

e King Hussein School for Computing Sciences
Department of Computer Science

Structured Programming - Spring 2022

Second Exam

 Full Name: Reference Solution Student ID:

Circle your section:

○ Dr. Mu'awya Al-Dala'ien (section 1)

○ Dr. Rawan Ghnemat (section 2)

○ Dr. Abdullah Aref (section 3)

○ Dr. Mu'awya Al-Dala'ien (section 4)

○ Dr. Rawan Ghnemat (section 5)

○ Dr. Sawsan Alshatnawi (section 6)

○ Dr. Mohammad Al Nabhan (section 7)

○ Dr. Sawsan Alshatnawi (section 8)

○ Dr. Mohammad Abu Snober (section 9)

○ Dr. Mohammad Abu Snober (section 10)

○ Dr. Khaled Mansour (section 11)

○ Dr. Abedalrhman Alkhateeb (section 13)

○ Dr. Khaled Mansour (section 14)

○ Dr. Rafat Hammad (section 15)

estion Points Score

1 4

2 3

3 4+1

4 7

5 7

Total 25+1

Question 1 (4 points)

Fill the Output column in the table below with the output of the code provided in the Code column. If the
code does not compile, write “compilation error” instead of the output.

Code Output

1. int a[2][2] = {{1, 2}, {3, 4}};
 printf("%d", a[0][1]); 2

2. int a[3][3] = {{1, 2}, {3, 4}};
 printf("%d", a[2][2]); 0

3. int a[][] = {{1, 2}, {3, 4}};
 printf("%d", a[1][1]); Compilation Error

4. int x = 2;
 do printf("%d ", x--);
 while (x >= 2);

2

5. for (int i = 0; i < 3; i++)
 if (i == 1) continue;
 else printf("%d ", i);

0 2

6. for (int i = 0; i < 3; i++)
 if (i == 1) break;
 else printf("%d ", i);

0

7. for (int i = 0; i < 2; i++)
 printf("%d ", i);
 for (int j = 0; j < 2; j++)
 printf("%d ", j);

0 1 0 1

8. void f(int x) {
 if (x == 3) break;
 else printf("Hello");
 }

 int main() {

 f(3);

 return 0;

 }

Compilation Error

Question 2 (3 points)

Convert the following function to a recursive function:

 void boom(int n) {

 while (n > 0)
 printf("%d ", n--);

 printf("Boooom!");
 }

Question 3 (4+1 points)

PART 1. for (int i = 0; i < n; i++) {
 for (int j = 0; j < n - 1; j++) {
 if (a[i][j] == a[i][j+1]) printf("A ");
 else if (a[i][j] == a[i][j-1]) printf("B ");
 }
 }

A. Provide an example of an array a[][] of size [n=3]x[n=3]
that will cause the above code to print A A A A A A.

 1 1 1
 1 1 1 any 3x3 array whose elements are all
 1 1 1 the same is a correct answer.

B. Provide an example of an array a[][] of size [n=3]x[n=3]
that will cause the above code to print A A A A A B.

 1 1 1
 1 1 1 any 3x3 array whose elements are all
 1 1 0 the same except the last is a correct answer.

C. [+1 point] Provide an example of an array a[][] of size
[n=3]x[n=3] that might cause the above code to crash.

 0 1 1 any 3x3 array with an element at the
 1 1 1 first column != the element to its
 1 1 1 right causes the code to access a
 negative index which might crash.

void boom(int n) {
 if (n <= 0) {
 printf("Boooom!");
 return;
 }
 printf("%d ", n);
 boom(n-1);
}

Note. This part is a bonus
question. Do not spend
time on it until you are done
with the other required
questions.

PART 2. void f1(int a[], int n) {

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n - 1; j++) {
 int temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 }
 }

D. What are the contents of array a[] aer calling function f1
if n = 2 and a[] = {2, 1} ?

 {2, 1}

E. What are the contents of array a[] aer calling function f1
if n = 100 and a[] = {100, 99, 98, 97, …, 3, 2, 1} ?

 {100, 99, 98, 97, …, 3, 2, 1}

Question 4 (7 points)

A. [4 points] Implement a function named sudoku, which receives as an argument a 2D array of integers of
size 9x9. e function returns 1 if every column sums to 45 and every row sums to 45. e function returns
0 otherwise.

 int sudoku(int a[][9]) {
 for (int i = 0; i < 9; i++) {
 int sum = 0;
 for (int j = 0; j < 9; j++)
 sum += a[i][j];
 if (sum != 45)
 return 0;
 }

 for (int j = 0; j < 9; j++) {
 int sum = 0;
 for (int i = 0; i < 9; i++)
 sum += a[i][j];
 if (sum != 45)
 return 0;
 }
 return 1;
 }

B. [3 point] Write a program that creates a 2D array of size 9x9, fills it with random integers between 1 and
9 (inclusive) and then uses function sudoku to check if every row and every column in the array sums to 45.
If this is true, your program must print "what a surprise!".

 int main() {

 int a[9][9];

 for (int i = 0; i < 9; i++)
 for (int j = 0; j < 9; j++)
 a[i][j] = 1 + rand() % 9;

 if (sudoku(a))
 print("what a surprise!");

 return 0;
 }

Question 5 (7 points)

In Number eory, a Taxicab Number is a number that can be expressed as a sum of cubes in more than one
way. For example, 1729, 4104 and 13832 are taxicab numbers, because:

 and also
 and also

 and also

A. [5 points] Implement a function named taxicab that receives an integer and prints "taxicab" if the
integer is a taxicab number and "not taxicab" otherwise.

 void taxicab(int n) {
 int count = 0;
 for (int i = 1; i < n; i++)
 for (int j = i; j < n; j++)
 if (i*i*i + j*j*j == n)
 count++;
 if (count > 1)
 printf("taxicab");
 else
 printf("not taxicab");
 }

1729 = 13 + 123 1729 = 103 + 93

4104 = 23 + 163 4104 = 93 + 153

13832 = 203 + 183 13832 = 243 + 23

B. [2 points] Reimplement function taxicab such that it prints all the taxicab numbers that are less than the
received integer.

 void taxicab(int k) {
 for (int n = 1; n < k; n++) {
 int count = 0;
 for (int i = 1; i < n; i++)
 for (int j = i; j < n; j++)
 if (i*i*i + j*j*j == n)
 count++;
 if (count > 1)
 printf("%d\n", n);
 }
 }

 Note 1. No double-jeopardy. Grade part B only based on putting the code from
 part A into a loop correctly. Do not deduct in part B for errors already
 deducted for in part A.

 Note 2. Students might optimize the code by looping until n/2, n/3, or
 sqrt(n), etc. instead of to n. This is all correct.

 Note 3. The innermost loop must start from j = i not from j = 0. Starting
 from j = 0 means that the same pair will be counted twice (e.g. 10 9 and
 then 9 10). Apply a minor deduction for this error.

