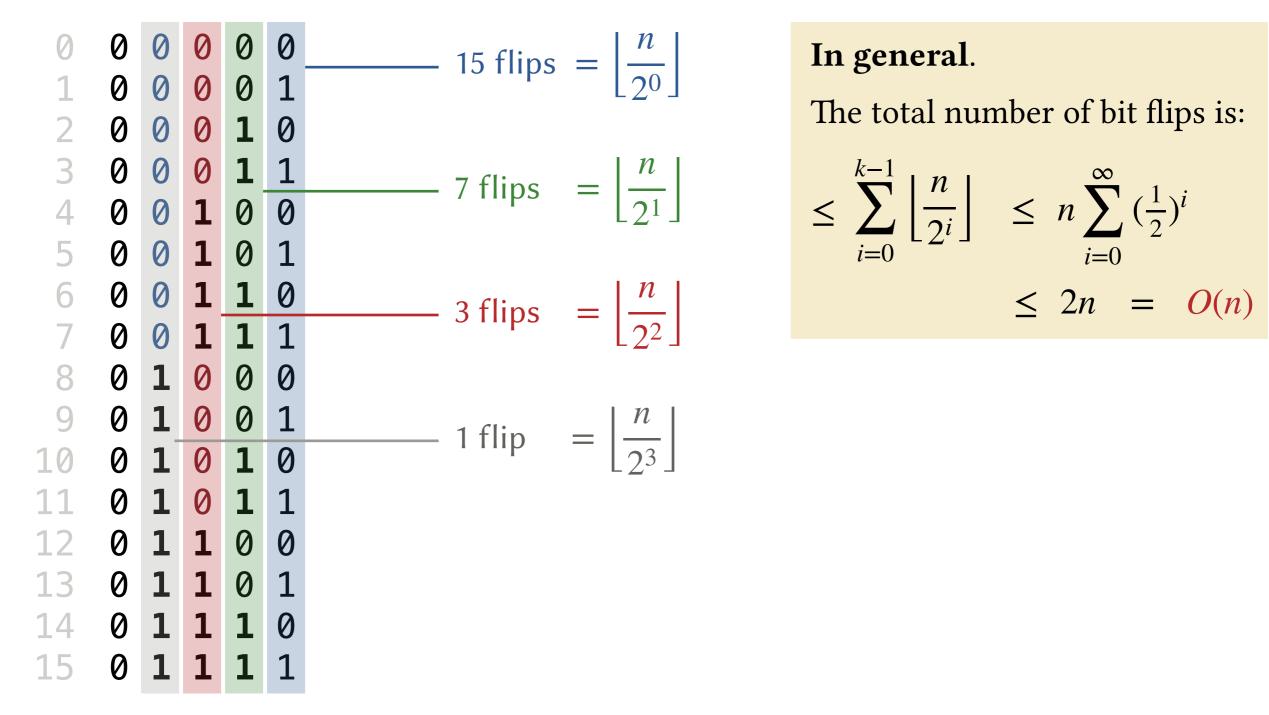
Example. Counting to 15.



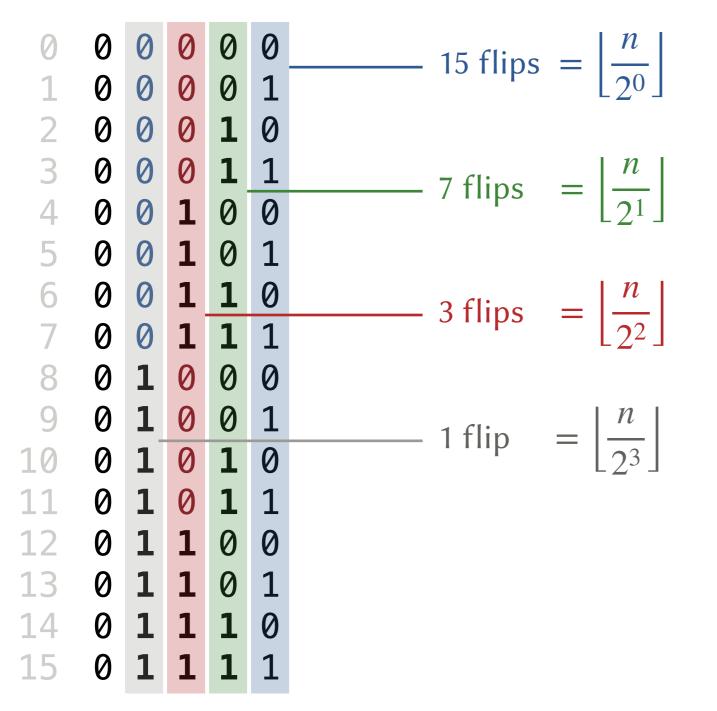
In general.

The total number of bit flips is:

$$\leq \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq n \sum_{i=0}^{\infty} \left(\frac{1}{2} \right)^i$$



Example. Counting to 15.



In general.

The total number of bit flips is:

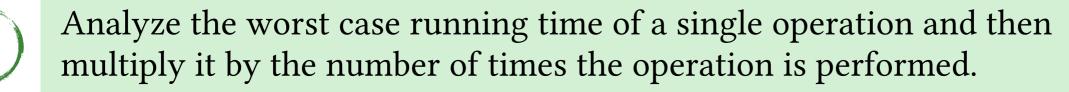
$$\leq \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq n \sum_{i=0}^{\infty} \left(\frac{1}{2} \right)^i$$
$$\leq 2n = O(n)$$

Implication.

Since **INCREMENT** is called *n* times and the running time is O(n) in total, the running time of each call to **INCREMENT** in the sequence of calls is O(1) on average!

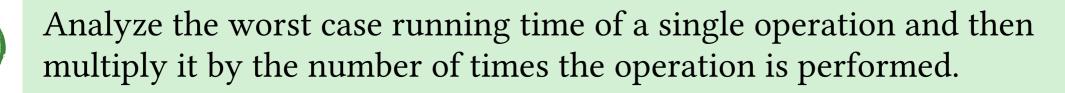
When analyzing the worst case running time of a *sequence* of operations, we can:

When analyzing the worst case running time of a *sequence* of operations, we can:



Example. Running time of *n* increments $= n \times O(\log n)$ Problem. Might *overestimate* the worst case running time.

When analyzing the worst case running time of a *sequence* of operations, we can:

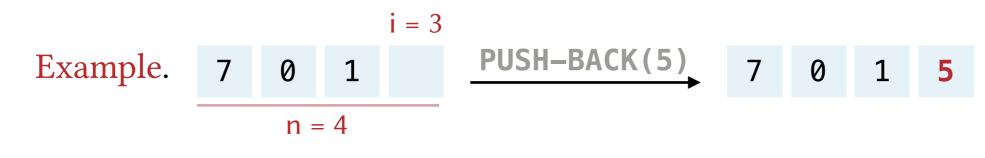


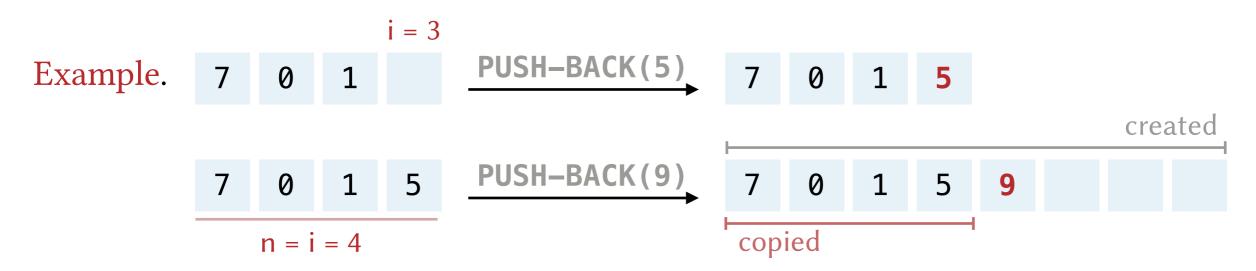
Example. Running time of *n* increments $= n \times O(\log n)$ Problem. Might *overestimate* the worst case running time.

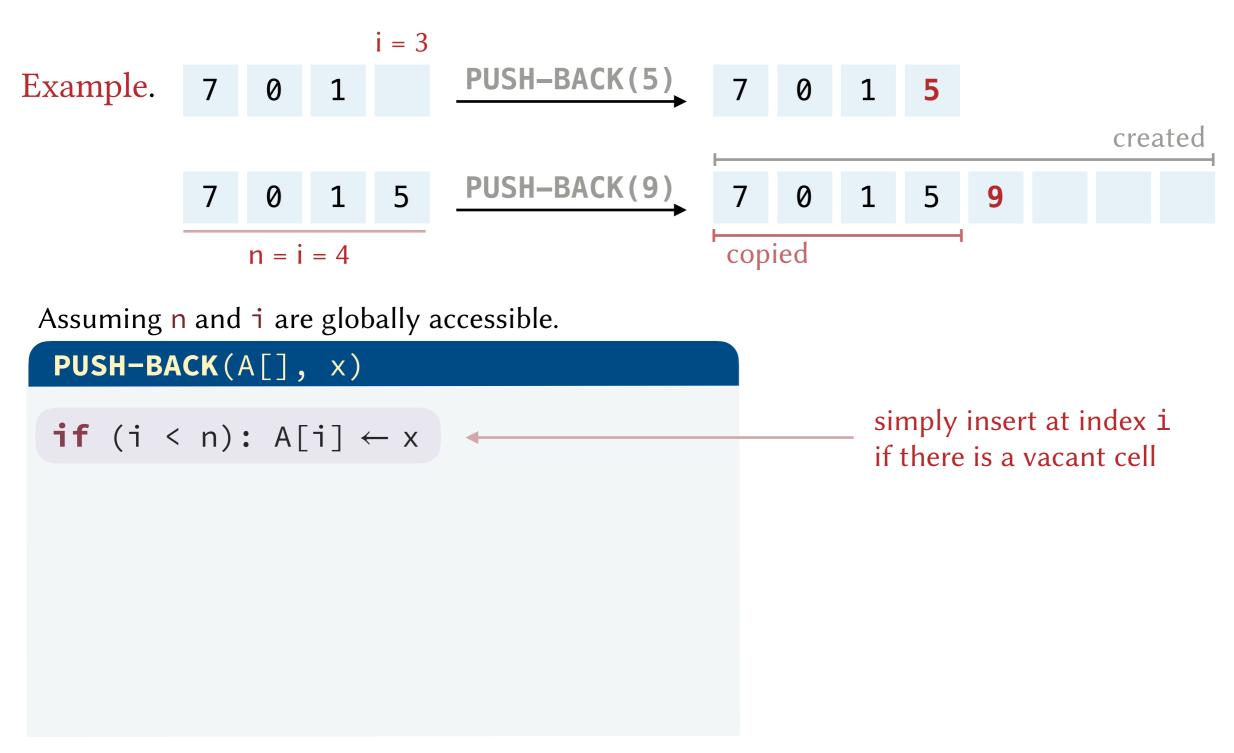
OR

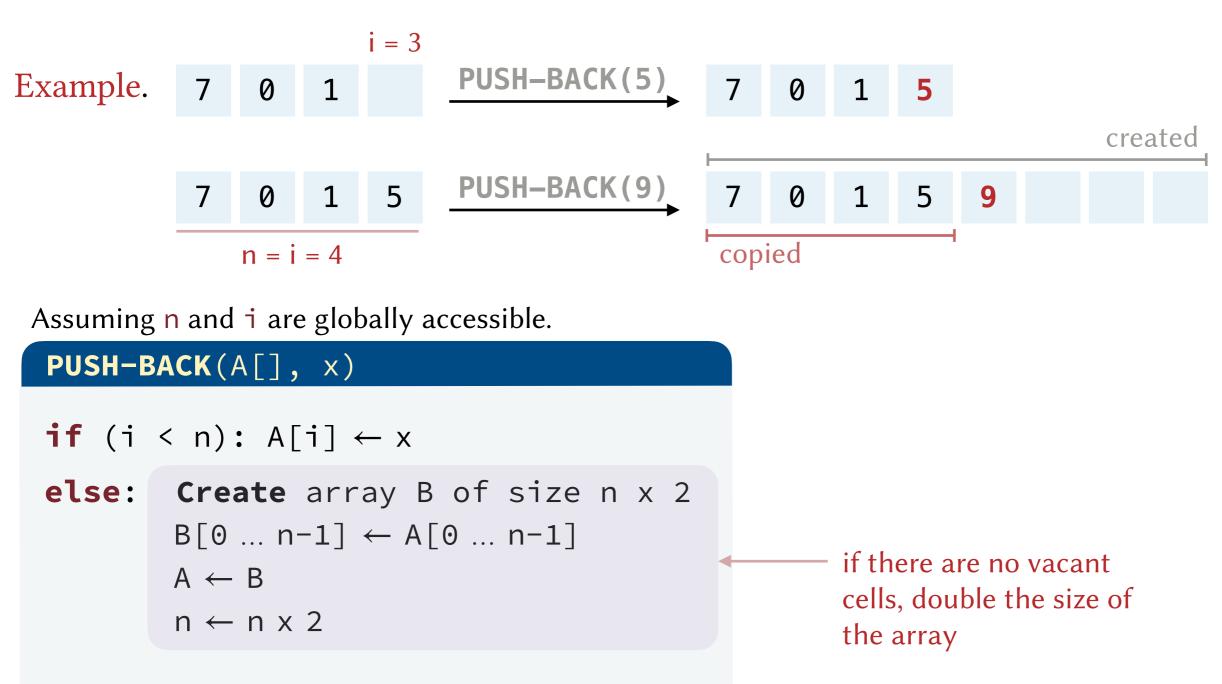
Reason about the total running time of the whole sequence of operations together.

