
Longest Common Subsequence

Ibrahim Albluwi

Definition. A subsequence of a sequence is a sequence produced from by deleting
zero or more elements (without changing the order of the elements).

 Example.

	

 Subsequences of

Problem Statement. Given two sequences and ,  
find the length of the longest common subsequence between and .

 Example.

 	

	 Examples of common subsequences:

	 Longest Common Subsequence: of length .

Applications. This is a classic computer science problem with many applications. It is widely used in
Bioinformatics when comparing, matching, and searching for DNA fragments and in applications that require
comparing text files, like version control systems (e.g. Git) and plagiarism detectors.

Brute Force Solution.

	 BRUTEFORCE_LCS(X, Y):

	 LCS =

	 FOR every subsequence S in X:

	 	 IF SEARCH(S, Y):

	 	 	 IF LENGTH(S) > LENGTH(LCS):

	 	 	 	 LCS = S

	 SEARCH(S, Y):

	 i = 1

	 j = 1

	 WHILE j <= LENGTH(Y) AND i <= LENGTH(S):	 	

	 	 IF S[i] == Y[j] : ++i, ++j

	 	 ELSE : ++j

	 IF i > LENGTH(S): RETURN TRUE

	 ELSE : RETURN FALSE

X = < x1, x2, x3, … , xn > X

X = A BCA
X : {A BCA, A BC, A BA, ACA, BCA, A B, A A, CA, BA, BC, AC, A, B, C, ϕ}

X = < x1, x2, x3, … , xn > Y = < y1, y2, y3, … , ym >
X Y

X = A BCA BC, Y = BCA BCA
{A, B, C, A BC, A BCA, BCA, BC, BCA BC, CA B, CA BC}

BCA BC 5

ϕ

Running Time of the Brute Force Solution. There are subsequences in . Checking if a subsequence of is
also a subsequence of requires comparisons. The total is .

Definition. Given two sequences and ,  
We define LCS(i, j) to be the length of the longest common subsequence between the first i characters of
and the first j characters of .

Hence, we are interested in solving LCS(n, m).

Optimal Substructure.

	 LCS(i, j) 	= 0	 	 	 	 	 	 	 if i == 0 or j == 0 (1)

	 	 	 = 1 + LCS(i-1, j-1)	 	 	 	 if X[i] == Y[j] (2)

	 	 	 = MAX(LCS(i-1, j), LCS(i, j-1))	 	 if X[i] != Y[j] (3)

	 Case 1. The LCS is 0 because we are not considering any character from at least one of  
	 	 the two sequences.

	 Case 2.

 	

	

	

	 	 Since the last two characters match, we know for sure that the LCS ends with these two  
	 	 characters. Therefore, we can find the LCS between the rest of the characters in and the  
	 	 rest of the characters in and then add 1 to the result.

 	 Case 3.

	

	

	

	

	 	 Since the last two characters do not match, we know for sure that at least one of them is  
	 	 not the last character in the LCS, but we don’t know which. Therefore, we try to solve the  
	 	 problem once ignoring the last character in and once ignoring the last character in . We  
	 	 then pick the choice that resulted in the maximum result.

2n X X
Y O(m) O(m2n)

X = < x1, x2, x3, … , xn > Y = < y1, y2, y3, … , ym >
X

Y

X
Y

X Y

X = A B C A B C
Y = B C A C

X = A B C A B C
Y = B C A C

LCS() = 1 + LCS()

)) = max

X = A B C A B C

Y = B C A B C A
LCS(

X = A B C A B C
Y = B C A B C A LCS(

)

X = A B C A B C
Y = B C A B C ALCS(

i

j

i-1

j-1

i

j j

i-1

i

j-1

Example Trace. The following is an illustration for the LCS between and .

The highlighted branches are overlapping subproblems.

Y = A BCA X = BCA B

ABCA

BCAB

ABCA

BCA

ABC

BCAB

ABC

BC

AB

B

A

ϕ

ABC

BCA

AB

BCAB

A

BCA

BC
ϕ

AB

BCA

ABC

BC

AB

B

A

ϕ

AB

BC

A

BCA

BC
ϕAB

B
A

BC

A

ϕ

BC
ϕA

B

A

ϕ

B
ϕ

overlapping

subproblems overlapping

subproblems

Bottom-up Dynamic Programming. To avoid computing the same subproblem twice, we store the solutions for
the subproblems in a table and solve the subproblems from smallest to largest. The table stores at index 
[i][j] the result of LCS(i, j).

	 COMPUTE_LCS(X, Y, n, m, i, j)

	 Create an array LCS[n+1][m+1]

	 Initialize the first row and first column to 0’s

	 FOR i = 1 to n:

	 	 FOR j = 1 to m:

	 	 	 IF X[i] == Y[j]:

	 	 	 	 LCS[i][j] = 1 + LCS[i-1][j-1]

	 	 	 ELSE:

	 	 	 	 LCS[i][j] = MAX(LCS[i-1][j], LCS[i][j-1])

	 RETURN LCS[n][m]

Example Trace. The following table shows the result of finding the LCS between ABCA and BCAB. A red arrow
indicates a mismatch between the X[i] and Y[j] and a green arrow indicates a match.

A B C A

0 0 0 0 0

B 0 0 1 1 1

C 0 0 1 2 2

A 0 1 1 2 3

B 0 1 2 2 3

A B C A

0 0 0 0 0

B 0

C 0

A 0

B 0

X

Y

LCS between BC and ABC

LCS between and ABCAϕ

LCS between BCAB and ABCA

Finding the Longest Common Subsequence. The result at index [n][m] is the length of the longest  
common subsequence. To find the characters constituting the LCS, we can follow the path that led to the  
result at index [n][m].

REBUILD_LCS(X, Y, n, m, i, j, LCS[][])

 i = n, j = m

 WHILE i > 0 AND j > 0

	 IF X[i] == Y[j]:

	 	 result = X[i] + result

	 	 i--

	 	 j--

	 ELSEIF LCS[i-1][j] >= LCS[i][j-1]:

	 	 i--

 	 ELSE:	j--

 RETURN result

Running Time.

	 Building and filling the table requires work.

	 Finding characters constituting the LCS requires work.

Θ(n m)
O(n + m)

A B C A

0 0 0 0 0

B 0 0 1 1 1

C 0 0 1 2 2

A 0 1 1 2 3

B 0 1 2 2 3

