Analysis of Algorithms: More Practice Examples

This worksheet complements the lecture slides on runtime analysis. You might also need the math cheatsheet.

Question. For each of the following pieces of code, find the number of times op() is called as a function of the input size n. Express your answer using $\mathrm{Big}-\mathrm{O}$ notation.

```
Ex. 1 for (i = 0; i < n; i++)
    for ( \(j=0 ; j<n * n ; j++\) )
            op()
```

```
Ex. 2 for (i = 0; i<n; i++)
    \(\underset{\operatorname{op}()}{\operatorname{for}}(j-4 ; j<i ; j++)\)
```

```
Ex. 3 for ( \(\mathrm{i}=1\); \(\mathrm{i}<\mathrm{n}\); i *= 4)
    \(\underset{\text { fop }()}{(j)}=4 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) )
```

```
Ex. 4 for (i = 1; i < n; i *= 2)
    for ( \(\mathrm{j}=1\); \(\mathrm{j}<\mathrm{n}\); j *= 3)
        for ( \(k=1\); \(k\) < \(n\); \(k++\) )
            op()
```

```
Ex. 5 for (i = 1; i < 64; i *= 2)
    for ( \(\mathrm{j}=1\); \(\mathrm{j}<=100\); \(\mathrm{j}++\) )
        for ( \(k=1 ; k<=100 ; k+=5\) )
            op()
```

Ex. 6 for (i = 1; i <= n; i++)
for ($\mathrm{j}=\mathrm{n}$; j > i ; $\mathrm{j}-\mathrm{-}$)
op()

Solution. $O\left(n^{3}\right)$.

Solution. $O(n)$.
The inner loop always repeats 4 times. The outer loop repeats n times.

Solution. $O(n \log n)$.
$\mathbf{o p}()$ is called $\log _{4} n \times(n-4)=n \log _{4} n-4 \log _{4} n$ times. We drop the coefficients and lower order terms.

Solution. $O\left(n \log ^{2} n\right)$.
op() is called $\log _{2}(n) \times \log _{3}(n) \times n$ times (analyze each loop separately, multiply and drop the log bases).

Solution. $O(1)$.
$\mathbf{o p}()$ is called a constant number of times
$\left(\log _{2}(64) \times 100 \times 20\right)$

Solution. $O\left(n^{2}\right)$.
$\mathbf{o p}()$ is called $n-1$ times when $i=1, n-2$ times when $i=2, n-3$ times when $i=3$, etc.

$$
\begin{aligned}
\text { Total } & =(n-1)+(n-2)+(n-3)+\ldots+1 \\
& =\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2}
\end{aligned}
$$

Ex. 7 for (i = 1; i <= n; i *= 2)
for $\underset{\text { op(}}{(\mathrm{j}}=1$; $\mathrm{j}<=\mathrm{i}$; $\mathrm{j}+\mathrm{+})$

Solution. $O(n)$.
Explanation. The following is a trace of the code:

i	j	number of op () calls
1	$[1]$	$1=2^{0}$
2	$[1,2]$	$2=2^{1}$
4	$[1,2,3,4]$	$4=2^{2}$
8	$[1,2,3, \ldots, 8]$	$8=2^{3}$

$\mathrm{n} \quad[1,2,3, \ldots, \mathrm{n}] \quad \mathrm{n}=2^{\mathrm{k}},\left(k=\log _{2} n\right)$

$$
\text { Total }=2^{0}+2^{1}+2^{2}+\ldots+2^{\lg n}
$$

$$
=\sum_{i=1}^{\lg n} 2^{i}=2^{\lg n+1}-1=2 n-1
$$

- Using the identity $a^{m} \times a^{n}=a^{m+n}$, we can represent the answer as $2^{1} \times 2^{\lg n}-1$.
- Using the identity $x^{\lg y}=y^{\lg x}$, we can represent the answer as $2^{1} \times n^{\lg 2}-1=2^{1} \times n^{1}-1$.

This is a geometric sum that can be calculated using the geometric sum formula:

$$
\sum_{i=0}^{m} r^{i}=\frac{r^{m+1}-1}{r-1}
$$

where $m=\lg n$ and $r=2$ in this exercise. The following is a visual explanation for this special case:

For extra Muscles. Hint 1: Find a sum and then solve the sum. Hint 2: Refer to the math cheatsheet.

```
for (i = 1; i < n; i *= 2)
    for (j = 4; j < i; j++)
        op()
```

```
for (i = 1; i < n; i *= 2)
    for (j = 1; j < n; j *= 2)
        op()
```

```
for (i = 1; i <= n; i++)
    for (j)
```

```
for (i = 1; i < n*n*n; i *= 2)
    for (j = 1; j <= n; j++)
        op()
```

