This worksheet complements the <u>lecture slides</u> on runtime analysis. You might also need the <u>math cheatsheet</u>.

Question. For each of the following pieces of code, find the number of times op() is called as a function of the input size *n*. Express your answer using Big-*O* notation.

Ex.1	<pre>for (i = 0; i < n; i++) for (j = 0; j < n * n; j++) op()</pre>	Solution. $O(n^3)$.
Ex.2	<pre>for (i = 0; i < n; i++) for (j = i - 4; j < i; j++) op()</pre>	Solution. $O(n)$. The inner loop always repeats 4 times. The outer loop repeats n times.
Ex.3	<pre>for (i = 1; i < n; i *= 4) for (j = 4; j < n; j++) op()</pre>	Solution. $O(n \log n)$. op() is called $\log_4 n \times (n - 4) = n \log_4 n - 4 \log_4 n$ times. We drop the coefficients and lower order terms.
Ex.4	<pre>for (i = 1; i < n; i *= 2) for (j = 1; j < n; j *= 3) for (k = 1; k <= n; k++) op()</pre>	Solution. $O(n \log^2 n)$. op() is called $\log_2(n) \times \log_3(n) \times n$ times (analyze each loop separately, multiply and drop the log bases).
Ex.5	<pre>for (i = 1; i < 64; i *= 2) for (j = 1; j <= 100; j++) for (k = 1; k <= 100; k += 5) op()</pre>	Solution. $O(1)$. op() is called a constant number of times ($\log_2(64) \times 100 \times 20$)
Ex.6	<pre>for (i = 1; i <= n; i++) for (j = n; j > i; j) op()</pre>	Solution. $O(n^2)$. op() is called $n - 1$ times when $i = 1, n - 2$ times when $i = 2, n - 3$ times when $i = 3$, etc.
		Total = $(n - 1) + (n - 2) + (n - 3) + \dots + 1$

$$=\sum_{i=1}^{n-1}i = \frac{n(n-1)}{2}$$

Ex.7 for (i = 1; i <= n; i *= 2)
 for (j = 1; j <= i; j++)
 op()</pre>

Solution. O(n).

Explanation. The following is a trace of the code:

i	j nı	umber of <mark>op()</mark> calls
1	[1]	$1 = 2^{0}$
2 4	[1, 2] [1, 2, 3, 4]	$2 = 2^{1}$ $4 = 2^{2}$
8	[1, 2, 3,, 8]	$8 = 2^3$
n	[1, 2, 3,, n]	$n = 2^k$, $(k = \log_2 n)$

Total = $2^0 + 2^1 + 2^2 + \dots + 2^{\lg n}$

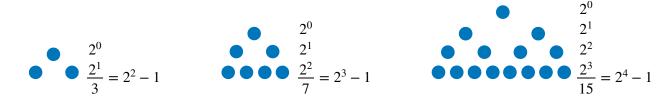
$$= \sum_{i=1}^{\lg n} 2^i = 2^{\lg n + 1} - 1 = 2n - 1$$

- Using the identity $a^m \times a^n = a^{m+n}$, we can represent the answer as $2^1 \times 2^{\lg n} 1$.
- Using the identity $x^{\lg y} = y^{\lg x}$, we can represent the answer as $2^1 \times n^{\lg 2} 1 = 2^1 \times n^1 1$.

This is a geometric sum that can be calculated using the geometric sum formula:

$$\sum_{i=0}^{m} r^{i} = \frac{r^{m+1} - 1}{r - 1}$$

where $m = \lg n$ and r = 2 in this exercise. The following is a visual explanation for this special case:



For extra Muscles. Hint 1: Find a sum and then solve the sum. Hint 2: Refer to the math cheatsheet.

for (i = 1; i < n; i *= 2)
for (j = 4; j < i; j++)
op()

for (i = 1; i <= n; i++)
for (j = 1; j <= n; j += i)
op()

for (i = 1; i < n; i *= 2)
for (j = 1; j < n; j *= 2)
op()

for (i = 1; i < n*n*n; i *= 2)
for (j = 1; j <= n; j++)
op()</pre>