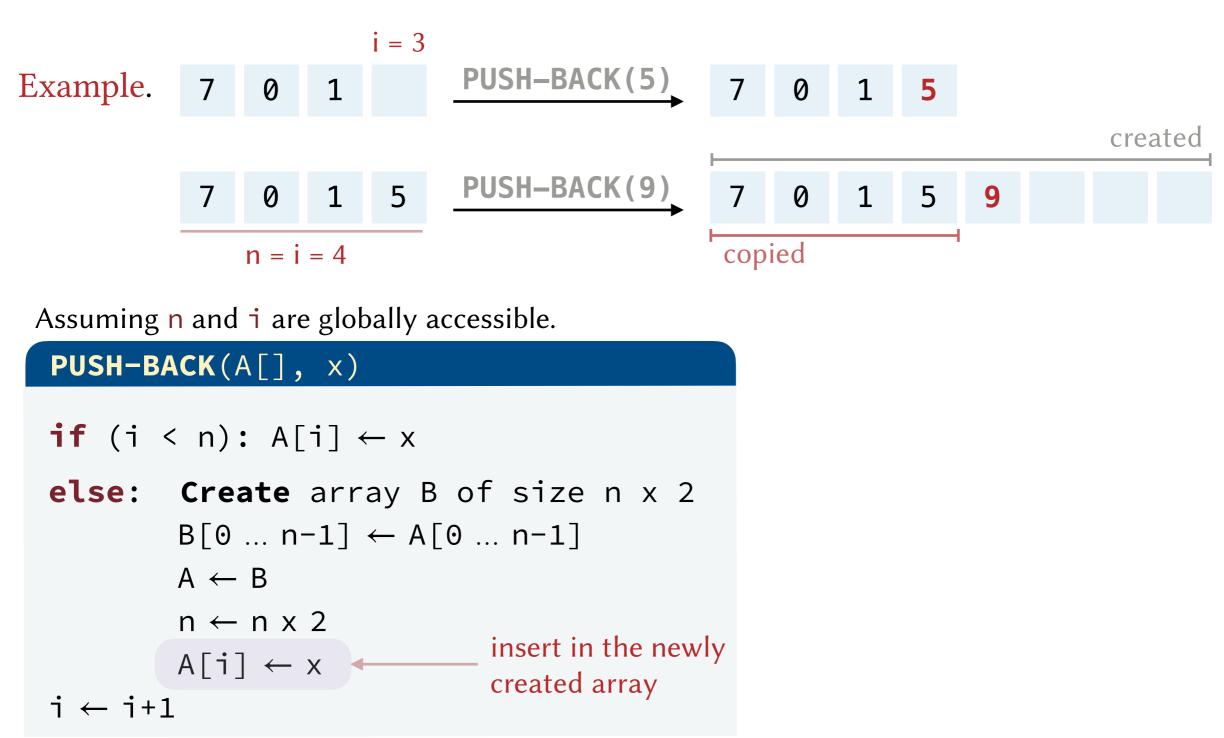
Example. Incrementing *n* times can't flip bits more than 2*n* times.

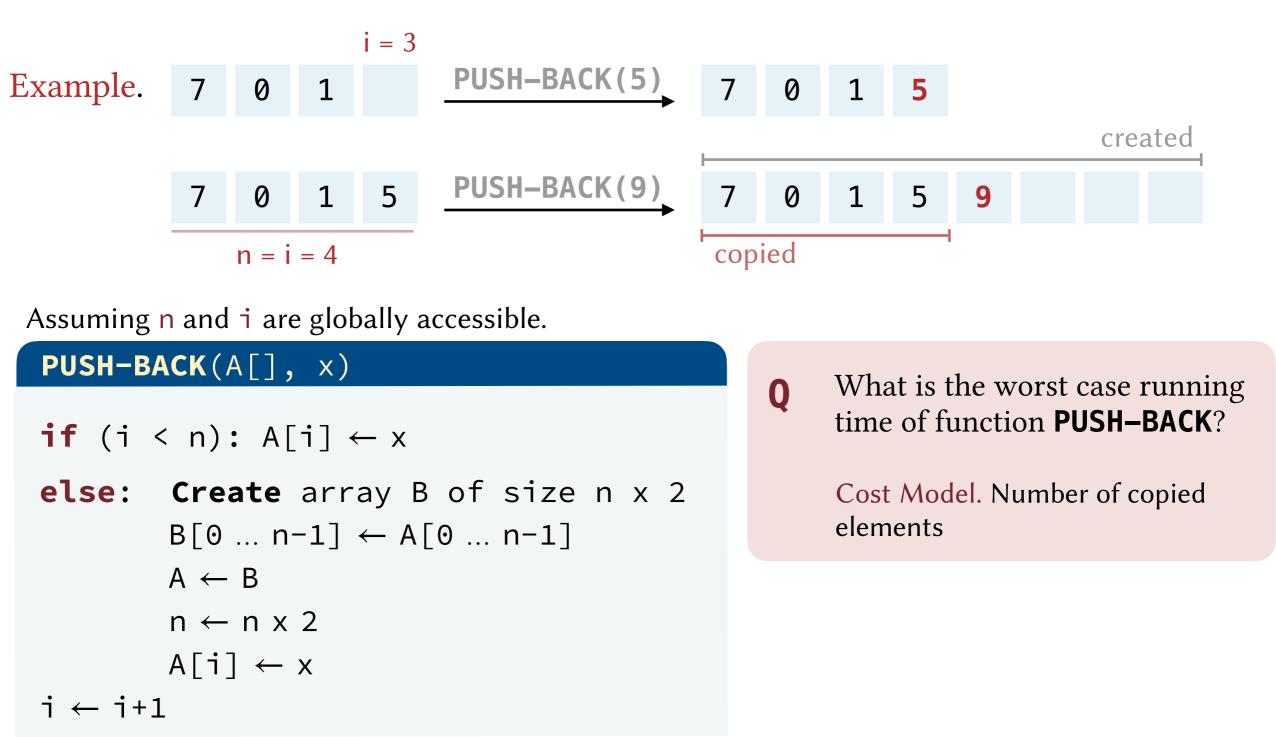


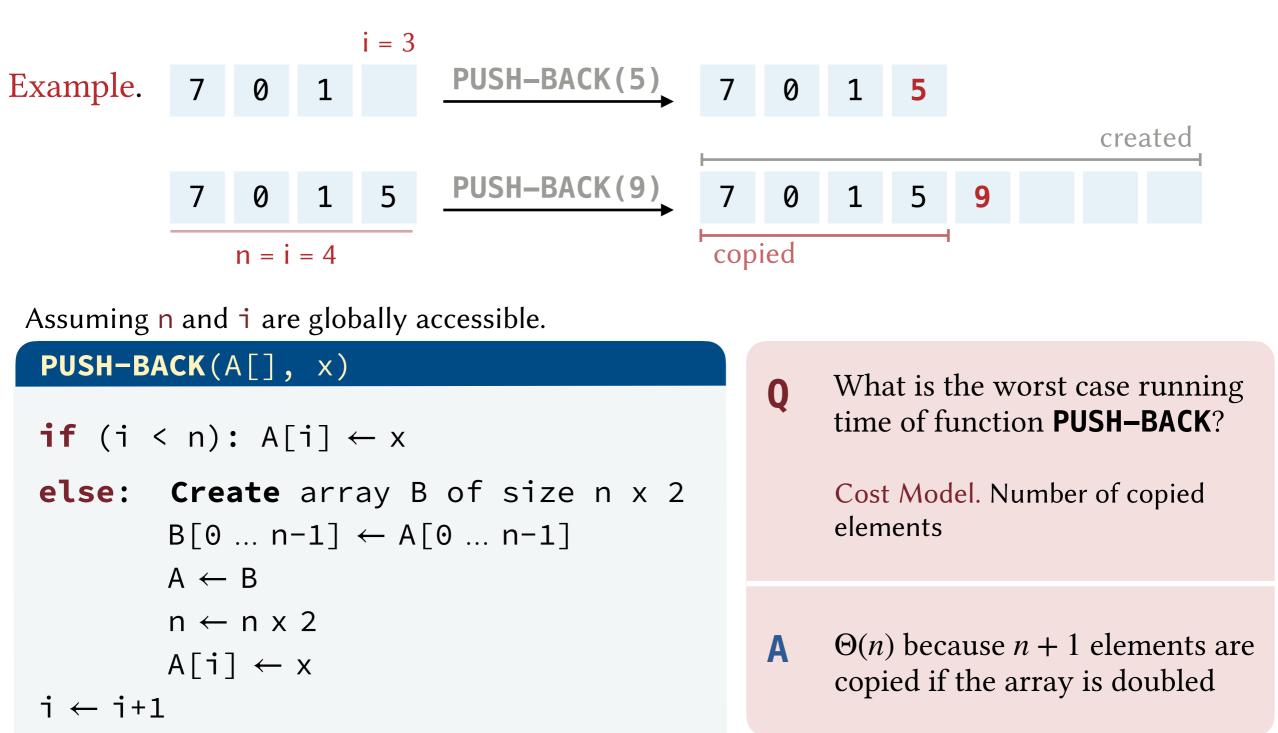












Exercise

What is the worst case running time of calling **PUSH–BACK** *n* times on a resizing array that is initially of size 1?

Choose the *best* answer.

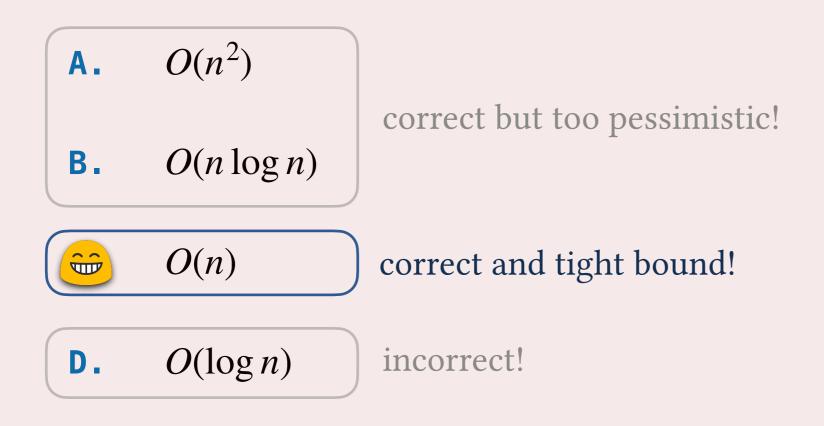
- **A.** $O(n^2)$
- **B.** $O(n \log n)$
- O(n)
- **D**. $O(\log n)$

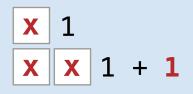
Cost Model. Count the number of *element copies*.

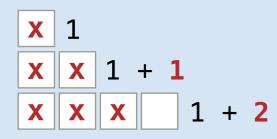
What is the worst case running time of calling **PUSH–BACK** *n* times on a resizing array that is initially of size 1?

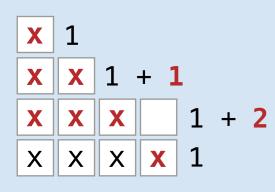
Cost Model. Count the number of *element copies*.

