

# The King Hussein School for Computing Sciences Department of Computer Science Structured Programming - Spring 2023

## **Second Exam**

Full Name: Student ID:

#### Question **Points** Score PART 1.A: 4 1 PART 1.B: 4 PART 2: 3 PART 1: 4 2 PART 2: 4 3 6 **Total** 25

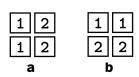
## Circle your section:

| o Dr. Ammar Alrashdan     | (section 1)  |
|---------------------------|--------------|
| o Dr. Osama Alhaj Hasan   | (section 2)  |
| O Dr. Rawan Ghnemat       | (section 3)  |
| o Dr. Ammar Alrashdan     | (section 4)  |
| Or. Rawan Ghnemat         | (section 5)  |
| O Dr. Mohammad Al Nabhan  | (section 6)  |
| O Dr. Mohammad Al Nabhan  | (section 7)  |
| o Dr. Manaf Gharaibeh     | (section 8)  |
| o Dr. Mohammad Abu Snober | (section 9)  |
| o Dr. Mohammad Abu Snober | (section 10) |
| o Mr. Yousef Yaseen       | (section 11) |
| O Mr. Alaa Altarazi       | (section 12) |
| o Mr. Alaa Altarazi       | (section 13) |
| o Mr. Alaa Altarazi       | (section 14) |

**PART 1.** Implement each of the following functions (assume that N is a globally defined constant).

**A.** [4 points] Function **identity**(...) receives a 2D array of integers of size NxN and returns 1 if the main diagonal is all 1s and all the other elements are zeroes (and returns 0 otherwise).

| Examples. | 1 | 1 0 | 1 0 0 | 1 0 0 0 | These are all identity |
|-----------|---|-----|-------|---------|------------------------|
|           |   | 0 1 | 0 1 0 | 0 1 0 0 | matrices               |
|           |   |     | 0 0 1 | 0 0 1 0 |                        |
|           |   |     |       | 0 0 0 1 |                        |


**B.** [4 points] Function **shift**(...) receives a 2D array of size NxN and shifts all the rows one position down. The first row becomes all zeroes and the last row is lost.

| Example. | 1 1 1 1 |         | 0 0 0 0 |
|----------|---------|---------|---------|
|          | 2 2 2 2 | becomes | 1 1 1 1 |
|          | 3 3 3 3 |         | 2 2 2 2 |

**PART 2.** Answer the question below assuming that a, b and c are 2D arrays of size NxN.

```
for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
        int sum = 0;
        for (int k = 0; k < N; k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] = sum;
    }
}</pre>
```

- **A.** [1 points] What will be stored at c[0][0] after the code finishes execution if a[][] and b[][] are shown on the right?
- **B.** [2 points] What will be stored at c[2][1] after the code finishes execution if a[][] and b[][] are shown on the right?

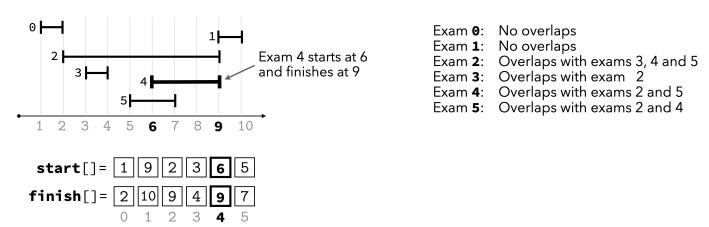


| 5 | 7 1 1 | 0 | 1 | 6      | 1 |
|---|-------|---|---|--------|---|
| 3 | 2 0 0 | 0 | 2 | 6      | 1 |
| 2 | 3 4 2 | 5 | 3 | 8      | 9 |
| 4 | 9 1 1 | 1 | 2 | 8      | 4 |
|   |       |   |   | —<br>b |   |

Question 2 (8 points)

**PART 1.** [4 points] Convert the iterative function shown below to a recursive function and then show how your recursive function can be called. You are allowed to add or remove parameters.

```
int f1(int n, int a[]) {
   int sum = 0;
   int flag = 1;
   for (int i = n-1; i >= 0; i--) {
      if (flag == 1)
            sum += a[i];
      flag *= -1;
   }
   return sum;
}
```


Show how your function can be called on an array named a of size n.

**PART 2.** [4 points] What is the output of the following program?

### Question 3 (6 points)

Implement function int **min\_overlap**(int start[], int finish[], int n), which returns the index of the exam with the <u>minimum number of overlaps</u> with other exams. Each exam is represented using an entry in the arrays start[] and finish[], where start[i] is the start time of exam i and finish[i] is the finish time of exam i.

In the example below, the exams with the minimum number of overlaps are exams 0 and 1 (0 overlaps). You can return 0 or return 1, because both exams have the minimum number of overlaps.



Provide your answer in the following page.