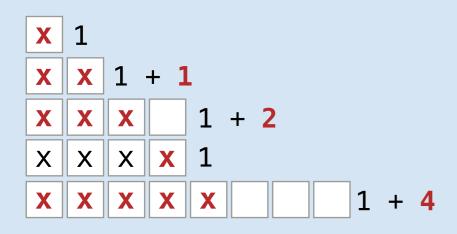
Choose the *best* answer.

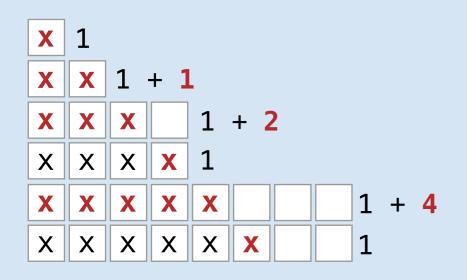


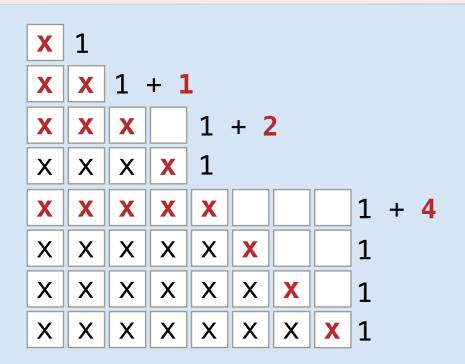


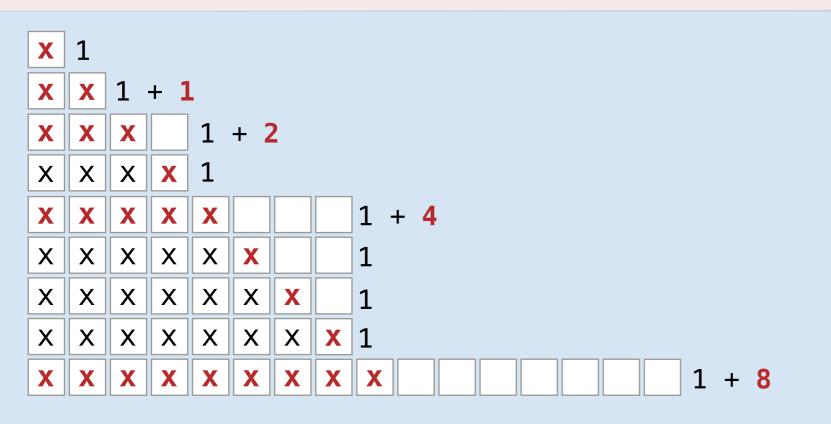


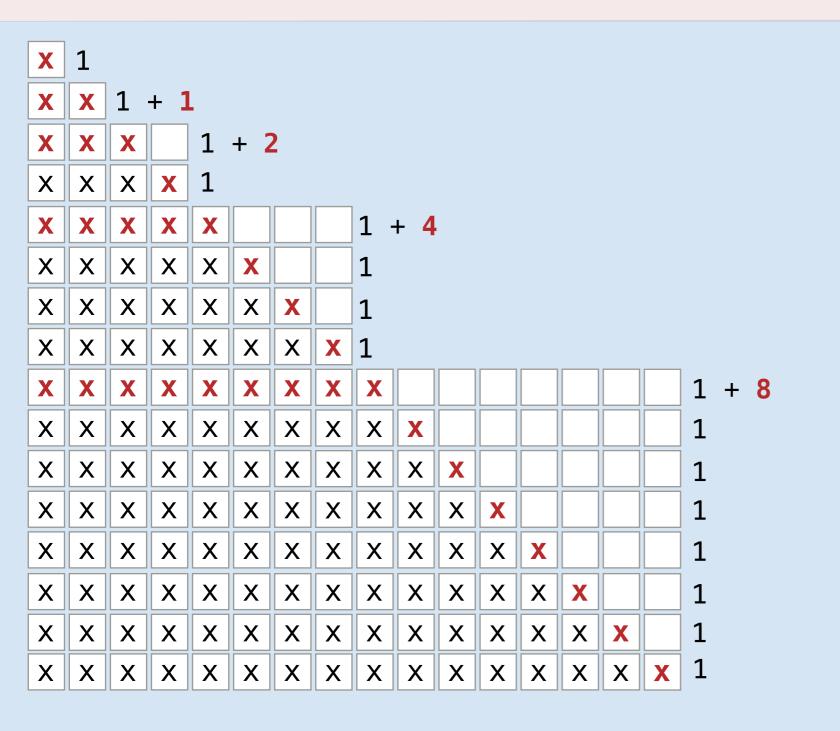


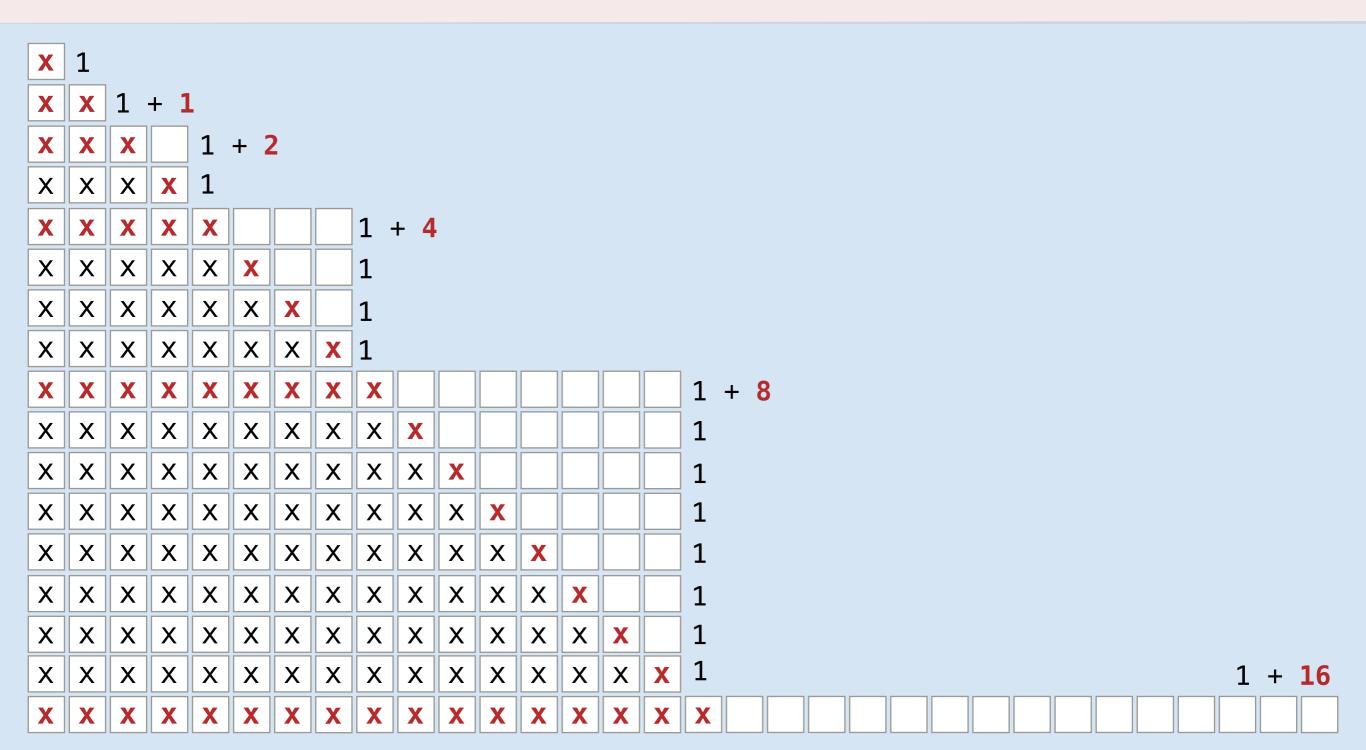


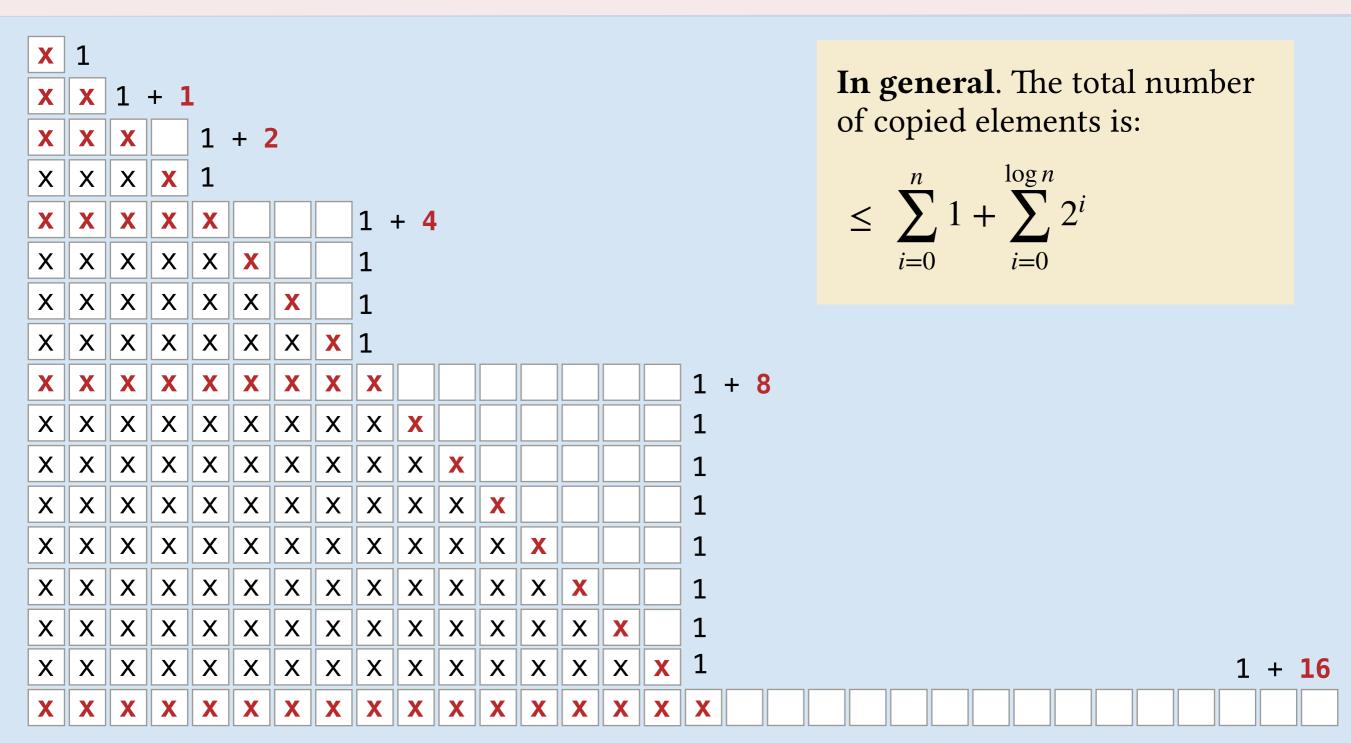


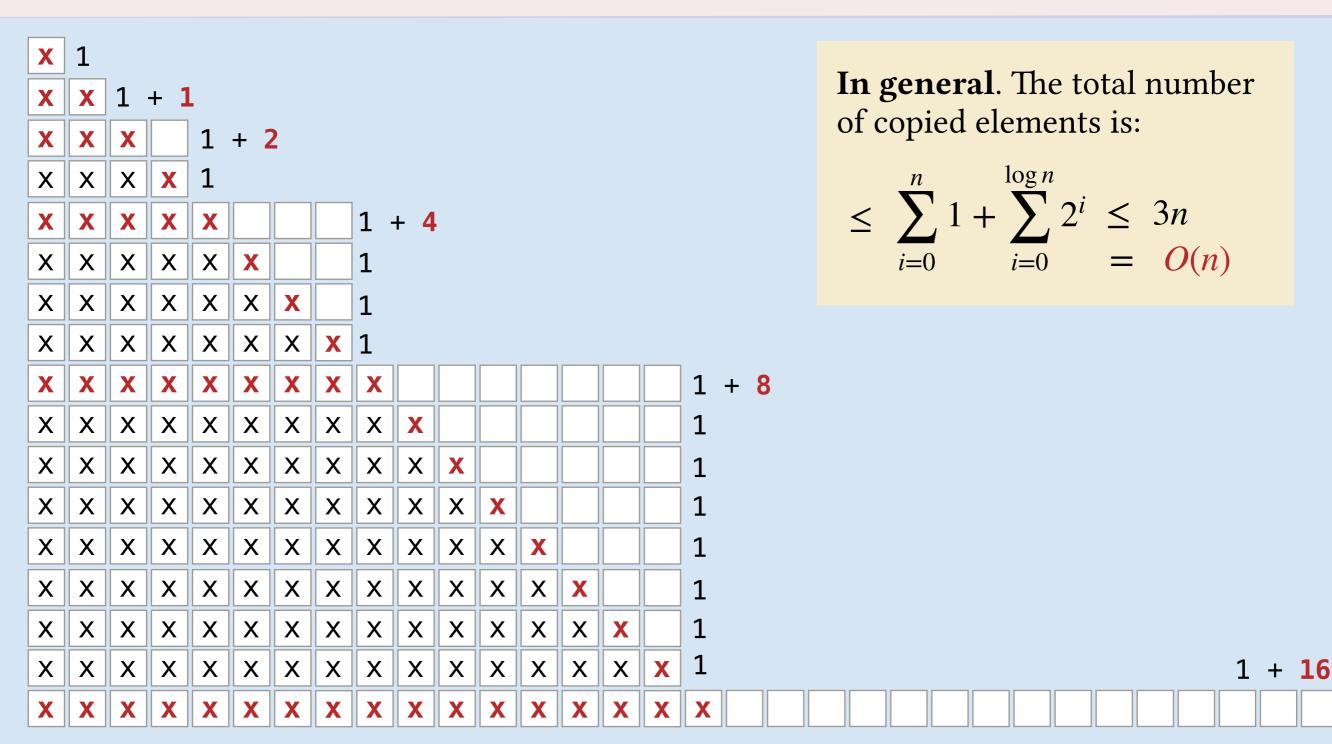




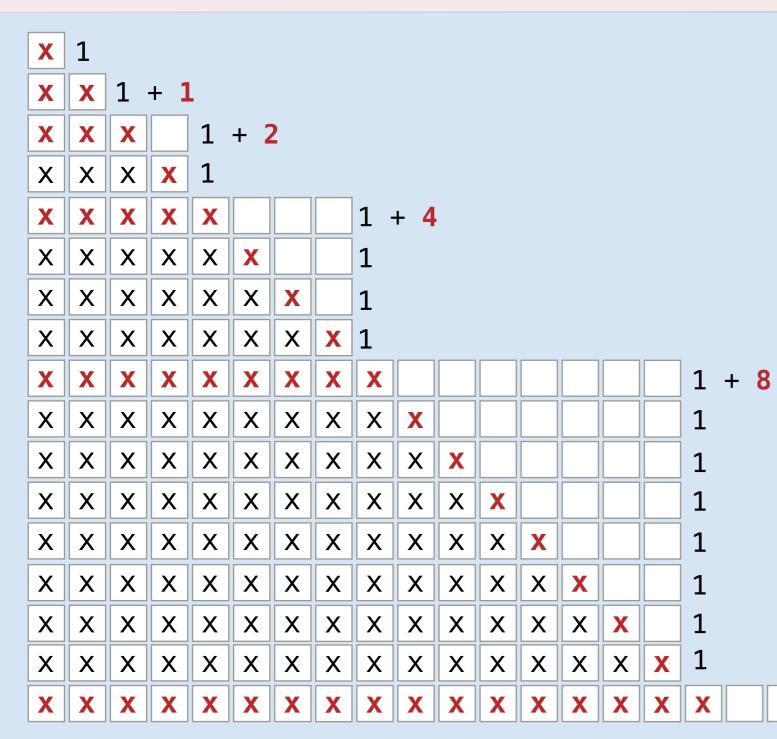








What is the worst case running time of calling **PUSH–BACK** *n* times on a resizing array that is initially of size 1?



In general. The total number of copied elements is:

$$\leq \sum_{i=0}^{n} 1 + \sum_{i=0}^{\log n} 2^{i} \leq 3n$$

= $O(n)$

Implication.

Since **PUSH–BACK** is called *n* times and the running time is O(n) in total, the running time of each call to **PUSH–BACK** in the sequence of *n* calls is O(1) on average!

1 + **16**

welcome to Amortized Analysis

Amortized Analysis

Goal. Analyze the <u>worst case</u> running time of a <u>sequence</u> of operations.

Worst Case Analysis

PUSH-BACK runs in $\Theta(n)$ in the worst case. Interpretation. At least one of the cases can make the function run in $\Theta(n)$.

INCREMENT runs in $\Theta(\log n)$ in the worst case. Interpretation. At least one of the cases can make the function run in $\Theta(\log n)$.

V.S.

Amortized Analysis

The running time of **PUSH-BACK** is O(1) amortized. The running time of **INCREMENT** is O(1) amortized.

Interpretation. If we perform a sequence of operations, the running time overall will be in the order of *n* in the worst case and each single operation will have performed a constant amount of work on average.

Amortized Analysis

Goal. Analyze the <u>worst case</u> running time of a <u>sequence</u> of operations.

Worst Case Analysis

PUSH-BACK runs in $\Theta(n)$ in the worst case. Interpretation. At least one of the cases can make the function run in $\Theta(n)$.

INCREMENT runs in $\Theta(\log n)$ in the worst case. Interpretation. At least one of the cases can make the function run in $\Theta(\log n)$.

V.S.

Amortized Analysis

The running time of **PUSH-BACK** is O(1) amortized. The running time of **INCREMENT** is O(1) amortized.

Interpretation. If we perform a sequence of operations, the running time overall will be in the order of *n* in the worst case and each single operation will have performed a constant amount of work on average.

Amortized analysis can be done in multiple ways. The method we used so far is called the **aggregate method**.

Idea. Use cheap frequent operations to pay for rare but expensive operations.

Idea. Use cheap frequent operations to pay for rare but expensive operations.

• Assume that each unit of work costs \$1 and operation i costs c_i .

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Goal. Show that credit always remains nonnegative, implying that $\sum \hat{c}_i \geq \sum c_i$

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Goal. Show that credit always remains nonnegative, implying that $\sum \hat{c}_i \geq \sum c_i$

Example. Array resizing.

Actual Costs.

- Copying a single element:
- Resizing the array:

New Costs.

- Copying a single element:
- Resizing the array:

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Goal. Show that credit always remains nonnegative, implying that $\sum \hat{c}_i \geq \sum c_i$

Example. Array resizing.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n
 (n = number of elements added so far)

New Costs.

- Copying a single element:
- Resizing the array:

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Goal. Show that credit always remains nonnegative, implying that $\sum \hat{c}_i \geq \sum c_i$

Example. Array resizing.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n
 (n = number of elements added so far)

New Costs.

- Copying a single element: **\$2**
- Resizing the array: \$0

Idea. Use cheap frequent operations to pay for rare but expensive operations.

- Assume that each unit of work costs \$1 and operation i costs c_i .
- Assign a new cost \hat{c}_i for operation *i* (can be <, > or = to c_i).
- If $\hat{c}_i > c_i$ save the extra credit in the bank for use by other operations.
- If $\hat{c}_i < c_i$ consume from the credit stored in the bank.

Goal. Show that credit always remains nonnegative, implying that $\sum \hat{c}_i \geq \sum c_i$

Example. Array resizing.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n
 (n = number of elements added so far)

New Costs.

- Copying a single element: **\$2**
- Resizing the array: **\$0**

We need to show that the bank credit will always remain **nonnegative**. I.e. The total new cost is **not less than** (equal or worse than) the total actual cost.

Actual Costs.

- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: **\$2**
- Resizing the array: \$0

PUSH-BACK use 1\$ and save 1\$

\$1

Actual Costs.

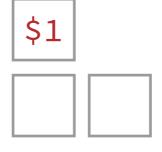
- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: **\$2**
- Resizing the array: \$0

PUSH-BACK use 1\$ and save 1\$

RESIZE use 1\$ from the saved credit to copy 1 element



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

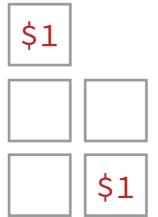
New Costs.

- Copying a single element: **\$2**
- Resizing the array: \$0

PUSH-BACK use 1\$ and save 1\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 1\$



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

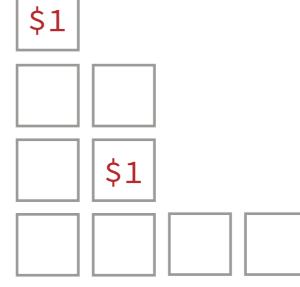
- Copying a single element: \$2
- Resizing the array: \$0

PUSH-BACK use 1\$ and save 1\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 1\$

RESIZE use 2\$ from the saved credit to copy 2 elements



There is only **\$1** in the credit

The chosen new costs are bad!

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

PUSH-BACK use 1\$ and save 2\$

\$2

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit to copy one element

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

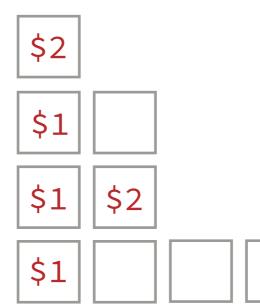
SECOND ATTEMPT. Use \$3 instead of \$2

PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$

RESIZE use 2\$ from the saved credit to copy 2 elements



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

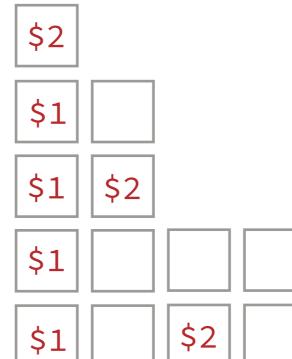
PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$

RESIZE use 2\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

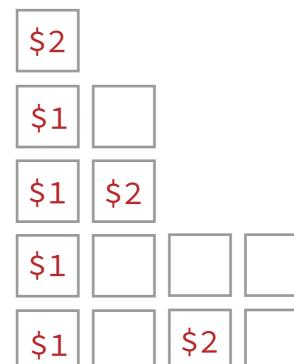
PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$

RESIZE use 2\$ from the saved credit

PUSH–BACK 2 times: use 1\$ and save 2\$



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

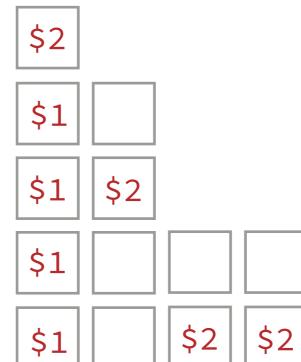
PUSH-BACK use 1\$ and save 2\$

RESIZE use 1\$ from the saved credit

PUSH-BACK use 1\$ and save 2\$

RESIZE use 2\$ from the saved credit

PUSH–BACK 2 times: use 1\$ and save 2\$



Actual Costs.

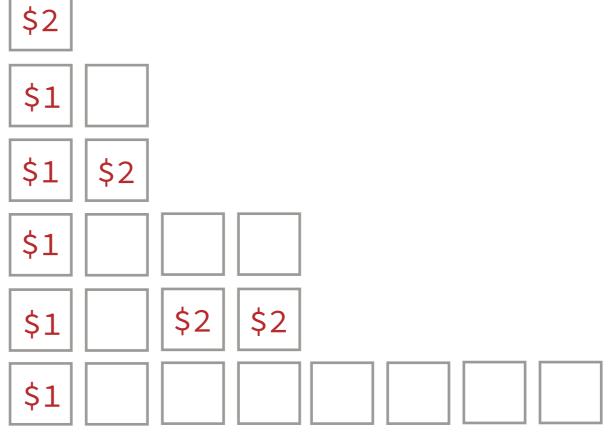
- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

PUSH-BACK use 1\$ and save 2\$\$2RESIZE use 1\$ from the saved credit\$1PUSH-BACK use 1\$ and save 2\$\$1\$2\$1RESIZE use 2\$ from the saved credit\$1PUSH-BACK 2 times: use 1\$ and save 2\$\$1\$1\$1\$1\$1\$1\$1\$2\$1\$2\$1\$3\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$1\$2\$1\$3\$1\$4\$1\$4\$1\$5\$2\$5\$2\$5\$2\$5\$2\$5\$2</td



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

\$2

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

\$2

\$2

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

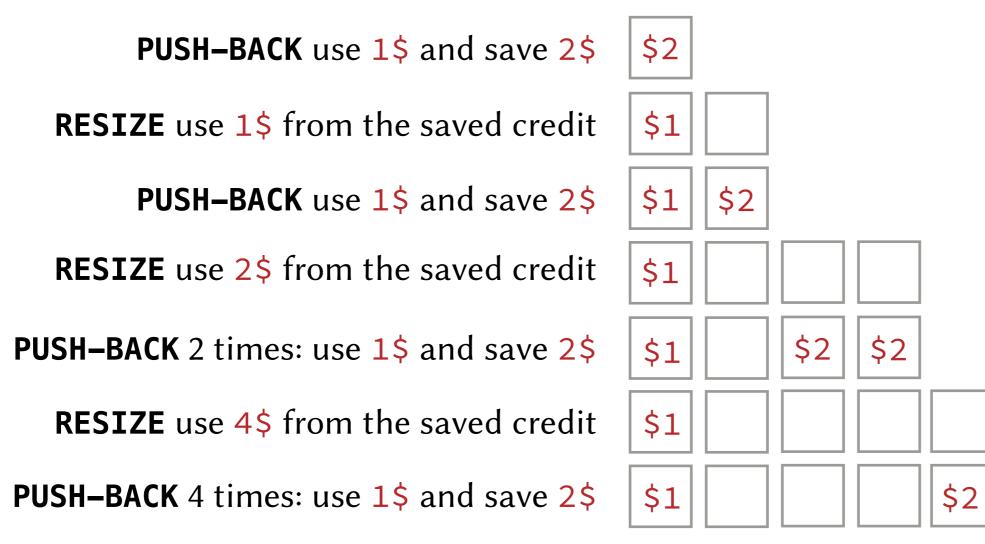
New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

\$2

\$2



Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

SECOND ATTEMPT. Use \$3 instead of \$2

\$2 **PUSH–BACK** use 1\$ and save 2\$ **RESIZE** use 1\$ from the saved credit \$1 **PUSH–BACK** use 1\$ and save 2\$ \$1 \$2 **RESIZE** use 2\$ from the saved credit \$1 **PUSH–BACK** 2 times: use 1\$ and save 2\$ \$2 \$2 \$1 **RESIZE** use 4\$ from the saved credit \$1 **PUSH–BACK** 4 times: use 1\$ and save 2\$ \$1 \$2 \$2

There is enough to pay for a new resize!

\$2

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 **PUSH–BACK** operations. Assume that the claim is true for *k* **PUSH–BACK** operations.

Actual Costs.

- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 **PUSH–BACK** operations. Assume that the claim is true for *k* **PUSH–BACK** operations.

Note that:

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 **PUSH–BACK** operations. Assume that the claim is true for *k* **PUSH–BACK** operations.

Note that:

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.
- Therefore, the next resize happens after $\frac{n}{2}$ copy operations, which adds \$2 $\times \frac{n}{2} =$ \$n to the credit.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 **PUSH–BACK** operations. Assume that the claim is true for *k* **PUSH–BACK** operations.

Note that:

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.
- Therefore, the next resize happens after $\frac{n}{2}$ copy operations, which adds \$2 $\times \frac{n}{2} =$ \$n to the credit.
- This is enough to copy the *n* elements in the next resize operation.

Actual Costs.

- Copying a single element: **\$1**
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnegative.

Proof. From the examples in the previous slide, this is true for 9 **PUSH–BACK** operations. Assume that the claim is true for *k* **PUSH–BACK** operations.

Note that:

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.
- Therefore, the next resize happens after $\frac{n}{2}$ copy operations, which adds $\$2 \times \frac{n}{2} = \n to the credit.
- This is enough to copy the *n* elements in the next resize operation.

Hence, the claim is true for the k + 1 **PUSH-BACK** operation.

Actual Costs.

- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnega Proof. From the examples in the previous operations. Assume that the claim is true :

Amortized Cost.

- Copying a single element: **0(1)**
- Resizing the array: **0(1)**

Note that:

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.
- Therefore, the next resize happens after $\frac{n}{2}$ copy operations, which adds \$2 $\times \frac{n}{2} =$ \$n to the credit.
- This is enough to copy the *n* elements in the next resize operation.

Hence, the claim is true for the k + 1 **PUSH–BACK** operation.

Actual Costs.

- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnega Proof. From the examples in the previous operations. Assume that the claim is true

Note that:

Amortized Cost.

- Copying a single element: **0(1)**
- Resizing the array: **0(1)**

Assuming arrays are not resized unless they are full and that their size doubles when they resize.

- Copying a single element without resize adds **\$2** to the credit.
- Resizing produces an array of size *n*, where $\frac{n}{2}$ cells are empty.
- Therefore, the next resize happens after $\frac{n}{2}$ copy operations, which adds $\$2 \times \frac{n}{2} = \n to the credit.
- This is enough to copy the *n* elements in the next resize operation.

Hence, the claim is true for the k + 1 **PUSH–BACK** operation.

Actual Costs.

- Copying a single element: \$1
- Resizing the array: \$n

New Costs.

- Copying a single element: \$3
- Resizing the array: \$0

Claim. Credit will always remain nonnega Proof. From the examples in the previous operations. Assume that the claim is true

Note that:

- Copying a single element without
- Resizing produces an array of size
- Therefore, the next resize happens \$2 $\times \frac{n}{2} =$ \$n to the credit.

Amortized Cost.

- Copying a single element: **0(1)**
- Resizing the array: **0(1)**

Assuming arrays are not resized unless they are full and that their size doubles when they resize.

Interpretation.

Any sequence of **PUSH-BACK** operations performs *at most* $\Theta(n)$ operations in total.

• This is enough to copy the *n* elements in the next resize operation.

Hence, the claim is true for the k + 1 **PUSH-BACK** operation.

Actual Costs.

- Flipping 0's to 1's:
- Flipping 1's to 0's: up to

New Costs.

- Flipping 0's to 1's:
- Flipping 1's to 0's:

0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 Flipping 0's is cheap! 0 0 1 0 1 1 0 0 1 1 Flipping 1's can be expensive! 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0

Actual Costs.

- Flipping 0's to 1's: \$1
- Flipping 1's to 0's: up to \$log(n)

New Costs.

- Flipping 0's to 1's:
- Flipping 1's to 0's:

0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 Flipping 0's is cheap! 0 0 1 0 1 1 0 0 1 1 Flipping 1's can be expensive! 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0

Actual Costs.

- Flipping 0's to 1's: \$1
- Flipping 1's to 0's: up to \$log(n)

New Costs.

- Flipping 0's to 1's: \$2
- Flipping 1's to 0's: \$0

Let's Try!

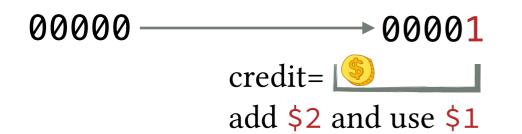
0	0	0	0	0	0	
1	0	0	0	0	1	
2	0	0	0	1	0	
3	0	0	0	1	1	
4	0	0	1	0	0	
5	0	0	1	0	1	Flipping 0's is cheap!
6	0	0	1	1	0	
7	0	0	1	1	1	
8	0	1	0	0	0	Flipping 1's can be expensive!
9	0	1	0	0	1	
10	0	1	0	1	0	
11	0	1	0	1	1	
12	0	1	1	0	0	
13	0	1	1	0	1	
14	0	1	1	1	0	
15	0	1	1	1	1	

Actual Costs.

- Flipping 0's to 1's: \$1
- Flipping 1's to 0's: up to \$log(n)

New Costs.

- Flipping 0's to 1's: \$2
- Flipping 1's to 0's: \$0

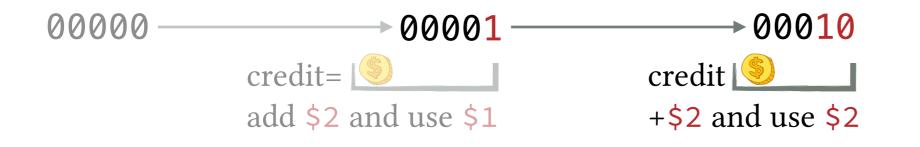


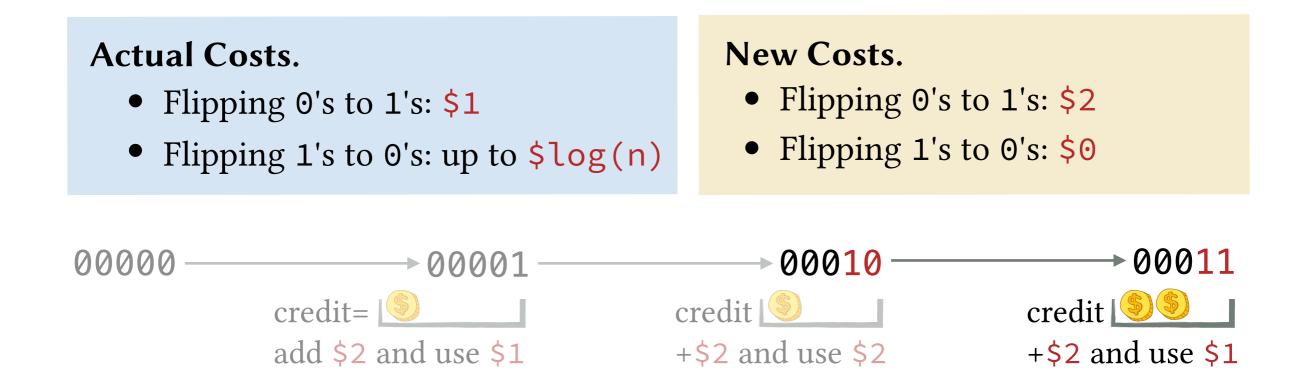
Actual Costs.

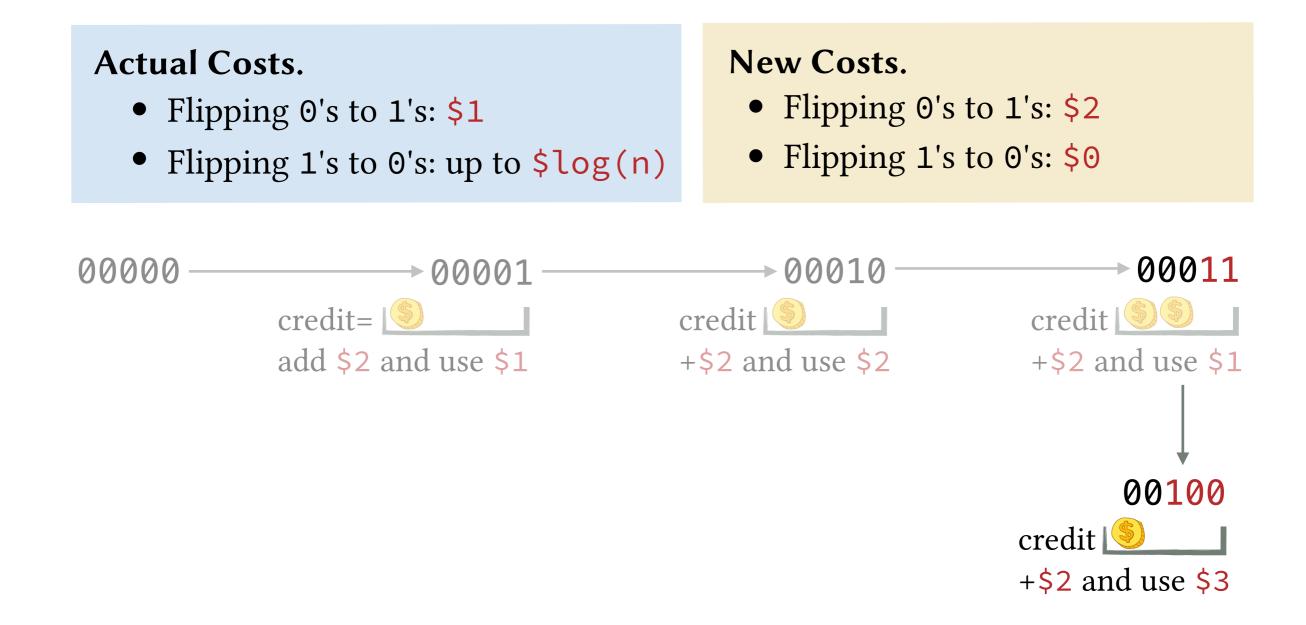
- Flipping 0's to 1's: \$1
- Flipping 1's to 0's: up to \$log(n)

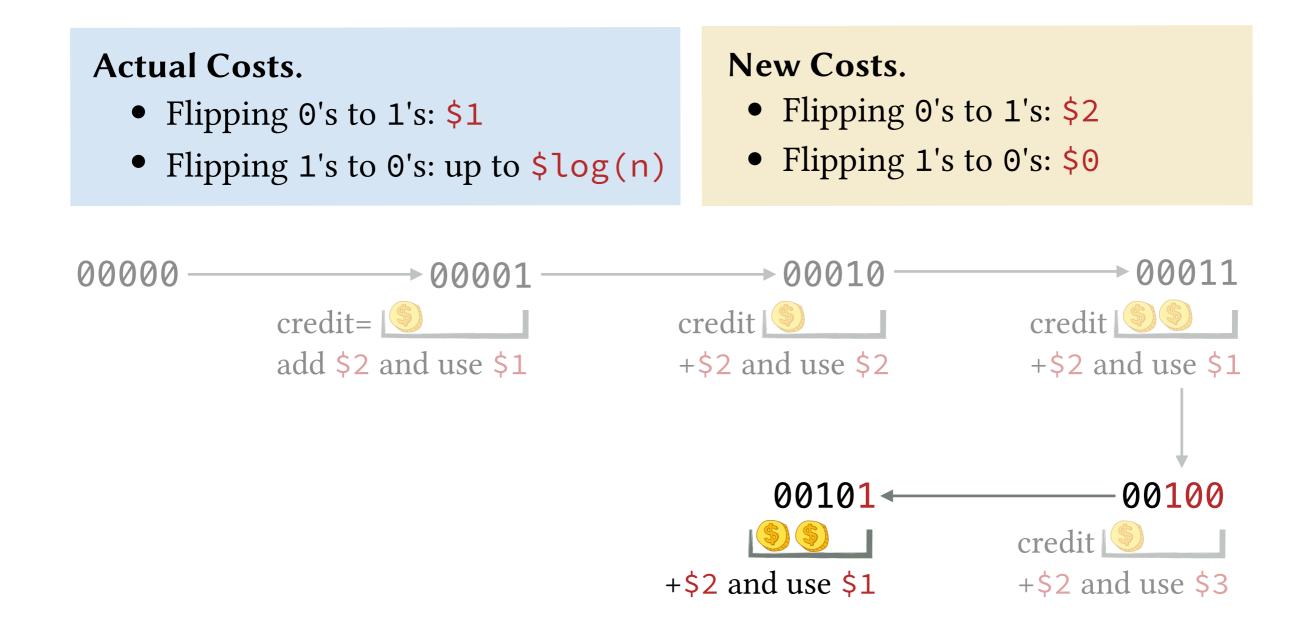
New Costs.

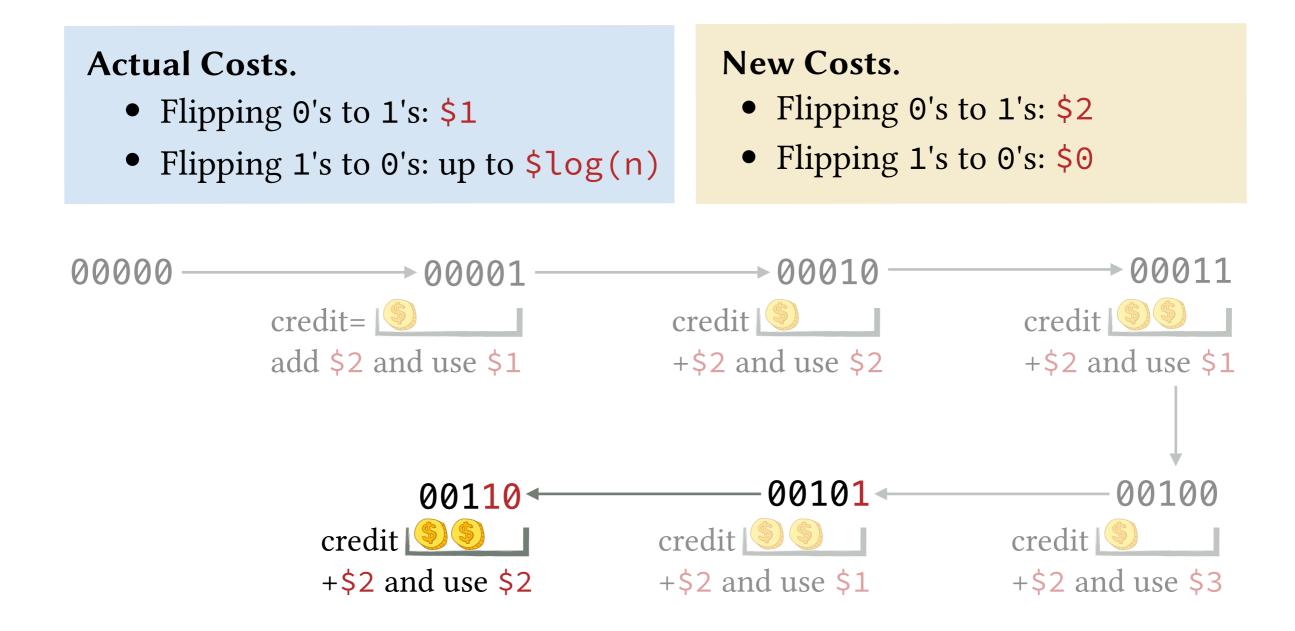
- Flipping 0's to 1's: \$2
- Flipping 1's to 0's: \$0

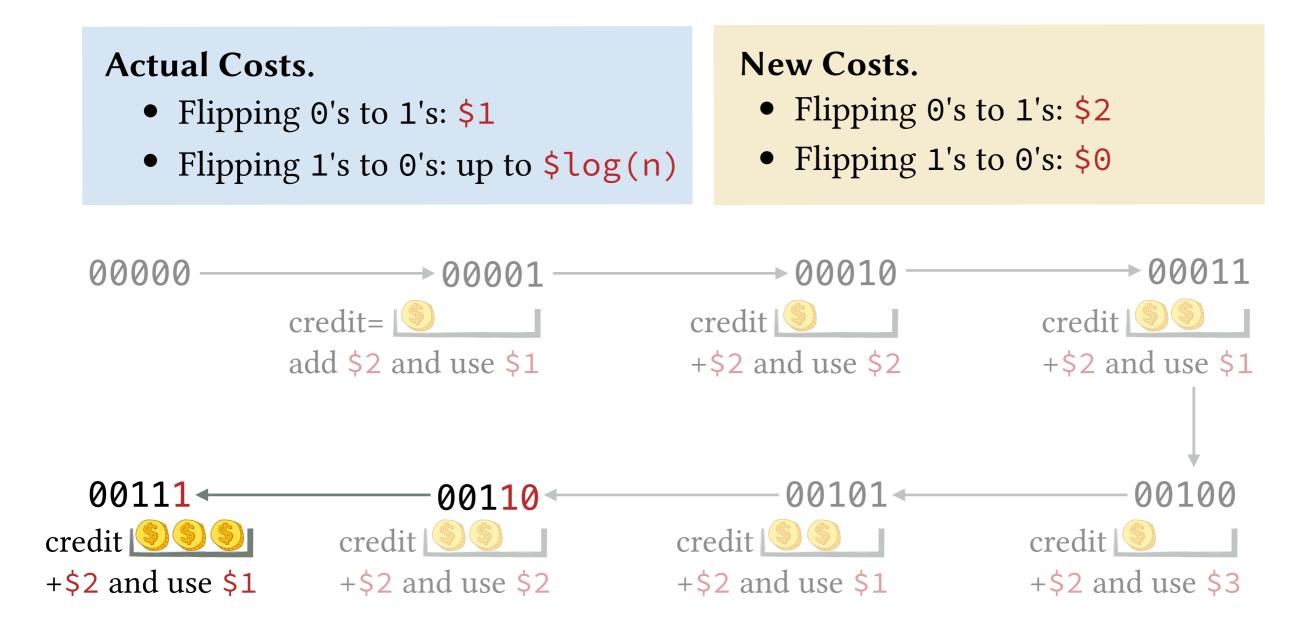


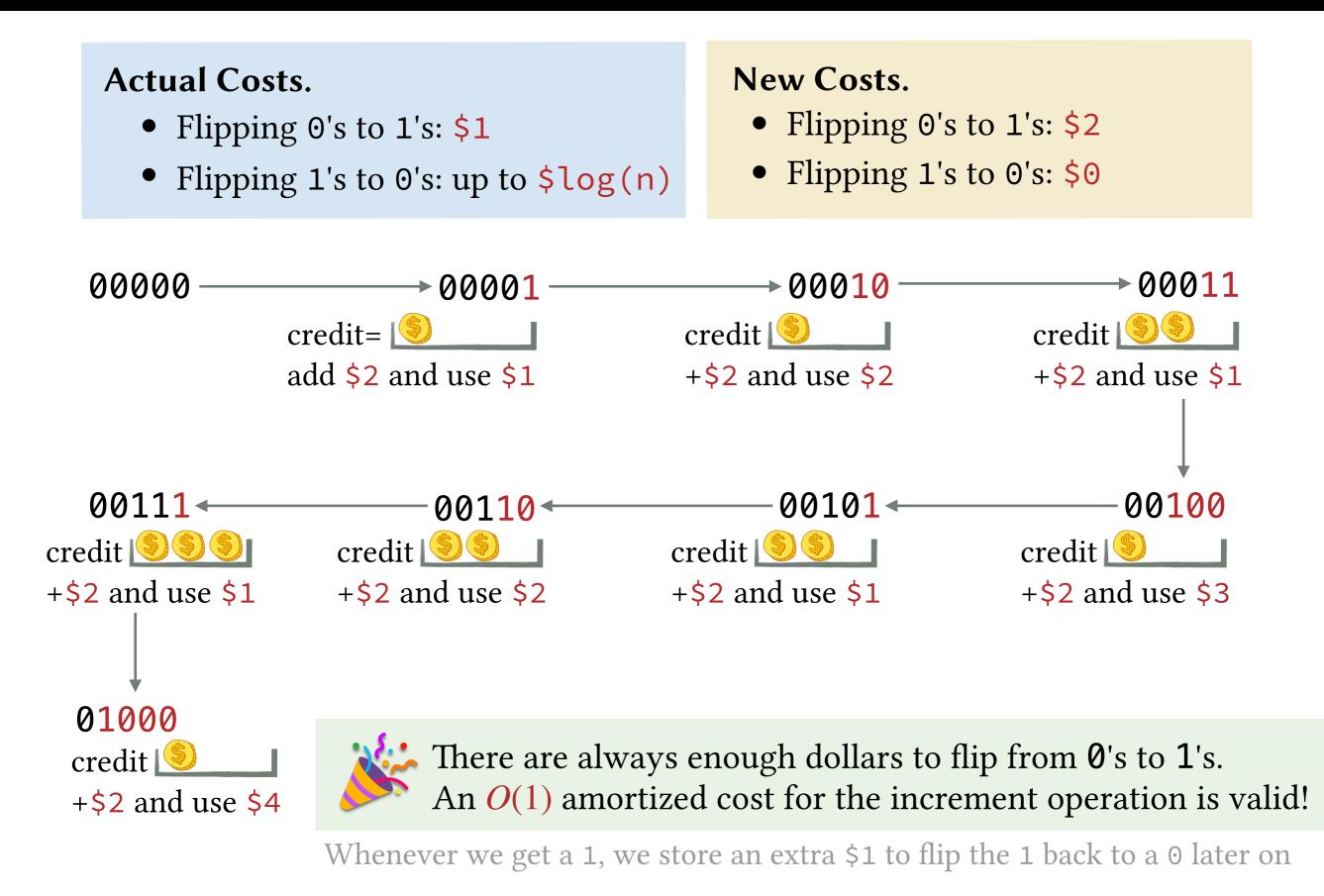












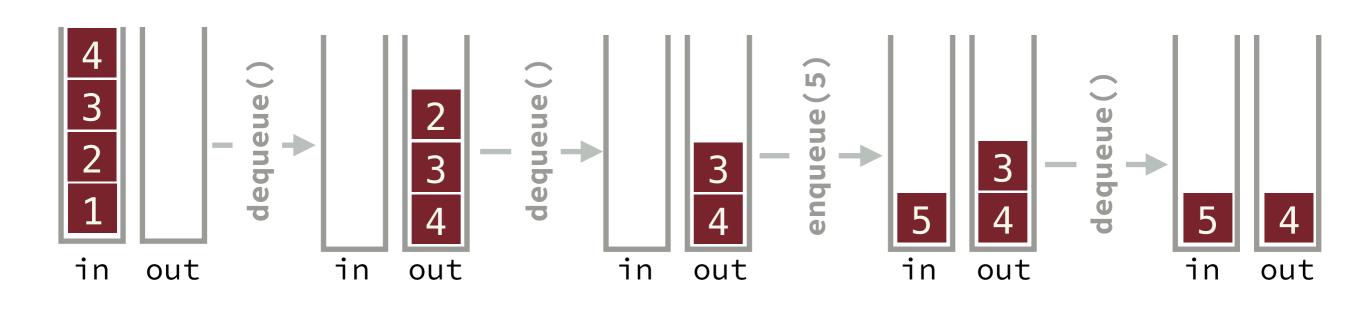
CLASS Queue

Define in as a Stack **Define** out as a Stack

ENQUEUE(x):
 in.PUSH(x)

```
DEQUEUE(){
    if (out.IS-EMPTY()):
        while (not in.IS-EMPTY()):
            out.PUSH(in.POP());
```

```
return out.POP();
```



CLASS Queue

Define in as a Stack **Define** out as a Stack

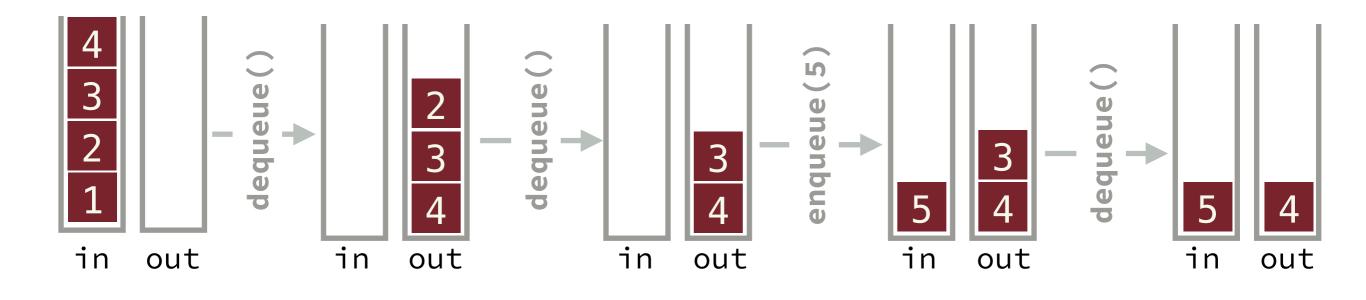
ENQUEUE(x):
 in.PUSH(x)

```
DEQUEUE(){
    if (out.IS-EMPTY()):
        while (not in.IS-EMPTY()):
            out.PUSH(in.POP());
```

```
return out.POP();
```

Claim. Any sequence of N **ENQUEUE** and **DEQUEUE** operations runs in $\Theta(N)$ in the worst case.

Exercise. Use the Accounting Method to show that the amortized cost for each of the **ENQUEUE** and **DEQUEUE** operations is O(1).



CLASS Queue

Define in as a Stack **Define** out as a Stack

ENQUEUE(x):
 in.PUSH(x)

DEQUEUE(){
 if (out.IS-EMPTY()):
 while (not in.IS-EMPTY()):
 out.PUSH(in.POP());

```
return out.POP();
```

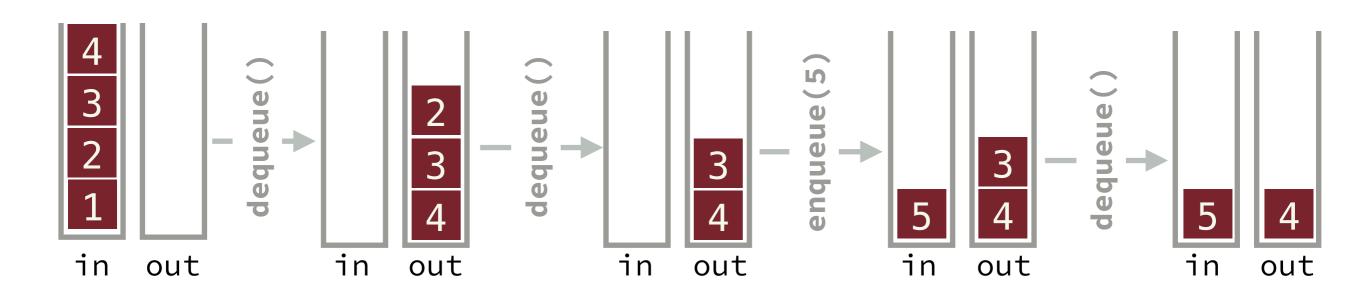
Claim. Any sequence of N **ENQUEUE** and **DEQUEUE** operations runs in $\Theta(N)$ in the worst case.

Exercise. Use the Accounting Method to show that the amortized cost for each of the **ENQUEUE** and **DEQUEUE** operations is O(1).

Solution.

Pay \$3 for each **ENQUEUE** operation and \$0 for each **DEQUEUE** operation.

Each enqueued item will have \$2 saved that can be used later for moving it to the out stack and then for popping it.



Confusing average case analysis with amortized analysis.

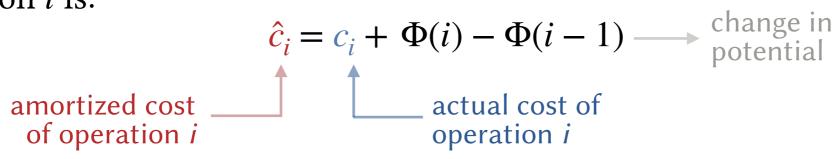
Average Case Analysis. Uses probabilistic assumptions to describe how an algorithm is *expected* to behave.

Example. The statement *"the average case for quicksort is* $\Theta(n \log n)$ " provides an *expectation* for the performance assuming the probability of all element permutations is the same. The algorithm is **not** guaranteed to have this performance.

Amortized Analysis. Does not make any probabilistic assumptions. Provides a *guarantee* for the performance of a sequence of operations.

Example. The statement "The **PUSH** and **POP** operations run in O(1) amortized time" mean that every possible sequence of **PUSH** and **POP** operations is guaranteed to have an average running time of O(1) per operation.

Definition. Given a sequence of *n* operations, we define $\Phi(i)$ as a non-negative function that describes the potential after operation *i*, where the amortized cost of operation *i* is:



Definition. Given a sequence of *n* operations, we define $\Phi(i)$ as a non-negative function that describes the potential after operation *i*, where the amortized cost of operation *i* is: change in

i=1

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{change in} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \quad actual cost of \\ \text{operation } i \end{array}$$

$$\begin{array}{c} \text{claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \end{array}$$

$$\begin{array}{c} \text{l.e. the amortized cost for each operation} \\ \text{is an upper bound for the actual cost!} \end{array}$$

i=1

Definition. Given a sequence of *n* operations, we define $\Phi(i)$ as a non-negative function that describes the potential after operation *i*, where the amortized cost of operation *i* is:

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{Change in potential} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \qquad \text{actual cost of} \\ \text{operation } i \end{array}$$

$$\begin{array}{c} \text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \\ \text{is an upper bound for the actual cost!} \end{array}$$

Proof.
$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(i) - \Phi(i-1)$$

Definition. Given a sequence of *n* operations, we define $\Phi(i)$ as a non-negative function that describes the potential after operation *i*, where the amortized cost of operation *i* is:

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{Change in potential} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \qquad \text{actual cost of operation } i \end{array}$$

$$\begin{array}{c} \text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \end{array} \qquad \text{l.e. the amortized cost for each operation is an upper bound for the actual cost!} \end{array}$$

$$\begin{array}{c} \text{Proof.} \quad \sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(i) - \Phi(i-1) = \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (\Phi(i) - \Phi(i-1)) \end{array}$$

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{change in} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \qquad \text{actual cost of} \\ \text{operation } i \end{array}$$

$$\begin{array}{c} \text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \\ \text{i.e. the amortized cost for each operation} \\ \text{is an upper bound for the actual cost!} \end{array}$$

$$\begin{array}{c} \text{Proof.} \quad \sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(i) - \Phi(i-1) \\ = \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (\Phi(i) - \Phi(i-1)) \\ = \sum_{i=1}^{n} c_{i} + \Phi(1) - \Phi(0) + \Phi(2) - \Phi(1) + \Phi(3) - \Phi(2) \\ + \Phi(4) - \Phi(3) + \dots + \Phi(n) - \Phi(n-1) \end{array}$$

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{Change in} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \qquad \text{actual cost of} \\ \text{operation } i \end{array}$$

$$\begin{array}{c} \text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \\ \text{is an upper bound for the actual cost!} \end{array}$$

$$\begin{array}{c} \text{Proof.} \quad \sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(i) - \Phi(i-1) \\ = \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (\Phi(i) - \Phi(i-1)) \\ = \sum_{i=1}^{n} c_{i} + \Phi(1) - \Phi(0) + \Phi(2) - \Phi(1) + \Phi(3) - \Phi(2) \\ + \Phi(4) - \Phi(3) + \dots + \Phi(n) - \Phi(n-1) \end{array}$$

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{change in} \\ \text{potential} \end{array}$$

$$\text{amortized cost} \quad \text{operation } i$$

$$\text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \quad \text{l.e. the amortized cost for each operation} is an upper bound for the actual cost!$$

$$\text{Proof.} \quad \sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(i) - \Phi(i-1) = \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (\Phi(i) - \Phi(i-1))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(1) - \Phi(0) + \Phi(2) - \Phi(1) + \Phi(3) - \Phi(2)$$

$$= \sum_{i=1}^{n} c_{i} - \Phi(0) + \Phi(n)$$

$$\hat{c}_{i} = c_{i} + \Phi(i) - \Phi(i-1) \longrightarrow \begin{array}{c} \text{change in} \\ \text{potential} \end{array}$$

$$\begin{array}{c} \text{amortized cost} \\ \text{of operation } i \end{array} \qquad \text{actual cost of} \\ \text{operation } i \end{array}$$

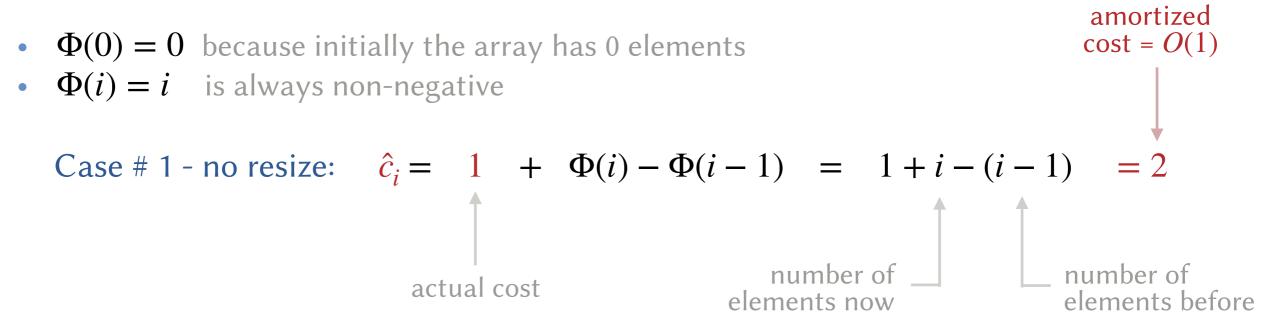
$$\begin{array}{c} \text{Claim. If } \Phi(0) = 0 \text{ and } \Phi(i) \ge 0 \text{ then } \sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \end{array} \qquad \text{l.e. the amortized cost for each operation} \\ \text{is an upper bound for the actual cost!} \end{array}$$

$$\begin{array}{c} \text{Proof.} \quad \sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(i) - \Phi(i-1) = \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (\Phi(i) - \Phi(i-1)) \\ = \sum_{i=1}^{n} c_{i} + \Phi(1) - \Phi(0) + \Phi(2) - \Phi(1) + \Phi(3) - \Phi(2) \\ + \Phi(4) - \Phi(3) + \dots + \Phi(n) - \Phi(n-1) \\ = \sum_{i=1}^{n} c_{i} - \Phi(0) + \Phi(n) \ge \sum_{i=1}^{n} c_{i} \end{array}$$

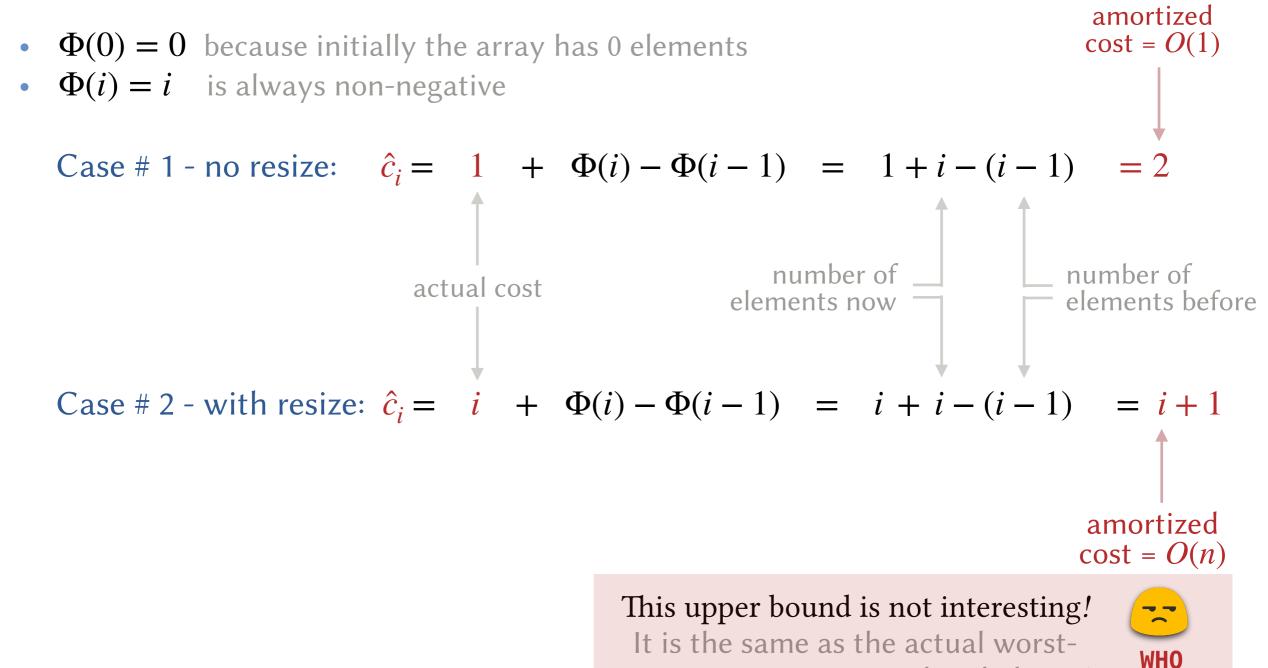
Definition. Given a sequence of *n* operations, we define $\Phi(i)$ as a non-negative function that describes the potential after operation *i*, where the amortized cost of operation *i* is:

How do we choose the Potential function?

Bad Choice of $\Phi(i)$. Let $\Phi(i)$ be equal to the number of elements in the array after applying operation operation *i*.



Bad Choice of $\Phi(i)$. Let $\Phi(i)$ be equal to the number of elements in the array after applying operation operation *i*.



case running time we already know!

CARES?

Good Choice of $\Phi(i)$. Let N_i = the capacity of the array after operation *i*, and let

let
$$\Phi(i) = 2(i - \frac{N_i}{2}) = 2i - N_i$$

Hence:

- $\Phi(0) = 0$ because i = 0 and $N_i = 0$
- $\Phi(i) = 2i N \ge 0$ because the array is *never* less than half full

Double the number of elements in the second half of the array (after operation *i*)

same

Case # 1 - no resize: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2i - N_i) - (2(i-1) - N_{i-1})$ = $1 + 2i - N_i - 2i + 2 + N_{i-1} = 3$ actual cost capacity before and after is the

Good Choice of $\Phi(i)$. Let N_i = the capacity of the array after operation *i*, and let

let
$$\Phi(i) = 2(i - \frac{N_i}{2}) = 2i - N_i$$

Hence:

- $\Phi(0) = 0$ because i = 0 and $N_i = 0$
- $\Phi(i) = 2i N \ge 0$ because the array is *never* less than half full

Double the number of elements in the second half of the array (after operation *i*)

Case # 1 - no resize: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2i - N_i) - (2(i-1) - N_{i-1})$ = $1 + 2i - N_i - 2i + 2 + N_{i-1} = 3$

Case # 2 - with resize: $\hat{c}_i = i + \Phi(i) - \Phi(i-1) = i + (2i - N_i) - (2(i-1) - \frac{N_i}{2})$

actual cost

capacity before is half the current capacity

Good Choice of $\Phi(i)$. Let N_i = the capacity of the array after operation *i*, and let

let
$$\Phi(i) = 2(i - \frac{N_i}{2}) = 2i - N_i$$

Hence:

- $\Phi(0) = 0$ because i = 0 and $N_i = 0$
- $\Phi(i) = 2i N \ge 0$ because the array is *never* less than half full

Double the number of elements in the second half of the array (after operation *i*)

Case # 1 - no resize: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2i - N_i) - (2(i-1) - N_{i-1})$ = $1 + 2i - N_i - 2i + 2 + N_{i-1} = 3$

Case # 2 - with resize: $\hat{c}_i = i + \Phi(i) - \Phi(i-1) = i + (2i - N_i) - (2(i-1) - \frac{N_i}{2})$

$$= i + 2i - N_i - 2i + 2 + \frac{N_i}{2}$$
$$= \frac{N_i}{2} + 1 - N_i + 2 + \frac{N_i}{2}$$

current number of elements = half the current capacity + 1

Good Choice of $\Phi(i)$. Let N_i = the capacity of the array after operation *i*, and let

let
$$\Phi(i) = 2(i - \frac{N_i}{2}) = 2i - N_i$$

Hence:

- $\Phi(0) = 0$ because i = 0 and $N_i = 0$
- $\Phi(i) = 2i N \ge 0$ because the array is *never* less than half full

Double the number of elements in the second half of the array (after operation *i*)

Case # 1 - no resize: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2i - N_i) - (2(i-1) - N_{i-1})$ = $1 + 2i - N_i - 2i + 2 + N_{i-1} = 3$

.

YES!!

Case # 2 - with resize: $\hat{c}_i = i + \Phi(i) - \Phi(i-1) = i + (2i - N_i) - (2(i-1) - \frac{N_i}{2})$

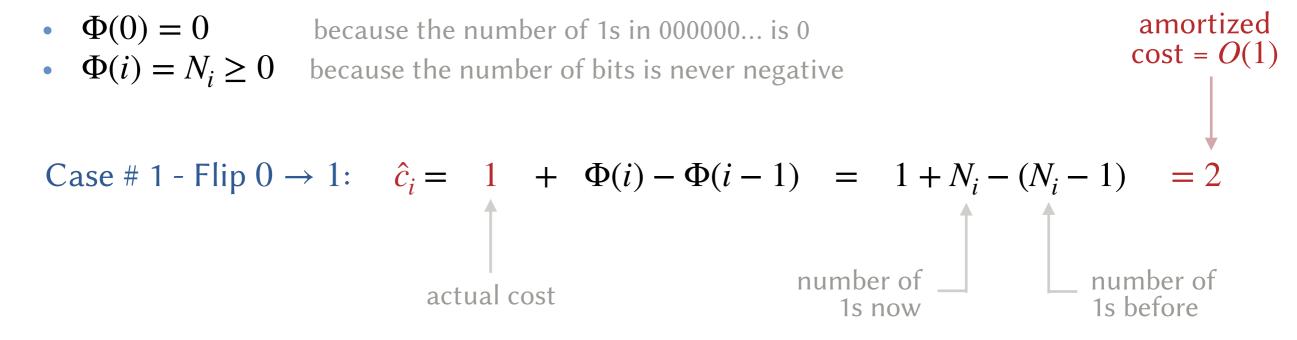
$$= i + 2i - N_i - 2i + 2 + \frac{N_i}{2}$$

$$= \frac{N_i}{2} + 1 - N_i + 2 + \frac{N_i}{2}$$

= 3 ←	amortized
	cost = O(1)

This upper bound is interesting! This is much lower than worst case running time we know, which is O(*n*) Potential Function. Let $\Phi(i) = N_i$, where N_i is the number of 1s after operation *i*.

Hence:



Potential Function. Let $\Phi(i) = N_i$, where N_i is the number of 1s after operation *i*.

Hence:

• $\Phi(0) = 0$ because the number of 1s in 000000... is 0 • $\Phi(i) = N_i \ge 0$ because the number of bits is never negative Case # 1 - Flip $0 \rightarrow 1$: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + N_i - (N_i - 1) = 2$ Case # 2 - Flip $1 \rightarrow 0$: $\hat{c}_i = N_{i-1} + 1 + \Phi(i) - \Phi(i-1) = N_{i-1} + 1 + 1 - N_{i-1}$ in the worst case, all the 1s are flipped to 0s and one 0 is flipped to 1 Potential Function. Let $\Phi(i) = N_i$, where N_i is the number of 1s after operation *i*.

Hence:

• $\Phi(0) = 0$ because the number of 1s in 00000... is 0 • $\Phi(i) = N_i \ge 0$ because the number of bits is never negative Case # 1 - Flip $0 \rightarrow 1$: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + N_i - (N_i - 1) = 2$ Case # 2 - Flip $1 \rightarrow 0$: $\hat{c}_i = N_{i-1} + 1 + \Phi(i) - \Phi(i-1) = N_{i-1} + 1 + 1 - N_{i-1} = 2$ $= 2 - \frac{\text{amortized}}{\cos t = O(1)}$

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence: $\Phi(0) = 0$ Initially, no elements in any of the stacks • $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ the **in** stack increases by 1 the **out** stack does not change

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
 Initially, no elements in any of the stacks
• $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ = $1 + 2a_i + b_i - 2a_i + 2 - b_i$ = $3 - \frac{\text{amortized}}{\cos t = O(1)}$

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
Initially, no elements in any of the stacks $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ $= 1 + 2a_i + b_i - 2a_i + 2 - b_i$ $= 3 - \frac{\text{amortized}}{\cos t = O(1)}$ Case # 2 - Dequeue: $\hat{c}_i = a_{i-1} + 1 + \Phi(i) - \Phi(i-1)$

move *a*_{i-1} elements from **in** to **out** + pop 1 element

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
Initially, no elements in any of the stacks $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ = $1 + 2a_i + b_i - 2a_i + 2 - b_i$ = $3 - \frac{\text{amortized}}{\cos t = O(1)}$

Case # 2 - Dequeue:
assuming out is empty
$$\hat{c}_i = a_{i-1} + 1 + \Phi(i) - \Phi(i-1) \\
= a_{i-1} + 1 + (2 \times 0 + b_i) - (2a_{i-1} + 0) \\
\uparrow \\
in becomes \\
empty \\
was empty \\
was empty$$

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
Initially, no elements in any of the stacks $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ = $1 + 2a_i + b_i - 2a_i + 2 - b_i$ = $3 - \frac{\text{amortized}}{\cos t = O(1)}$

Case # 2 - Dequeue: assuming **out** is empty $\hat{c}_i = a_{i-1} + 1 + \Phi(i) - \Phi(i-1) \\
= a_{i-1} + 1 + (2 \times 0 + b_i) - (2a_{i-1} + 0) \\
= a_{i-1} + 1 + b_i - 2a_{i-1} =$

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
Initially, no elements in any of the stacks $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ = $1 + 2a_i + b_i - 2a_i + 2 - b_i$ = $3 - \frac{\text{amortized}}{\cos t = O(1)}$

Case # 2 - Dequeue: assuming **out** is empty $\hat{c}_i = a_{i-1} + 1 + \Phi(i) - \Phi(i-1) \\
= a_{i-1} + 1 + (2 \times 0 + b_i) - (2a_{i-1} + 0) \\
= a_{i-1} + 1 + b_i - 2a_{i-1} = 1 + b_i - a_{i-1}$

Potential Function. Let $\Phi(i) = 2a_i + b_i$, where: - a_i = number of elements in the **in** stack after operation *i* - b_i = the number of elements in the **out** stack after operation *i*

Hence:
$$\Phi(0) = 0$$
Initially, no elements in any of the stacks $\Phi(i) = 2a_i + b_i \ge 0$ The number of elements is never negative

Case # 1 - Enqueue: $\hat{c}_i = 1 + \Phi(i) - \Phi(i-1) = 1 + (2a_i + b_i) - (2(a_i - 1) + b_i)$ = $1 + 2a_i + b_i - 2a_i + 2 - b_i$ = $3 - \frac{\text{amortized}}{\cos t = O(1)}$

Case # 2 - Dequeue: assuming out is empty $\hat{c}_i = a_{i-1} + 1 + \Phi(i) - \Phi(i-1)$ $= a_{i-1} + 1 + (2 \times 0 + b_i) - (2a_{i-1} + 0)$ $= a_{i-1} + 1 + b_i - 2a_{i-1} = 1 + b_i - a_{i-1} = 0 \quad \text{amortized} \\ \text{cost} = O(1)$ # of elements in **out** now is 1 less than the # of elements in **in** before